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Abstract
Until now, jobs running on HPC clusters were tied to the node where their execu-
tion started. We have removed that limitation by integrating a user-level checkpoint/
restart library into a resource manager, fully transparent to both the user and running 
application. This opens the door to a whole new set of tools and scheduling pos-
sibilities based on the fact that jobs can be migrated, checkpointed, and restarted 
on a different place or in a different moment, while providing fault tolerance for 
every job running on the cluster. This is of utmost importance in the future gen-
eration of exascale HPC clusters, where an increasing degree and complexities of 
efficient scheduling make it challenging to obtain the required degree of parallelism 
demanded by the applications.

Keywords  Checkpoint–restart · DMTCP · Dynamic job migration · Exascale 
clusters

1  Introduction

The recent rise in maturity of checkpoint–restart makes possible new functionality 
that was not previously practical. In particular, we describe a novel approach toward 
increased cluster performance and flexibility. The approach makes possible a uni-
form approach toward checkpointing for the large variety of jobs routinely executed 
by modern supercomputers, including OpenMP for many-core computing, MPI, and 
hybrid MPI/GPU computation.

This work has been motivated by the need to overcome deficiencies in the 
Slurm resource manager, as used at CIEMAT. At CIEMAT supercomputing 
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facilities, a large collection of open source and proprietary codes is routinely 
executed, providing a diverse testbed with which to validate our approach to 
improved cluster performance and flexibility. CIEMAT is the largest Spanish 
research center for research on energy, the environment, and related technology. 
In addition to this basic research, there is also an emphasis on health science and 
high-energy physics. Similar to other large, national institutions (e.g., the U.S. 
Department of Energy), CIEMAT has included supercomputing facilities since 
the 1950s, and it has been a pioneer in the use of supercomputing in Spain. As 
one would expect, there are also a large number of scientists using CIEMAT’s 
supercomputing infrastructure to perform simulations pertinent to a variety of 
disciplines. The result is a plethora of codes and applications, each with its own 
particular computational requirements. Most of these codes and applications 
come from releases widely used by huge communities around the world, and 
comprising millions of lines of code in Fortran, C, C++, etc.

In this scenario, adding an application-specific fault tolerance capability to each 
code is not practical. Hence, a uniform paradigm for software resilience must be 
provided by the HPC administrators. This resilience must be transparent to the codes 
run by the users. This aim fits closely with the increasing importance of fault tol-
erance in the coming exascale era. The current work is motivated by a need to go 
beyond current practice, by deriving new functionality for supercomputer manage-
ment and performance.

The evolution of HPC hardware follows a clear path: an increasingly large num-
ber of processing units per cluster. For many years now, miniaturization and techni-
cal improvements have provided a larger number of resources, with limits of the 
technology and the nature of applications orienting processor design into simple 
ones with an increasing number of cores [1, 2]. Moreover, as performance varies 
over computers generations and characteristics, it is common to see heterogeneous 
clusters composed by resources with different performances, and even islands of 
clusters with notable differences in network connection among the nodes (see, e.g., 
the TOP500 list at https​://www.top50​0.org/).

This evolution has had a deep influence on the software architecture. In particu-
lar, current and future tendencies in HPC design (including exascale-ready applica-
tions) come in the form of massively parallel applications or large arrays of serial 
applications with a post-processing step [3]. These must be executed in an efficient 
way, but the environment is also of importance to build new platforms that bear in 
mind the so-called exascale demonstration applications. This co-design pathway is a 
cornerstone nowadays [4].

There are two major factors that have a negative impact on the scalability of paral-
lel applications: Amdahl’s law, which establishes an upper limit on the application’s 
scalability according to the fraction of parallel code, and the overhead of the differ-
ent subsystems (network, memory) and its influence on the execution time. Both 
items must be accounted for in the exascale era [5]. They are partially overcome 
through new mathematical developments and application kernels, which increase 
the scalability, even at the cost of reducing efficiency. As a result of this variability 
on application requirements and limits, nowadays we can find a mix of codes with 
very different degrees of parallelism and execution times [6].

https://www.top500.org/
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This combination of an increasing number of hardware elements and applications 
with different requirements and characteristics has resulted thing in complex and 
potentially problematic ecosystems. Among others, we identify three major issues 
related to the management of HPC resources: It is difficult to perform scheduling that 
achieves a high-throughput level; the administration of the cluster nodes is no longer 
trivial, as performing maintenance or updating them can have a negative influence on 
the currently running jobs; and last but not least, the potential for hardware failures to 
affect the execution of applications grows as the degree of parallelism increases. All 
of these problems increase both with the degree of parallelism of the applications and 
with their execution time. So finding solutions in the years to come is obligatory if we 
want to gain the most from the new generations of hardware.

Thus, it is still an open problem how to maximize cluster throughput while at 
the same time keeping a reasonable level of user’s satisfaction (avoiding starvation, 
providing flexibility, implementing QoS, etc.). New approaches and scheduling tech-
niques have been proposed [7, 8], but we are still far from finding a perfect and uni-
versal solution.

The maintenance and update of clusters is usually performed with scheduled down-
times. This standard practice leads to a period where the cluster is underutilized. This 
period includes: the downtime period itself; plus some time before it (when users will 
not be running anything to avoid losing their partial results); and sometime after it 
(until jobs have been submitted again and the cluster returns to full usage).

With regard to resilience, fault tolerance is currently achieved, at least in pro-
duction environments, with the use of application-level checkpoints: modifying the 
application to save the state at given points during the execution. However, the use 
of application-level checkpointing/restart (C/R) libraries finds only limited use, due 
to the limited capabilities of most libraries and the lack of integration with resource 
managers (RMs). The lack of widespread use of application-level checkpoint–restart 
has several reasons. First, there is a significant cost in terms of development time for 
both implementation and maintenance. Second, an application-level approach places 
extra responsibility on the users: detect failures, manage temporary state files, and 
so on. Third, integrating application-level checkpoint methodologies in large codes 
with thousands of modules used by a heterogeneous community is far from trivial.

