
Kunkle D, Zhang DH, Cooperman G. Mining frequent generalized itemsets and generalized association rules without

redundancy. JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY 23(1): 77–102 Jan. 2008

Mining Frequent Generalized Itemsets and Generalized

Association Rules Without Redundancy∗

Daniel Kunkle, Donghui Zhang (张冬晖), and Gene Cooperman

College of Computer and Information Science, Northeastern University, Boston, MA 02115, U.S.A.

E-mail: {kunkle, donghui, gene}@ccs.neu.edu

Received January 17, 2007; revised December 13, 2007.

Abstract This paper presents some new algorithms to efficiently mine max frequent generalized itemsets (g-itemsets)
and essential generalized association rules (g-rules). These are compact and general representations for all frequent
patterns and all strong association rules in the generalized environment. Our results fill an important gap among
algorithms for frequent patterns and association rules by combining two concepts. First, generalized itemsets employ a
taxonomy of items, rather than a flat list of items. This produces more natural frequent itemsets and associations such
as (meat, milk) instead of (beef, milk), (chicken, milk), etc. Second, compact representations of frequent itemsets and
strong rules, whose result size is exponentially smaller, can solve a standard dilemma in mining patterns: with small
threshold values for support and confidence, the user is overwhelmed by the extraordinary number of identified patterns
and associations; but with large threshold values, some interesting patterns and associations fail to be identified.

Our algorithms can also expand those max frequent g-itemsets and essential g-rules into the much larger set of
ordinary frequent g-itemsets and strong g-rules. While that expansion is not recommended in most practical cases, we
do so in order to present a comparison with existing algorithms that only handle ordinary frequent g-itemsets. In this
case, the new algorithm is shown to be thousands, and in some cases millions, of the time faster than previous algorithms.
Further, the new algorithm succeeds in analyzing deeper taxonomies, with the depths of seven or more. Experimental
results for previous algorithms limited themselves to taxonomies with depth at most three or four.

In each of the two problems, a straightforward lattice-based approach is briefly discussed and then a classification-
based algorithm is developed. In particular, the two classification-based algorithms are MFGI class for mining max
frequent g-itemsets and EGR class for mining essential g-rules. The classification-based algorithms are featured with
conceptual classification trees and dynamic generation and pruning algorithms.

Keywords generalized association rules, frequent generalized itemsets, redundancy avoidance

1 Introduction

Mining generalized itemsets (g-itemset) and gen-
eralized association rules (g-rules) are well-motivated
existing problems[1−5]. The set of all generalized items
(g-items) forms a taxonomy T . For instance, the items
“apple” and “strawberry” may have a common parent
in T called “fruit”. The transactions in the transac-
tional database are ordinary itemsets drawn from the
leaves of T (such as “apple” or “strawberry”). How-
ever, a g-item at higher levels of T (such as “fruit”)
may also appear in g-itemsets or g-rules. It could be
that (fruit, milk) is frequent, while none of (apple,
milk) and (strawberry, milk) is frequent. Meaning-
ful associations can be identified by allowing non-leaf
g-items to appear in g-itemsets and g-rules. The
problems have many real-life applications besides the

standard example of market-basket analysis, as long
as the applications have the notion of taxonomy. Here
are some examples: diseases have a natural hierarchy,
e.g., as given by the Merck Manual of Medical Infor-
mation (http://www.merck.com/mmhe/index.html).
Occupations have a hierarchy, e.g., as classified by
the U.S. Department of Labor classifies (http://
www.bls.gov/oes/current/oes stru.htm). Com-
panies have a hierarchy, e.g., as assigned by the North
American Industry Classification System (NAICS)
(http://www.census.gov/epcd/www/naics.html).
URLs have a taxonomy. For example, DMOZ
(http://dmoz.org) is known as a comprehensive
volunteer-edited directory of the Web. Mining fre-
quent g-itemsets and strong g-rules can help identify
associations among (categories of) diseases, associa-
tions among (groups of) occupations, and so on.

Regular Paper
∗A shorter version of this work appeared in CIKM’06 as a two-page poster[32].

78 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

However, there is a serious limitation of existing
work on this topic. It is well-known that one g-itemset
has an exponential number of subsets, and for any
frequent g-itemsets, all its subsets are also frequent.
Therefore if the user of the data mining engine (based
on existing work) uses a slightly smaller minsupport
threshold, there will be a significant increase in the
number of frequent g-itemsets. We observe the follow-
ing dilemma:

A small minsupport value will overwhelm the user
with many redundant frequent g-itemsets. A large min-
support value will fail to identify some interesting as-
sociations.