But perhaps the most insidious issue of all in application-level checkpointing 
approaches on large codes is that after some initial implementation effort, it actually 
works. Then, a new developer adds an additional module and fails to augment the 
application-level checkpointing code, which has now become somewhat complex. 
Most users do not notice the problem initially, since most users are not immediately 
using the features of the new module. But slowly, over time, the users are trained to 
believe that the built-in application-level checkpointing cannot be trusted except for 
the simplest of inputs.

The work presented here is aimed at addressing these issues through the use of 
C/R techniques completely transparent to the user, while integrating this with a RM. 
This is so because counting on a C/R library fully integrated in the RM allows one to 
save the state of all running jobs and restore there in case of problems. This way, we 
can overcome hardware failures and reduce their impact on the job execution time.
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The question next arises if more potential outcomes can be achieved beyond sim-
ple resilience, once that the capability of saving the state of a job and restoring is 
available. In particular, if the job scheduler is aware of this possibility, it can be 
employed in the decision-making process, thus allowing one to modify the alloca-
tion of jobs in real time. For example, jobs can be moved inside the cluster to con-
centrate them in the minimum possible number of nodes, or jobs can be distributed 
evenly within a partially filled cluster. Other uses come from preemption, removing 
a running job from its resource to allocate another job with a higher priority.

The same approach can be applied to system administration: Any maintenance 
operation on a node can be performed immediately, by checkpointing all jobs run-
ning on that node and placing them back in the job queue. The users do not need to 
be notified, since the checkpoint and later restart will be completely transparent to 
them. Since there is no need to shut down the whole service, the impact of the pro-
cess is greatly reduced.

All of the previous can result in a better computing and/or energy efficiency in the 
cluster and represents a new concept of novelty in this work as paves the way for add-
ing more customized artificial intelligence capabilities in the RM depending on the 
cluster characteristics and general use. Thus, in order to support this new approach, 
the C/R library must satisfy certain minimum requirements in order to provide an 
optimum scenario according to the analysis carried out as part of this work:

–	 First, it must be able to save the state of all or most applications running on the 
cluster.

–	 Second, it must be transparent at the application level. The end user should not 
have to recompile or modify the application in any way, and the checkpoint and 
restart must be completely transparent to that end user.

–	 And third, of course, the overhead induced by the checkpoint library should be 
kept to a minimum.

The RM should also include some specific capabilities. In particular, it should 
include C/R support in the form of an API, so that a set of commands can be used 
to perform the checkpoint and restart operations. That API will then be called by a 
newly created scheduling algorithm, aware of the possibility of migrating jobs and 
using it in the decision-making process. Also, if we want to create user-level tools 
using migration, that API should be accessible from inside the RM. In addition, this 
API should be able to manage different C/R libraries and tools transparently.

Sadly, none of the existing RMs provide the required full support for a C/R 
library. We have therefore chosen the Slurm resource manager [9] due to its sophisti-
cated features for extensibility as well as their vast use in the TOP500 list and modi-
fied it to include support for the user-level, transparent DMTCP C/R library [10] 
(see deeper analysis on why this library has been selected below).

Slurm is a well-known cluster management and job scheduling system for Linux 
clusters that requires no kernel modifications for its operation. It has been adopted 
by a wide set of administrators around the world for managing their supercomput-
ers. In addition, it has a strong and active community of developers. Hence, this 
work has targeted Slurm due to the large potential impact. Nevertheless, one of 
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the main reasons for selecting Slurm is that the architecture of this RM provides a 
plug-in capability for integrating new functionality. This is used here to add a check-
point–restart plug-in to Slurm, thus enabling new scheduling algorithms.

The architecture used here is able to manage: nodes (the compute resource in 
Slurm); partitions (grouping nodes into logical sets; jobs, or allocations of resources 
assigned to a user for a specific time slot); and job steps (sets of, possibly parallel, 
tasks within a job). Thus, several parameters can be defined in these partitions (job 
time limit, job size limit, user access permissions, etc.). These parameters enable 
the second objective of this work: the use of C/R to provide new features, including 
more accurate scheduling algorithms, dynamic migration of tasks, preemption, and 
transparent maintenance operations to the user.

In the rest of this document, we first describe the broad framework enabling this 
research: a full, transparent integration between Slurm and DMTCP. This is used to 
explore novel features on top of this integration:

–	 Creating a tool for system administration;
–	 Exploring how existing preemption mechanisms in Slurm are enhanced by this 

new possibility;
–	 Creating a new paradigm for batch jobs, the “eternal job”; and
–	 Proposing two scheduling algorithms employing live job migration as a demon-

strator for more advanced artificial intelligence capabilities.

Following this, we include a results section describing the performance of this 
integration and conclude the article with some ideas about open problems and future 
work.

In the rest of this document, Sect. 2 presents an extensive review of related work 
for checkpoint–restart and current approaches in practice in HPC centers. Section 3 
presents our approach to the use of checkpoint–restart for more efficient software 
resilience. Section 4 presents an experimental evaluation within the CIEMAT envi-
ronment. Section 5 discusses a conclusion and future work.

2 � Related work

As mentioned earlier, joint opportunistic user scheduling and power allocation are 
topics of major importance in modern HPC systems [11]. Among other aspects, it 
can be designed in order to achieve throughput optimization and fair resource shar-
ing [12]. Beyond those, there is a link between fault tolerance and improvement in 
cluster throughput that this work is tackling, i.e., enhance the computational effi-
ciency in a cluster profiting from checkpointing methodologies in order to design 
better scheduling algorithms, perform job preemption techniques, make administra-
tion maintenance operations transparently to the user, etc.