The same dilemma also occurs for the case of min-
ing g-rules. The users of the mining engine are typi-
cally limited to large minsupport and minconf thresh-
old values (which will fail to identify interesting associ-
ations), or are presented with many redundant results.

The solution to this dilemma is to mine a compact
representation of all frequent g-itemsets and strong as-
sociation rules. In particular, in this paper we address
the problem of mining max frequent g-itemsets and es-
sential g-rules.

The novelty of this paper is three-fold:
1) By removing redundant results, we allow the end

user to lower the minsupport and minconf thresholds,
and examine additional interesting patterns.

2) Even for a fixed threshold, our algorithm can
produce the set of frequent itemsets (a non-compact
representation) many times faster. This is because,
from the set of max frequent g-itemsets (essential g-
rules), one can derive the set of all frequent g-itemsets
(strong g-rules) without examining the transactional
database.

3) Furthermore, we are able to analyze taxonomies
of depth seven and more, while previous experimen-
tal results present examples for at most three or four.
That limitation makes the earlier algorithms imprac-
tical for such natural data sets as DMOZ, with a tax-
onomy of depth nine and more.

1.1 How Are Closed Frequent g-Itemsets and
Max Frequent g-Itemsets
Complementary?

There exists an alternative compact representa-
tion of frequent g-itemsets: the closed frequent g-
itemsets[6]. The representation of closed frequent g-
itemsets has the following goal: from this compact
representation, one should be able to derive not only
the set of all frequent g-itemsets, but also to rapidly
retrieve the exact support of each frequent g-itemset.
To this end, a frequent g-itemset returned by a closed

frequent algorithm may additionally contain informa-
tion on some subsets of the frequent g-itemset, whose
support values are larger than that of the superset.
The compactness of this alternative sits somewhere be-
tween max frequent g-itemsets and the complete set of
all frequent g-itemsets.

On the other hand, the representation of max fre-
quent g-itemsets is more compact, because it contains
absolutely no proper subset of a frequent g-itemset, or
the additional support information. A max frequent g-
itemset algorithm is not delayed by the need to report
additional support information. Hence, it can both be
faster than closed frequent algorithms, and more com-
pact. This is important if the user wishes to present
multiple queries for different values of minsupport.

1.2 Can Existing Solutions Be Adapted to
Solve This New Problem?

We propose our new algorithms because no exist-
ing solution can be adapted to efficiently mine max
frequent g-itemsets or essential g-rules.

For mining max frequent g-itemsets, let us consider
three possible straightforward solutions as follows.

First, one may use existing solutions to mine all
frequent g-itemsets, and then eliminate the non-max
ones. But this solution is extremely inefficient and,
in practical cases, infeasible. The point of introduc-
ing max frequent g-itemsets is to avoid enumerating
all frequent g-itemsets. Meaningful algorithms should
directly find the set of max frequent g-itemsets.

Second, there exist solutions to mine max frequent
itemsets in the ordinary case. Unfortunately, the in-
troduction of g-items brings significant difficulty, and
thus the solutions to the ordinary cases do not apply.
As we will see in Section 3, even the set operators of ∈
and ⊆ have changed their meanings in the generalized
environment.

A third choice is to dynamically browse the lattice
of all g-itemsets, where ancestor nodes are supersets
of descendant nodes. If we browse the lattice in a top-
down fashion, whenever we see a frequent g-itemset we
can prune the search of all its descendants. The algo-
rithm is discussed in Subsection 5.1. However, both
our theoretical analysis and experimental result show
that this is an inefficient approach.

Similarly, for mining essential g-rules, the approach
of mining all strong g-rules and then removing redun-
dancies is meaningless, and the lattice-based solution
(Subsection 6.1) is inefficient.

Daniel Kunkle et al.: Non-Redundant Frequent Generalized Itemsets 79

1.3 Outline of Results

The novelty of this paper is that it efficiently solves,
for the first time, the problem of mining max frequent
g-itemsets and essential g-rules.

Section 3 formally defines the problems of min-
ing max frequent generalized itemsets and essential
g-rules.