A description follows of the related work regarding checkpointing/restart libraries 
as well as live job migration.
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2.1 � Status of checkpoint/restart libraries

With the increasing use of parallelism in HPC, checkpoint libraries are becoming 
increasingly more valuable.

Checkpointing can be accomplished either at the system level (transparently to 
the application), or at the application level (integrated into the application). While 
the first type is easier to apply for the end user, the latter is typically more efficient 
[13].

In system-level checkpointing, the state of a computation is saved by an external 
entity. The complete process information has to be stored, including memory con-
tents, open files, CPU, content of registers, and so on. On restart, the state is care-
fully restored, so that the execution can seamlessly continue at the same point where 
it was interrupted.

System-level checkpoint solutions can either be implemented inside the kernel or 
at the user level. The former has the advantage that the checkpointer has full access 
to the target process as well as its resources, while user-level checkpointers have to 
find other ways to gather this information. On the flip side, user-level schemes are 
typically more portable and easier to deploy.

Regarding current projects, BLCR [14] is primarily a kernel-based implementa-
tion of checkpoint/restart, employing a Linux kernel module. It is fast and efficient. 
However, the kernel module must be re-compiled and possibly re-tuned for each 
particular Linux kernel version. Another weakness of BLCR is that it does not sup-
port the SysV enhancements, such as System V shared memory. Many MPI imple-
mentations employ System V shared memory as an optimization for message pass-
ing among MPI ranks on the same node. While most MPI implementations can be 
configured to avoid making use of System V shared memory, this is non-optimal. 
At the same time, coordinated checkpointing and rollback recovery for MPI-based 
parallel applications has been provided by integrating BLCR with LAM and other 
implementations of MPI through a checkpoint–restart service specific to each MPI 
implementation [15].

The updated DMTCP version [16] is a strictly user-space, system-level check-
point. It makes use of a simple, yet powerful idea in order to be able to capture 
all state related to the running application: A DMTCP library is injected into each 
running process, and that library starts a DMTCP-specific checkpoint thread. With 
this configuration, DMTCP can monitor all activities in the process. As a drawback, 
this approach adds a thin software layer. In most applications, the overhead due to 
this software layer is usually smaller than the jitter, or variation in time, when the 
application is re-run. However, a notable exception is its support for InfiniBand; the 
overhead can be measured at a fraction of 1%. This non-negligible overhead will be 
determined later in this work.

CRIU [17] is a promising new project, but it is still not able to checkpoint parallel 
or distributed applications. It does, however, provide the possibility of checkpoint-
ing Docker containers along with some other interesting features [18]. A similar 
conclusion can be made for the compiler-based lightweight memory checkpoint-
ing (LMC) [19], which has demonstrated low performance overhead with strictly 
bounded memory usage at runtime as demonstrated on server applications.
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The alternative to system-level checkpointing is application-level checkpointing, 
where it is the application that writes its own state into a checkpoint file and reads 
it on the restart stage. While this requires explicit code inside the application and 
hence is no longer transparent, it gives the application the ability to decide when 
checkpoints should be taken and what should be contained in the checkpoint (see, 
e.g., works on incremental checkpointing applied to application level [20, 21]).

In the case of application-level checkpoint, probably the most extensive solu-
tion is scalable checkpoint–restart [22]. SCR is a multi-level checkpointing, which 
allows applications to take both frequent inexpensive checkpoints and less frequent, 
more resilient checkpoints, aiming to obtain a better efficiency and reduced load on 
the parallel file system. In order to do so, they perform checkpoints and save the 
resulting image in increasingly safer, but slower, places in the memory hierarchy. 
They have performed an impressive work on data allocation, thus minimizing data 
movement around nodes, I/O serialization in network disks, and interesting replica-
tion techniques to overcome different set of failures with minimal effort and time 
loss. The fault tolerance interface (FTI) [23] has a similar approach to the problem, 
differing in the way that the library deals with checkpoint files and metadata. A new 
project supported by Argonne National Laboratory is underway: VeloC. This rep-
resents a merging of the design of SCR and FTI, and a prototype integration with 
DMTCP has been demonstrated.

Both system-level and application-level approaches have advantages and disad-
vantages. While system-level checkpoints provide full transparency to the user and 
require no special mechanism or consideration inside an application, this transpar-
ency is missing in application-level checkpointers. On the other hand, this transpar-
ency comes at the cost of high implementation complexity and storage overhead for 
the checkpointing software. Nevertheless, for many users who are primarily inter-
ested in obtaining scientific results without the need for an in-depth study of the 
underlying code base, the transparent user-level checkpointing approach is a major 
step forward.

2.2 � Live job migration

The possibility of moving “something” being executed on a particular computational 
resource to another one is not new at all. It has been around for at least 25 years. 
Thus, in the lowest level of abstraction, task migration is widely used inside multi-
core processors to distribute tasks among the existing cores, distributing and balanc-
ing the load [24]. This is now an active line of research for virtualized environments 
[25–27].

At a higher abstraction layer, Charm++ [28] is a parallel object-oriented pro-
gramming language based on C++ with the ability of applying it to fine grain 
parallelism and using it to checkpoint individual threads or active objects in a 
large-scale system to achieve load balancing.

A methodology can be proposed for dynamic job reconfiguration based on the 
use of MPI_spawn in order to dynamically adjust the number of nodes in actively 
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running MPI jobs in Slurm [29]. After introducing some small modifications 
in the code to indicate where the execution can be arbitrarily distributed, their 
framework gathers all the available resources and increases the degree of parallel-
ism of the application at runtime. This approach, however, requires modifications 
of the source code suitable only for certain kind of applications, thus preventing a 
wider adoption.

Also, the inclusion of resilience capabilities into the MPI standard through the 
proposed user-level failure mitigation (ULFM) has enabled the implementation of 
resilient MPI applications [30]. Its low overhead when tolerating failures in one or 
several MPI processes has been shown [31]. This solution is built on top of Com-
Piler for Portable Checkpoiting (CPPC), an application-level checkpointing tool for 
MPI applications. Thus, the proposed development transparently makes MPI appli-
cations resilient by instrumenting the original application code; this does require a 
previous customization of the code to be checkpointed.