Section 4 provides closed form upper and lower
bound on the total number of g-itemsets and g-rules,
for the case of T having constant fanout. For example,
consider a height=3 complete binary taxonomy, where
there are 15 g-items including 8 leaf-level g-items. Our
closed form bound says that there are at most 1525 g-
itemsets, while a naive estimation says that there are
at most 215−1 = 32 767 g-itemsets. These results add
insight into the scope of generalized itemset mining
problems.

Section 5 proposes Algorithm MFGI class, which
efficiently mines max frequent g-itemsets based on a
novel classification tree. This is reminiscent of the
MaxMiner tree[7] that finds max frequent itemsets in
the ordinary case. However, due to the complexity of
the generalized environment, our classification tree for
g-itemsets (Subsection 5.2) is quite different (and more
complex than the MaxMiner tree). Note that the tree
is conceptual, and to mine all max frequent g-itemsets
our proposed algorithm MFGI class (Subsection 5.3)
only generates a small part of the tree dynamically,
employing three pruning techniques. As part of the so-
lution, a method to remove false positives in an online
fashion is provided (Subsection 5.4). Also, we address
the problem of frequency computation. It is clearly not
efficient to scan through the transactional database for
computing each individual frequency. We provide an
optimization technique called PHDB (Subsection 5.5),
which aims to reduce the number of database scans
by batch-computing frequencies. Further, the size of
the database that needs to be scanned is substantially
reduced by a transaction filtering optimization (Sub-
section 5.6).

Section 6 presents Algorithm EGR class, which ef-
ficiently mines essential g-rules based on a classifi-
cation tree of g-rules. The classification tree of g-
rules is constructed by extending the classification tree
of g-itemsets. At each tree node, we compute two
confidence values: MINCONF and MAXCONF. They
are a lower bound and an upper bound on the con-
fidence of all g-rules in the subtree. Therefore, if
MAXCONF < minconf , the whole tree can be pruned.
If MINCONF > minconf , we provide an algorithm,
named MINCONFProcessing, that quickly generates
the essential g-rules in the subtree, without generat-

ing the sub-tree or checking any frequency information
from the transactional database. Besides the MAX-
CONF Pruning and the MINCONF Pruning, the al-
gorithm contains yet another pruning technique called
Implication Pruning, which enables us to prune sub-
trees using already identified essential g-rules.

Section 7 provides an experimental analysis of our
two algorithms, MFGI class and EGR class. Our pri-
mary experimental comparison is against the algo-
rithm BASIC[3]. We choose BASIC as the baseline
algorithm for comparison, following the tradition of
previous authors[3,7−13]. BASIC has been widely used
as a baseline algorithm because it has a clear, standard
implementation whose speed will not be greatly biased
by the implementation. This is not true of many of the
other algorithms in the literature.

We show that these new algorithms are significantly
faster than BASIC, and related algorithms, especially
with deeper taxonomies. For example, the results in
Fig.11 demonstrate up to a 1 000 000-fold speedup for
a taxonomy of depth seven.

2 Related Work

Table 1 shows a structured view of selected work
on mining frequent itemsets. The table entry (frequent
itemsets, ordinary) shows earlier work on mining fre-
quent itemsets (Subsection 2.1). The table entry (max
frequent itemsets, ordinary) lists work on mining max
frequent itemsets, as described in Subsection 2.2. Also
in Subsection 2.2, we review other compact represen-
tations of frequent itemsets, e.g., the closed frequent
itemsets. In the generalized case, there exists work
on mining frequent g-itemsets and closed frequent g-
itemsets, as discussed in Subsection 2.3. Table 1 high-
lights that there is a blank entry with no existing work:
to mine max frequent g-itemsets. This paper fills that
blank.

Table 1. Structured View of Selected

Results on Mining Frequent Itemsets

Ordinary Generalized

Frequent Itemsets [8, 9, 14], etc. [1–5]

Closed Frequent Itemsets [11, 12] [6]

Max Frequent Itemsets [7, 10, 15–17] This Paper

2.1 Earlier Work on Mining Frequent
Itemsets

The concept of mining frequent itemsets was first
introduced by Agrawal et al.[14] Earlier work on mining
frequent itemsets focused on the Apriori algorithm and

80 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

its improved versions. Recently, Han et al.[9] proposed
the FP-tree technique, which finds frequent itemsets
without generating candidates. Agarwal et al.[8] pro-
posed the depth-first generation of frequent itemsets.
Note that we only pick a few representatives here, as
there are hundreds of papers on this topic.