Regarding full jobs, the HTCondor scheduling system [32] applies checkpoint/restart 
to complete jobs (although only serial ones) to achieve a better utilization of compute 
clusters for high-throughput computing. Since most of the serial jobs are components 
of larger Monte Carlo simulations, achieving fault tolerance is less important.

There also exists a formal approach that can be applied to multi- and many-core 
chips. Several algorithms and mechanisms have been proposed [33, 34], although 
their impact is beyond the scope of this work.

Similarly, the most widely used VM (virtual machine) managers (Xen, OpenVZ, 
KVM, VirtualBox, etc.) support live migration of full VMs. This possibility is regu-
larly employed by platforms such as OpenNebula [35] and OpenStack [36] to rear-
range running VMs inside the clusters, usually with the objective of concentrating 
the VMs in the fewest possible number of resources to reduce energy consumption. 
In the case of software containers, this technique has still not been widely adopted, 
and to the authors’ knowledge, only Docker + CRIU offers this possibility [37].

Of course, the technologies employed vary depending on the software layer, but 
the underlying ideas are always roughly the same.

From the existing work presented in this section, it can be inferred that the check-
pointing of jobs in local clusters is an ongoing work that has already provided useful 
results and production-ready tools. Live migration of different elements (tasks, vir-
tual machines, etc.) is a mature technology, suitable for many situations. However, 
there is still a lack of a real and effective connection between these two areas in HPC 
environments. Thus, fault tolerance manager (FTM) for coordinated checkpoint files 
is able to provide users automatic recovery from failures when losing computing 
nodes [38], though it is particularly useful in infrastructure-as-a-service cloud plat-
forms environments, and is based on the RADIC architecture. Finally, task migra-
tion for fault tolerance in heterogeneous multi-cluster systems exists, but was devel-
oped primarily for grid computing infrastructures [39].

Motivated by the issues described above, the present work presents a transpar-
ent, novelty approach to live migration of tasks based on jobs checkpointing and 
restart, which incurs in low overhead. Under this approach, more accurate sched-
uling, dynamic migration of tasks, flexible preemption and maintenance operations 
are possible, hence opening a new set of capabilities to be seamlessly performed 
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by system administrators. Thus, such a design presents not only a new successfully 
tested engineering solution, but rather a new and novel approach and concept to bet-
ter exploit supercomputers not previously foreseen to the authors’ knowledge.

3 � Checkpoint/restart for job migration

In this section, we present our solution for seamlessly integrating a checkpoint/
restart library into a resource manager. Then, we describe the tools and scheduling 
algorithms that can be created based on this new capability, thanks to job migration.

3.1 � Software stack

For this work, we have chosen Slurm as the resource manager and DMTCP as the 
checkpoint library.

Slurm is one of the most widely employed resource managers for supercom-
puters. In particular, it is the workload manager on about 60% of the TOP500 
supercomputers according to their main developer, SchedMD. It is an open-
source tool, and so we are able to dig into its internals and modify them accord-
ing to our needs. Further, due to Slurm’s modular and plug-in-based design, these 
modifications of the internals are kept to a minimum.

DMTCP is chosen as the checkpoint library. As discussed in “Related Work” 
section, it is, to the authors’ knowledge, the only checkpoint library that pro-
vides the needed requirements for this project: open source; fully transparent to 
the users’ and applications; support for parallel applications (MPI and OpenMP); 
stable; and continuing active support by its development team. In addition, 
petascale-level checkpointing has been demonstrated by DMTCP through a new 
mechanism for virtualization of the InfiniBand UD (unreliable datagram) mode 
and for updating the remote address on each UD-based send. Results have dem-
onstrated low overhead in tests with real applications and benchmarks running on 
more than thirty thousand MPI processes and CPU cores [16]. An extrapolation 
of those results to future SSD-based storage systems shows that this approach 
will remain practical in the exascale generation.

Note, also, that this project is not tied to DMTCP. The modular design of 
Slurm allows one to change the checkpoint library without affecting the rest of 
the tool, since the library is modularized through a well-defined API. Thus, a dif-
ferent, future library could be adopted by simply modifying a configuration file.

3.2 � Developments for job migration

The integration of Slurm and DMTCP was performed using an existing checkpoint 
API present in Slurm. This was implemented by creating a shell wrapper for each 
of the three checkpoint functions (start, checkpoint and restart). There were some 
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challenges due to concurrency issues when starting MPI jobs, but these were solved 
through a lock mechanism on files in a shared folder.

It is important to note that this plug-in has a behavior opposite to the original 
Slurm design for checkpointing. Originally, Slurm was designed to start a job with 
checkpoint support only if requested by the user through a command-line flag dur-
ing submission. Since we want to support all running jobs in order to more broadly 
support job migration, we changed this default behavior to start the application with 
checkpoint support providing that the user does not disable checkpointing during 
submission through a command-line flag.

Aside from the plug-in, the changes made in Slurm were kept to a minimum. The 
structure, APIs, and existing functionality were maintained for compatibility with 
the official Slurm version. The modifications only add optional extensions to the 
existing API calls.

3.3 � New tools and functionality in Slurm enabled by job migration

The following section is devoted to describe the tools and functionality enabled by the 
availability of job migration inside clusters. We first present smigrate, a tool for cluster 
system administration that employs job migration to idle nodes in a fast and secure way, 
and, then, two different scheduling algorithms using job migration to dynamically real-
locate running tasks. Note that the objective of this section is not the creation of complex 
tools and algorithms, but to demonstrate how the implemented job migration inside clus-
ters can enable a new and wide set of additional tools for cluster administration.

For the sake of completeness, it is worth noticing that optimization of task assign-
ments on parallel computers is carried out in Slurm by a best fit algorithm based on 
Hilbert curve scheduling or a fat tree network topology [40].

3.3.1 � Smigrate—a job management tool

The nodes composing a cluster need to be maintained (i.e., removed from active ser-
vice on the cluster to perform operations related to system administration) on a regu-
lar basis. Reasons include, but are not limited to, software updates, reconfigurations, 
network issues, changes on the hardware, etc. In normal usage, users are notified of 
these updates in advance, since part or all of the cluster will be out of service.

This maintenance process greatly harms the computation throughput. Although 
the update itself may be short, users are warned in advance not to submit long jobs 
and the cluster remains not fully occupied immediately after the update, since users 
have not yet submitted new jobs. Moreover, if the maintenance is urgent and there is 
no time to notify users in advance, then the jobs running on those nodes are simply 
killed and the corresponding computation time is lost. This is especially harmful in 
the case of parallel applications.

As an alternative, job migration can be used to avoid the loss of computation 
time. If a particular slot, node or part of a cluster must receive maintenance, then the 
tasks running there can be migrated. With this goal in mind, we have created smi-
grate, an application that allows administrators and users to manually migrate jobs.
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The process is as follows:

–	 The user executes smigrate indicating the node to be emptied of jobs.
–	 smigrate asks Slurm if the user has enough privileges to do so, and exits if not.
–	 The node is marked as “DRAIN.” This is a Slurm state indicating that Slurm is 

operative, but not accepting any more jobs, and will go offline as soon as the cur-
rently running jobs complete. The state is changed to “DRAIN” without the need 
for additional checks, thus avoiding race conditions.

–	 smigrate checks if all the jobs on the node are checkpointable (see Section 
[DEVELOPMENTS FOR JOB MIGRATION] for details), and if not, then smi-
grate sets the node back to “AVAILABLE” and exits.

–	 The user can use a flag to decide what to do if there is a parallel application running on 
several nodes, one of which is the node marked “DRAIN.” The flag is checked here, 
setting the node back to “AVAILABLE” and exiting if the migration is not desired.

–	 At this point, there are no issues preventing the node to be emptied of jobs.
–	 All jobs running on the node are checkpointed and placed back in the job queue. 

Their priority is set to maximum, so that they will be executed on the first avail-
able nodes that satisfy the job requirements.

–	 The node has now been emptied of jobs and is ready for maintenance.

After the desired tasks have been performed on the node and it is ready to go back 
into production, it remains to update its status to “AVAILABLE.” Slurm will then 
place the node into the resource queue again and submit the corresponding restart jobs.

Last, it is important to note that this process is not limited to one node at a time. 
Instead, an arbitrary set of nodes can be emptied of jobs at the same time.

The smigrate tool is implemented in C language as Slurm is and can be down-
loaded from [41], where the reader can find the whole bunch of programs (source, 
object, header, makefile, etc.), a wiki page with instructions about how to install and 
execute it, and even a demo video.

3.3.2 � Preemption and “eternal” jobs

The preemption policy establishes that a running job may be canceled so that 
another one with higher priority can use their resources.

Without the possibility of checkpoint/restart, the usage of preemption mechanisms 
was extremely limited as it implies losing all the computational effort invested in 
the job being canceled. The ability to use checkpoint/restart represents here a game 
changer, as these low-priority jobs can be re-queued and their execution continued just 
as the higher-priority job completes, or when the first resource becomes available.

Preemption can now be used for a wider set of purposes, as the drawbacks that 
kept the mechanism from a wider adoption have disappeared with the use of check-
point/restart. In particular, we have identified and tested three different use cases.

A basic usage for preemption is the support for queues with different priorities. In 
this use case, Slurm is configured so that if there are pending jobs on high-priority 
queues, the ones running on low-priority queues are preempted and re-queued. In 
this way, urgent jobs can begin their execution as soon as possible, with the only 
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cost being to delay the execution of low-priority jobs. Of course, users could abuse 
this system by submitting all their jobs with high priority, but the Slurm quota sys-
tem makes it straightforward to avoid this situation.

A similar situation happens in clusters where resources are limited to a specific 
set of nodes, such as Xeon Phi accelerators being present only in some nodes. Cur-
rently there are two alternatives: leave these nodes with special resources idle for 
jobs requiring those resources; or use them for any job, with the ones with special 
requirements having to wait. By using preemption, we can execute any kind of job 
on these nodes and obtain full usage from the cluster, moving these jobs away when 
there is a specific job requiring the resource.

Perhaps the most interesting use case, only enabled by the use of checkpoint/
restart-based preemption, is the creation of Eternal Jobs. The underlying idea is that 
some users have a computational demand that exceeds the available resources, espe-
cially in the shared environments typical of clusters. A solution is the creation of a 
low-priority queue of serial jobs that are preempted whenever a more important job 
arrives. There is no need to set a particular length for these jobs, hence the qualifica-
tion of “eternal”: They simply run whenever the cluster is not fully occupied, and 
they are preempted when new “normal” jobs arrive. In this way, the cluster increases 
its usage and the most demanding users can be assigned more CPU time, at the sole 
cost of yielding to other jobs with a higher priority.

Together, these use cases demonstrate a new approach to the cluster administra-
tion with more flexible tools, through the use of checkpoint/restart.

3.3.3 � New scheduling algorithms

Traditional scheduling algorithms determine where and when a job should run. This 
is decided taking into account several factors: job information provided by the user; 
state of the cluster; and future demand based on the pending job queue. After a deci-
sion is taken and the job starts its execution, the process has finished.

Live job migration adds another dimension to the scheduling process: the pos-
sibility of altering the execution of a job by saving its state, canceling it, and then 
restoring it on a different physical location and/or in a different moment. This way, 
the scheduler can adapt to either changes in the infrastructure or on demand.