2.2 Compact Representations of Frequent
Itemsets

Mining max frequent itemsets was introduced by
Bayardo[7], where the MaxMiner algorithm was pre-
sented. The Pincer algorithm was proposed by Lin
and Kedem[10]. The MAFIA algorithm was proposed
by Burdick et al.[16], which finds supersets of max fre-
quent itemsets. Gouda and Zaki[17] proposed GenMax
and evaluated it against MaxMiner and MAFIA. They
concluded that GenMax is better for finding the ex-
act set of max itemsets, and that, depending on the
dataset, MaxMiner may be the optimal. A depth-first
search with pruning was proposed by Agarwal et al.[15]

The reason why there is extensive work on this topic is
that max frequent itemset is a good compact represen-
tation for the set of all frequent itemsets. This is one
motivation for us to design good methods to find max
frequent g-itemsets while considering general items.

Another compact representation of all frequent
itemsets was that of closed frequent itemsets, intro-
duced by Pasquier et al.[11] Later, another solution
to the closed itemset problem was proposed by Pei et
al.[12]

Recently, [18] and [19] described another type of
compact representation of frequent itemsets, one fo-
cusing on an exact solution and the other focusing
on an approximate solution. There also exists the
non-derivable patterns[20], the quantitative correlated
patterns[21], and the hyperclique patterns[22].

Also related is the best paper of VLDB’05[23], which
addresses the problem of improving the performance
of several frequent-itemset-mining algorithms like FP-
Growth, by making them cache-conscious.

2.3 Mining Generalized Itemsets

The problem of mining generalized itemsets was
first introduced by Srikant and Agrawal[3]. They pro-
posed three algorithms for frequent generalized item-
sets: Basic, Cumulate and EstMerge. Later, Hipp
et al.[1] proposed the Prutax algorithm. The idea
was to utilize the vertical database format (for ev-
ery item, store the IDs of transactions that involve
the item). Sriphaew and Theeramunkong[4,5] pro-
posed the SET algorithm to mine frequent g-itemsets.

Pramudiono and Kitsuregawa[2] proposed the FP-
tax method, which extends the top-down FP-growth
method[13] to the generalized environment.

As a generalization of the mining of closed frequent
itemsets to the case when considering g-items, the
cSET algorithm was proposed to mine closed frequent
g-itemsets[6].

Han and Fu[24] proposed the multiple-level itemsets.
Similar to g-itemsets, a taxonomy T is involved. But,
a multi-level itemset is restricted to only contain items
from the same level of T .

2.4 (Ordinary) Association Rules Mining

Table 2 provides a structured view of selected works
on various association-rule mining problems.

Table 2. Selected Work on Mining Association Rules

Ordinary Generalized

Strong Rules [14], etc. [1, 3–5, 25]

Essential Rules [26, 27] This Paper

The concept of mining strong rules was first intro-
duced by Agrawal et al.[14] The proposed solution is
a two-step approach. First, all frequent itemsets are
identified. Then, for each frequent itemset, generate
the strong rules whose antecedent and consequent are
subsets of the itemset. Earlier work focused on finding
frequent itemsets. There was an abundance of follow-
on work on this and related topics. For the purpose of
this paper we only focus on the closely-related ones. It
is worth mentioning that in the data mining research
community there seems to be a re-emerged interest in
this topic[18,19,23].

As pointed out by Aggarwal and Yu[26], a strong
rule with k items in the consequent implies 3k−2k−1
other strong rules. That is, a strong rule implies an
exponential number of other strong rules. Thus Ag-
garwal and Yu pointed out the interesting task to mine
essential rules: strong rules not implied by any other
strong rule. The set of essential rules is a compact
representation of the set of all strong rules.

Another compact representation of all strong rules
is called the non-redundant rules[27]. This compact
representation can be used not only to derive the set
of all strong rules, but also to tell the support and con-
fidence values of each derived rule. On the other hand,
the set of essential rules typically is much smaller
than the set of non-redundant rules. If one wants to
quickly generate a compact representation of all strong
rules without caring about the support and confidence
of each individual rule, the essential rule is a better

Daniel Kunkle et al.: Non-Redundant Frequent Generalized Itemsets 81

choice. In this paper we focus on extending the con-
cept of essential rules to the generalized case.

2.5 Generalized Association Rule Mining

Most existing work on mining generalized itemsets
also solved the problem of mining generalized associa-
tion rules[1,3−5].

Huang and Wu[25] proposed the GMAR algorithm
to find generalized rules (between the items at differ-
ent levels in the taxonomy tree) under the assumption
that the original frequent itemsets and rules have al-
ready been generated beforehand. It was reported that
the GMAR algorithm is much better than BASIC and
Cumulate algorithms.

Methods to mine generalized rules with multiple
minsupport threshold values were proposed by [28, 29].

3 Problem Definition

This section first reviews the problem of mining fre-
quent g-itemsets[3], then defines the new problems of
mining max frequent g-itemsets and mining essential
g-rules.

3.1 Generalized Itemsets

The set of all items form a taxonomy T , which is
a tree structure. An example is shown in Fig.1(a).
The leaf-level g-items A, B, C, D, and E are regular
items that may appear in the transactional database
D (Fig.1(b)). A transaction that contains a g-item is
also considered to “contain” all its ancestor g-items in
T . For instance, anybody who bought A (apple) or B
(banana) is considered to have also bought X (fruit).

Fig.1. Taxonomy and database. (a) Taxonomy T . (b) Trans.

database D.

Definition 1. Given a taxonomy T , a generalized
itemset, or g-itemset in short, is a non-empty set of
g-items from T , where no two of the g-items have an
ancestor-descendant relationship in T .

Hence, ACZ in Fig.1(a) is a g-itemset, but AXZ is
not. Intuitively, since anyone who bought apple is also
considered to have bought fruit, the set {apple, fruit}
is not compact, and so is not considered a valid g-
itemset. (The equivalent compact itemset is {apple}.)
We need every itemset to be in its most compact rep-
resentation.

3.2 Some Operators of Itemsets Redefined
with Regard to T

Given a g-item i ∈ T and a g-itemset S, we say i
belongs to S with respect to T , denoted as i ∈T S,
if ∃j ∈ S such that i = j or i is an ancestor of j in
T . For example, in Fig.1(a), X ∈T {AC} as X is an
ancestor of A in T . Intuitively, A ∈T {AC} since any
one who bought A and C is considered to have bought
A. In a similar vein, anybody who bought apple (A)
and something else is considered to have bought fruit
(X). So X ∈T {AC}.

Given two g-itemsets S1 and S2, we say S1 is a sub-
set of S2 with respect to T , denoted as S1 ⊆T S2, if
∀i ∈ S1, i ∈T S2. For example, in Fig.1(a), {XC} ⊆T

{ACD}. Among all g-itemsets in this example taxon-
omy, the largest one (i.e., superset of everything) is
{ABCDE}, and the smallest one is {Y }. That is, for
any g-itemset S, we have: {Y } ⊆T S ⊆T {ABCDE}.
We also have the proper subset notation (⊂T) with its
obvious meaning.

The union and intersection operators with respect
to T are also defined for two g-itemsets S1 and S2.
S1 ∪T S2 is the smallest g-itemset that is a super-
set of both S1 and S2 with respect to T . S1 ∩T S2

is the largest g-itemset that is a subset of both S1

and S2 with respect to T . For instance, in Fig.1,
{XC} ∪T {BZ} = {BCZ}, {XC} ∩T {BZ} = {X}.

3.3 Max Frequent Generalized Itemsets

The support of a g-itemset S is the percentage of
transactions in D that are supersets of S with respect
to T . For instance, in Fig.1, the support of {Z} is
1/3. The reason is that among the six transactions,
two of them contain either D or E, and thus are su-
persets of {Z} with respect to T . As in the ordinary
case, a superset has a smaller or equal support (since
all transactions that contain the superset also contain
its subsets). As an example, {D} is a superset of {Z},
and thus the support of {D} (= 1/6) is smaller than
the support of {Z}.

Definition 2. Given minsupport, a frequent g-
itemset is a g-itemset whose support is at least min-
support. A max frequent g-itemset is a frequent

82 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

g-itemset whose proper super g-itemsets are all non-
frequent.

In the example of Fig.1, if minsupport = 1/3, there
are two max frequent g-itemsets: {AC} and {Z}.

3.4 Essential Generalized Association Rules

For ease of presentation, later on we omit the paren-
thesis around g-itemsets. For instance, we would use
A → BC instead of {A} → {BC}.