Although creating sophisticated scheduling algorithms is out of the scope of this 
work, we consider of high interest to demonstrate these new capabilities. For this 
sake, we have designed two algorithms with different behaviors.

3.3.4 � Scheduling for job compaction

The first algorithm is devoted to job compaction. Its objective is concentrating the 
jobs running on the cluster in as few nodes as possible, leaving the rest of the infra-
structure idle. This can be performed for several reasons, like to make the infrastruc-
ture available for parallel tasks or to reduce power consumption by switching down 
or reducing the voltage of empty nodes.

Algorithm 1 describes this process from a high-level point of view.
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The behavior of this algorithm is straightforward: If there are queued jobs in the cluster, 
we can safely assume that Slurm will automatically try to place them filling partially filled 

Algorithm 1: Job Compaction scheduling
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nodes; if not, the algorithms sees if the compaction makes sense and, if so, checkpoints the 
jobs from the node to empty and restarts them in the rest of the partially filled ones.

Algorithm 2: Scheduling with priorities
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A similar concept can be employed to migrate jobs among resources with differ-
ent priorities. This tool can be very useful on facilities where certain nodes present 
different characteristics than others.

The first and most obvious example is a heterogeneous cluster where certain 
nodes are more powerful or have less power consumption than others. In this case, 
it makes sense to use these nodes as much as possible, while leaving the less power-
ful or more consuming ones idle. In particular, application performance over KNC/
KNL of non-ported jobs will not be optimum.

Another straightforward use is when certain resources are scarce, as depicted in 
“preemption and eternal jobs” use case, but with a proactive approach: as soon as it 
is possible, empty the scarce resources so they are available when needed.

This approach can also be handy in an island of clusters. In periods where the 
island is not fully used, jobs can be concentrated and a full island emptied and shut 
down. Also, by concentrating smaller jobs in a reduced number of islands, larger 
parallel jobs can be executed on a single island and not split among several ones, 
thus reducing communication overhead.

4 � Experimental results

In this section, we will describe a series of experiments performed to analyze the 
performance of the proposed solution and its usefulness on different conditions. 
With respect to how these results have been obtained from the operational point of 
view of the solution presented in this work, Ref. [41] contains a wiki page and link 
to a demonstrating video as it has been previously mentioned.

The experiments presented here were performed on a small local cluster, 
ACME, which includes eight computing nodes. Each node consists of a Supermi-
cro X10DRT-P motherboard with two 8-core Xeon E5-2640 v3@2.60 and 32 GB 
DDR4 RAM. Regarding storage, it includes a HD (1 TB) for scratch and temporary 
files and network storage for the user’s home directory and the non-OS applications 
(scientific codes). Measured latency is 1.5 microseconds for the HD and 7.35 micro-
seconds for the network storage, roughly an order of magnitude larger than RAM 
latencies.

4.1 � DMTCP overhead

There are several factors that have an influence on the time employed for a check-
point/restart operation. Among them, some of the most important are the size of 
the application in terms of memory and temporary files, the storage speed, and the 
Slurm configuration. This section is devoted to measuring this overhead, so its influ-
ence in the total execution time of an application could be determined.

The Slurm resource manager is designed to control the execution of thousands 
of jobs at the same time. To do so, it includes a sophisticated cache mechanism 
to store the job state, thus greatly reducing the database overhead. This infor-
mation is stored and processed at a fixed rate. Until this happens, applications 
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checkpointed and canceled cannot be restarted, so this adds an overhead of half 
of the PURGE_JOB_INTERVAL parameter, where PURGE_JOB_INTERVAL is 
the frequency with which the cache is processed. This value is 5 min by default, 
although in this article it has been reduced to 1  min with no harm. The exact 
value must be fixed according to the cluster size and workload.

We performed an analysis in order to determine the time employed by DMTCP 
to checkpoint and restart an application. To do so, we ran an MPI test application 
with different memory sizes and numbers of tasks, thus determining the impact of 
size and degree of parallelism. These values were calculated with a script that ran 
this application, checkpointed it, canceled it, and then tried to restart it until the 
operation was allowed by Slurm (meaning that the cache had been cleaned). This 
operation was repeated ten times for every experiment and the values averaged. 
The same application was executed without DMTCP support and no checkpoint 
in order to obtain a base value that was deleted from the previous one, ensuring 
that it only corresponds to C/R related overhead.

Table  1 reflects the results obtained. It is worth noticing that this table 
embraces all the existing overheads, including the one created by PURGE_JOB_
INTERVAL (30 s on average). As can be seen, checkpoint/restart overhead goes 
from about a minute in serial applications to ten minutes in the case of large, 
highly parallel codes. It is important to note that this is an extreme case, as it 
means saving the state of everything running on the cluster to a network storage 
and recovering it again. This overhead is much smaller when the size of each 
task is 50 MB instead of one GB. So it is clear that the bottleneck is I/O and not 
DMTCP or Slurm.

As mentioned before, DMTCP has demonstrated good results in several exten-
sive scalability analyses performed on some of the largest machines on the planet 
[16]. The results are consistent with the ones provided here and show an adequate 
scalability of the library on very large infrastructures, thereby demonstrating its 
feasibility for this project.

4.2 � smigrate

As has been previously stated, smigrate is proposed for cluster administration. It 
allows emptying a node using job migration and so it can be maintained by the 
system administrators.

Before smigrate, the node had to be marked as “draining,” so that Slurm would 
not assign any other job to the node and removed it from the list of available 
nodes. The average time to empty a node can be assumed to follow a binomial 
distribution on the average execution time T and the number of jobs per node N, 
i.e.,

This value largely varies among clusters depending on the number and size of 
jobs, but according to an analysis of the traces submitted to Parallel Workload 
Archive [42], it can be deducted that it is on the order of a few hours.