Definition 3. A generalized rule, or g-rule in
short, has the form S1 → S2, where S1 and S2 are
g-itemsets and 6 ∃i ∈ S2 such that i ∈T S1.

That is, an item in a valid g-rule’s consequent shall
not be equal to or be an ancestor (in T) of any item
in the antecedent. Since apple is a fruit, if apple is
in the antecedent of a rule while fruit is in the conse-
quent, the rule is trivial and thus is considered to be
invalid. Also, a valid g-rule should have a non-empty
antecedent and a non-empty consequent.

The support of a g-rule S1 → S2 is the percent-
age of transactions in D that are a superset of both
S1 and S2 with respect to T . The confidence of the
g-rule is, among the transactions that are supersets of
S1 with regard to T , the percentage of transactions
that are a superset of S2 with regard to T . A g-rule is
strong if its support and confidence are above or equal
to the given threshold values minsupport and minconf,
respectively.

Definition 4. A g-rule r1 implies an-
other g-rule r2, if support(r1) 6 support(r2) and
confidence(r1) 6 confidence(r2), independent of the
transactional database used. We denote this as r1 =⇒
r2.

For example, the rule A → BC im-
plies AB → C. This holds because
support(A → BC) = support(AB → C), and
confidence(A → BC) = support(ABC)/support(A) 6
support(ABC)/support(AB) = confidence(AB → C).
Note that this holds for all transactional databases.
If it happens that for some particular transactional
database, support(A → B) 6 support(C → D)
and confidence(A → B) 6 confidence(C → D), we
cannot say the first rule implies the second one, for
the inequalities may not hold for other transactional
databases.

In case r1 =⇒ r2, if r1 is a strong g-rule, r2 must
also be a strong g-rule. The implication relationship
satisfies transitivity: if r1 =⇒ r2 and r2 =⇒ r3, then
r1 =⇒ r3.

Theorem 1. S1 → S2 =⇒ S′1 → S′2, if and only
if S1 ⊆T S′1, S1 ∪T S2 ⊇T S′1 ∪T S′2 and the two rules
are different.

Proof. Intuitively, if a g-rule implies another one,
the first g-rule’s support 6 the second g-rule’s support
for an arbitrary transactional database. This suggests
that S1 ∪T S2 is a super set of S′1 ∪T S′2 with respect
to T . Furthermore, the first g-rule’s confidence 6 the
second g-rule’s confidence. Or,

support(S1 ∪T S2)
support(S1)

6 support(S′1 ∪T S′2)
support(S′1)

. (1)

In order for (1) to be true for all transac-
tional databases, we should have: support(S1) >
support(S′1), or S1 is a subset of S′1 with respect to
T . Finally, as a convention, a g-rule does not imply
itself. ¤

It follows from Theorem 1 that if S1 → S2 =⇒
S′1 → S′2, then S2 ⊇T S′2.

Definition 5. A g-rule r1 is an essential g-rule
if r1 is a strong g-rule and there does not exist a strong
g-rule r2 such that r2 =⇒ r1.

This paper addresses the problems of efficiently
mining max frequent g-itemsets and essential g-rules.

4 Counting the Number of g-Itemsets
and g-Rules

4.1 Bounds on the Number of g-Itemsets

Consider a taxonomy T of N g-items, out of which
n g-items are leaves. An interesting question is: how
many g-itemsets are there? A lower bound is 2n − 1.
For this is the number of itemsets that only involve
leaf-level g-items. A coarse upper bound is 2N − 1.
For this is the number of non-empty sets composed of
g-items in T , not excluding the case where in the same
set there exist both an ancestor and a descendant. To
better understand the insights of the generalized rule
mining problem, it is desirable to get a better estimate.

In this section, we consider a regular taxonomy,
which is a complete, balanced tree with depth (or
height) d and branching factor b. In this case, n = bd,
and N = 1+b+b2+ · · ·+bd = bd+ bd−1

b−1 6 bd
(
1+ 1

b−1

)
.

So the straightforward estimation of the number of g-
itemsets is:

2(bd) 6 f(d) 6 (2 · 2
1

b−1)(b
d). (2)

Here f(d) is the number of g-itemsets plus one (for
ease of presentation we temporarily include the empty
set in our calculation).

For this regular taxonomy (constant fanout), we
provide a recursive formula that is the exact number
of valid g-itemsets. From this formula, we also derive
a closer upper bound for f(d).

Daniel Kunkle et al.: Non-Redundant Frequent Generalized Itemsets 83

Theorem 2.

f(0) = 2, f(d) = 1 + f(d− 1)b,

2(bd) 6 f(d) 6
(
2
(
1 +

1
2b

) 1
b−1

)(bd)

.

Proof. For a g-item X, let Φ(X) be the set of g-
itemsets (plus the empty set) where g-items are in
the sub-taxonomy rooted by X. We have: Φ(X) =
{X,Φ(X1) . . .Φ(Xb)}, where X1 through Xd are chil-
dren of X in the taxonomy. Here we use the multipli-
cation Φ(Y)Φ(Z) to denote

Φ(Y)Φ(Z) = {yz : y ∈ Φ(Y), z ∈ Φ(Z)}.
For example, consider the following taxonomy of

generalized items with b = 2 and d = 2.

If y = B and z = CD , then yz = BCD .
Hence,

f(d) = 1 + f(d− 1)b (3)

for d > 0. And f(0) = 2, since Φ(A) = {A, ∅} for a
leaf g-item A.

We next show how to replace the expression 2
1

b−1

in the upper bound of (2) with the strictly smaller ex-

pression
(
1 + 1

2b

) 1
b−1 . For example, if b = 2, while the

straightforward upper bound is 4bd

, we get 2.5bd

.
Note that

f(d)
2bd =

(f(1))bd−1

2bd

(f(2))bd−2

(f(1))bd−1

(f(3))bd−3

(f(2))bd−2 · · ·

(f(d))
(f(d− 1))b

.

Note that for the i-th factor in the right hand side
above, and using b > 2,

(f(i))bd−i

(f(i− 1))bd+1−i =
(1 + f(i− 1)b)bd−i

((f(i− 1))b)bd−i

=
(
1 +

1
(f(i− 1))b

)bd−i

6
(
1 +

1
2b

)bd−i

=
(
(1 +

1
2b

)
1
bi

)bd

.

Applying this inequality with ϕ = 1 + 1
2b , we have

f(d)
2bd 6 (ϕ

1
b1 ϕ

1
b2 · · ·ϕ

1
bd)bd

=(ϕ
1

b−1)
b
d 6

((
1 +

1
2b

) 1
b−1

) b
d
.

Hence,

2(bd) 6 f(d) 6
(
2
(
1 +

1
2b

) 1
b−1

)(bd)

. (4)

¤
In summary, for a taxonomy of height d and branch-

ing factor b, we have derived a recursive formula (3)
to calculate the number of g-itemsets (plus 1). While
straightforward estimation gives a coarse bound (2) for
this number, we derived a tighter bound (4). For ex-
ample, when b = 2, the straightforward upper bound
is 4bd

, and our bound is 2.5bd

. With b = 2 and d = 3 (a
complete taxonomy where there are eight leaf g-items
and where every non-leaf g-item has two children), the
real number of g-itemsets (plus 1) as given by (3) is
677. But the straightforward estimation as given by
(2) is 65 536 which is about 100 times more. The re-
fined estimation as given in (4) is 1526 which is much
better than the straightforward estimation.

4.2 Bounds on the Number of g-Rules

Let g(d) be the number of possible g-rules for a bal-
anced tree with branching factor b and depth d. Then,

f(d) 6 g(d) 6 f(d)2

where f(d) is the number of possible g-itemsets.
To see this, note that a g-rule is defined by two

g-itemsets, an antecedent and a consequent, each of
which has f(d) possible forms.

By utilizing the bounds for f(d) derived in the pre-
vious section, we see that

2(bd) 6 f(d) 6 g(d) 6 f(d)2

6
(
4 ·

(
1 +

1
2b

) 2
b−1

)(bd)

. (5)

5 Mining Max Frequent g-Itemsets

This section briefly discusses the straightforward
lattice-based solution (Subsection 5.1), and then fo-
cus on the classification-tree based approach. The
classification-based solution has five components. Sub-
section 5.2 defines a conceptual classification tree.
Subsection 5.3 describes the algorithm MFGI class
which dynamically generates the needed part of the
tree, while using three pruning techniques. Since this
algorithm produces a superset of the max frequent g-
itemsets, which includes false positives, Subsection 5.4

84 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

describes how to efficiently eliminate those false posi-
tives in an online fashion. Subsection 5.5 presents the
PHDB technique, which allows multiple frequencies
to be computed with each database scan. Finally, Sub-
section 5.6 presents a database filtering optimization
that significantly reduces the size of the database that
must be scanned.