T ∼ 1 − 1∕2N
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Comparing that value with that presented in Table  1, we can see that our 
approach obtains performance gains of up to several orders of magnitude and in 
every single case is significantly faster.

4.3 � Preemption and eternal jobs

Once C/R is implemented and fully integrated into Slurm, job preemption is com-
pletely straightforward. The same happens with the Eternal Job paradigm, which 
can be considered a natural consequence of preemption.

PartitionName=eternalJobs
Nodes=<node list>
PriorityTier=1
PreemptMode=CHECKPOINT (...)
PartitionName=normal
Nodes = <node list>
PriorityTier=2 (...)

With the following configuration on slurm.confl, jobs running on partition 
“eternalJobs” will be checkpointed and re-queued every time that a job run-
ning on partition “normal” is assigned to the same node. By making both < node 
list > equal, but sorted the opposite way (this is, if one < node list > reads {a,b,c}, 
the other reads {c,b,a}), eternal jobs are firstly assigned to the nodes that normal 
jobs use last, i.e., that are only used when the cluster is under full usage.

It is important to consider that, while conceptually simple and already taking 
advantage of support in Slurm, this technique was not really usable until the inte-
gration of DMTCP into Slurm was implemented in this work, as there was a lack 
of a transparent, universal, and reliable C/R library.

Table 1   Overhead obtained by 
using DMTCP on C/R purposes

Number of tasks Application size in memory

50 MB 100 MB 1000 MB

Measured overhead [s]
1 51 53 89
2 51 54 97
4 52 55 115
8 53 59 144
16 56 66 202
32 52 79 343
64 66 98 398
128 99 157 608
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4.4 � New scheduling algorithms: scheduling for job compaction

Although creating sophisticated scheduling algorithms is out of the scope of this 
work, we consider of high interest to demonstrate these new capabilities. For this 
sake, we have designed two algorithms with different behaviors that will serve as 
a proof of concept and initial successful test of the new possibilities that this work 
opens up. In what follows, the idea for designing the algorithms, i.e., the goal they 
are pursuing, is briefly described.

Next we will show an analysis of the two previously presented different schedul-
ing algorithms that makes use of job migration: the scheduling for job compaction 
and the scheduling with priorities.

In order to measure the effect of job migration in the occupancy of nodes, we 
have executed a set of identical workloads with and without migration for job com-
paction, with this being the only change over Slurm default scheduling policy (a 
FIFO queue). The cluster status was being monitored every 5 s.

These workloads have been randomly generated, using the analysis present in 
[42] to propose realistic cases. This information comes from 20 traces from differ-
ent systems with millions of jobs. In particular, the execution time and degree of 
parallelism are both known to follow an exponential distribution. The arrival of indi-
vidual jobs tends to display daily and weekly cycles, but as it largely depends on the 
system we have been considered it random for the purpose of this work. Doing so 
and bearing in mind that random workloads are harder to optimize than sequential or 
periodic ones, we stress our solution to the worst potential case that it could face in 
order to test its suitability and correctness.

In order to determine whether this approach is useful with different workloads, 
we have generated four different ones embracing 25%, 50%, 75% and 90% of the 
system resources. As shown in Figs.  1 and 2, their distribution is not perfect, as 
every job has been randomly generated following the aforementioned principles.

Figure 3 shows the result of a given execution. Here, jobs representing 50% of the 
available CPU time were submitted over 24 h. The same experiment was repeated 
with and without job migration. The abscissa axis depicts the nodes belonging to 
ACME that have been used in this test. The left column per node depicts the node 
occupancy when no job migration is carried out and the right column depicts the 
same node occupancy when the algorithm designed for scheduling and compact-
ing jobs is ruling the workload. As can be seen, migration has caused there to be a 
higher percentage of nodes either full occupied or fully empty along a larger fraction 
of the time. On the other hand, there is a reduced percentage of nodes presenting a 
mixed state. That is, the desired result is obtained in order to allow new scheduling 
algorithms, a better usage of the cluster with nodes fully occupied (their percentage 
has been increased from 18.4% to 26.4%), nodes fully empty (from 28.1 to 31.9%), 
etc. Thus, in the overall experiment, the percentage of nodes with a mixed behavior 
(partially occupied) has been reduced from 53.5 to 41.7%.

As can be easily inferred, designing more complex algorithms could drive an 
even better result. As mentioned before, in this work we present the feasibility of the 
proposed approach and how a new path for designing more accurate scheduling poli-
cies is available from now on.



6535

1 3

Job migration in HPC clusters by means of checkpoint/restart﻿	

In a more general way, Fig.  4 presents the values of repeating this experiment 
with different workloads. As can be seen, in all cases the migration has been use-
ful to compact the running jobs in a smaller number of nodes. The percentage of 
nodes with a mixed behavior (partially occupied) has been reduced from 33.8 to 

Fig. 1   Randomly generated workloads for this work representing 25%, 50%, 75%, and 90% of the system 
resources

Fig. 2   Distribution of the job length in the workloads depicted in Fig. 1
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28.2% when the workload represents 25% of the cluster, from 53.5 to 41.7% for the 
50% case, from 52.8 to 42% for the 75% case, and from 30.5 to 22.3% for the 90% 
case. In other words, the difference in the percentage of partially used nodes without 
and with migration has two behaviors: When the cluster is either empty or almost 
fully load (25% and 90% of workload, respectively), the algorithm for the migration 

Fig. 3   Node occupancy with and without migration for job compaction with a total workload of 50%. 
The last couple of columns in the right of the figure depicts the total result of the test, being the rest the 
results per node

Fig. 4   Cluster state with different workloads. Execution time is one day
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of tasks for compaction improves the cluster occupation in 5.6% (25%) and 8.2% 
(90%). On their side, when the workload is in a mid-range, this improvement is bet-
ter: 11.8% for the 50% workload case and 10.8% for the 75% one.

4.5 � New scheduling algorithms: scheduling with priorities

The same methodology has been followed when testing the algorithm “scheduling 
with priorities.” In this case, the objective was to have the nodes in which the “high-
Priority” queue was configured to be as full as possible, moving the jobs there from 
the “lowPriority.” To do so, we divided the cluster into two partitions with different 
priorities and created random jobs that could run on any of them. Slurm would then 
try to run every incoming job on the high-priority queue if there were free resources 
and on the low-priority one if not.

This scenario could be of great interest in heterogeneous clusters where there are 
nodes containing different processors, i.e., there are nodes which present a higher 
computing power than others. By defining an algorithm that will take into account 
the peak performance of these different zones of the whole cluster, for example, 
tasks could be migrated to/from the “highPriority” queue in order to obtain a better 
usage of the supercomputer. This concept could be extended to the clusters com-
posed of islands.

The first thing to take into account is the pre-fixed conditions for this test. In this 
case, we already defined these two boundary cases:

–	 The percentage of nodes fully empty was reduced to a minimum in the nodes 
where the “highPriority” queue was configured, just around 1%. Thus, there were 
not many free cores to which migrate jobs.

–	 Only two out of the eight nodes were configured with the “highPriority” queue.
–	 The test was carried out with the highest workloads.

Doing so, we set up experimental conditions against the migration of tasks, i.e., 
drawbacks that were limiting the possibility of migrating tasks. The aim of this test 
definition is to demonstrate that if we are able to improve the cluster efficiency in 
such an unfavorable scenario, it can be derived that the possibility of migrating tasks 
will be useful in general conditions.

Table  2 shows a comparison of the Slurm default scheduling algorithm with a 
migration-based one. As can be seen, migration can be a helpful tool for this kind of 
environments.

Thus, the percentage of free nodes remain constant in those nodes where the 
“highPriority” queue was configured (1.05% and 1.25%), which indicates that the 
test has been properly carried out according to the first boundary previously men-
tioned. Second, with the 75% load, there is an increase in the time in which the 
nodes are fully used in the “highPriority”-related nodes along the test, moving from 
25.58 to 31.64%. As the percentage of nodes with a mixed usage is decreased, the 
cluster is more efficiently used and complies with the purpose of the test. Third, 
when the cluster is almost fully used, the percentages are roughly the same (when 
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even a small decrease in the test with migration of tasks), a result that is consistent 
with the fact that there is almost nothing to migrate to.

Again, it is worth mentioning that the scheduling algorithms used for the experi-
ments comprise two different scenarios, to demonstrate the feasibility of the live 
task migration, i.e., counting on more sophisticated algorithms in which artificial 
intelligence and/or stochastic processes would be applied would be conducive to 
even better results.

5 � Conclusion and future work

There is a clear need for checkpoint/restart in current and future HPC exascale sys-
tems. Platforms with millions of cores and thousands of nodes are expected to suf-
fer of more errors that should be overcome in an efficient way. Mean time between 
failures will be reduced and codes will make use of a great number of resources. So 
checkpoint/restart is a must.

In this work, we have presented the design, implementation, and further inte-
gration between a user-level checkpoint/restart library and a resource manager. By 
making this integration transparent and automatically available for all jobs, a whole 
new set of possibilities have been enabled. In this way, not only is fault tolerance 
enhanced, but also the scheduling mechanisms, dynamic migration of tasks, job 
preemption, easier cluster administration, and so on, can be seamlessly performed 
from now on. Results on a real cluster are provided to demonstrate this.

This demonstrates possibilities for a more efficient and flexible use of supercom-
puters in which these new algorithms can be defined to improve the efficiency of 
the platform, reduce their energy consumption, and determine a trade-off between 
efficiency and reduced energy.

Related to the checkpoint library, DMTCP is nowadays only able to save the state 
of standard CPUs, though there is a working version for Nvidia CUDA that has pro-
vided their first successful results [43]. Such a fact will deeply enhance the impact 

Table 2   Results of the test in which two queues with different priorities were configured

The percentage of the nodes of the cluster without and with the migration of tasks via checkpointing/
restart is shown

Without migration With migration

Low priority High priority Low priority High priority

75% load
 %empty 20.33 1.06 19.24 1.05
 %mixed 43.49 73.36 48.33 67.31
 %full 36.18 25.58 32.43 31.64

90% load
 %empty 7.72 1.25 7.72 1.25
 %mixed 31.65 57.56 36.85 58.02
 %full 60.63 41.19 55.43 40.73
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of this work. With respect to Xeon Phi, it seems that it is going to be decommis-
sioned, but from the C/R operational point of view, it is like a standard CPU as KNL 
places the accelerator directly on the motherboard.

Regarding the migration of software containers inside HPC clusters, checkpoint-
ing of Docker is not supported by DMTCP at this time. Until this support is added, 
jobs employing such technologies are just marked as not-checkpointable and not 
considered by the migration policies and tools. The integration of these accelerators 
and/or containers as resources supported by DMTCP will, in the future, enhance the 
impact of the work presented here. Finally, it should be reiterated that the solution 
showed in this work is not tied to DMTCP and another checkpoint library with the 
right properties could be integrated into the tool described here, while continuing to 
support the same functionality.

Most importantly, future scheduling algorithms can benefit from job migration. 
But there is still scarce literature on sophisticated scheduling algorithms that have 
been tested at scale and in practice. In part, this is because of the previous lack of a 
robust mechanism for checkpoint-based job migration in common usage. The sched-
uling algorithms presented in this work serve as a test case and a demonstration of 
our approach, but are still limited in their functionality and performance. This opens 
up the future possibility of the use of artificial intelligence both for pure schedul-
ing design and for new resilience strategies in which actual workload traces will be 
analyzed instead of random generated workloads in order to provide tailored and 
customized analysis to specific supercomputers. Approaches using simulation [44] 
and forecasting methodologies can also be considered here [45].
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