5.1 Lattice-Based Solution

A straightforward solution to mining max frequent
g-itemsets is to dynamically browse a lattice of g-
itemsets.

A lattice can be defined by a set and a partial-
order operator between elements in the set. In our
case, all g-itemsets form a lattice. The partial-order
operator is ⊃T . There is an edge from element S1 to
S2 if S1 ⊃T S2 and 6 ∃S3 s.t., S1 ⊃T S3 ⊃T S2. In
this case, S1 is said to be a parent of S2 in the lattice,
and S2 is called a child of S1. As an example, given
the taxonomy of Fig.2(a), the corresponding lattice of
g-itemsets is shown in Fig.2(b).

The lattice has a single root, which is the g-itemset
composed of all leaf-level g-items in T . It is a superset
of all g-itemsets with regards to T .

The lattice-based algorithm that mines max fre-
quent g-itemsets, which we call MFGI lattice, can be
summarized below. Starting with the root of the lat-
tice, we dynamically browse the lattice in a top-down
fashion. Whenever we meet a frequent g-itemset, it
is a max frequent g-itemset and we do not browse its
children (or descendants).

Fig.2. Sub-taxonomy and its corresponding lattice of g-itemsets.

(a) Sub-taxonomy. (b) Lattice of g-itemsets.

It remains to discuss how to dynamically generate
the children of each g-itemset. Given a g-itemset S1,
the method to generate its children is: replace a g-item

in S1 by its parent in the taxonomy T . This replace-
ment should be followed by an attempt to compact the
g-itemset. That is, if the new g-item i is an ancestor
in T of some other g-item in the set, the item i should
be removed.

For example, in the lattice of Fig.2(b), one child of
AC is XC, by generalizing A to X. Another child of
AC can be generated by generalizing C to Y . Since Y
and A have an ancestor-descendant relationship in T ,
the generated child is not AY, but A.

In most practical cases, the use of MFGI lattice
is infeasible. As an example, if all max frequent g-
itemsets appear near the bottom of the lattice, the
algorithm needs to check the frequency of almost all
g-itemsets. The rest of this section presents a more
efficient algorithm.

5.2 Conceptual Classification Tree

This subsection provides a conceptual classification
tree. Every g-itemset corresponds to exactly one leaf
node in the tree. An index node also corresponds to a
g-itemset, which is a superset of all g-itemsets in the
sub-tree.

We emphasize that the classification tree is only
conceptual, in the sense that to mine max frequent g-
itemsets, only (a small) part of the tree needs to be
generated, with appropriate pruning. The tree will be
dynamically generated in a top-down fashion. Sup-
pose we are examining an index node and we find that
its corresponding g-itemset, I, is frequent. Since all g-
itemsets in the sub-tree are subsets of I, no g-itemset
in the sub-tree except I can be a candidate for max
frequent g-itemsets. Thus, there is no need to generate
the sub-tree.

Before describing the mining algorithm, in this sub-

Fig.3. Example classification tree of g-itemsets.

section we focus on defining the complete classifica-
tion tree, without considering pruning. The complete
classification tree, corresponding to the taxonomy in

Daniel Kunkle et al.: Non-Redundant Frequent Generalized Itemsets 85

Fig.2(a), is shown in Fig.3.

5.2.1 Form of a Tree Node

A node N in the classification tree has the follow-
ing form: (S1)(S2)(S3). Here, S1, S2 and S3 are g-
itemsets. The meanings are:
•MUST-LITERALLY-HAVE-ALL-OF (S1): every

g-itemset in subtree(N) must contain every g-item in
S1. For instance, in Fig.3, (XC)()() is a leaf node
in the classification tree, which corresponds to a g-
itemset XC.
• MUST-HAVE-PART-OR-ALL-OF (S2): the S2

part consists of zero or one g-item. If it contains a
g-item i, some g-item in tax (i) must appear in each
g-itemset in subtree(N). Here, tax (i) denotes the sub-
taxonomy rooted by i. For instance, the root node
of the classification tree is ()(Y)(), where Y is the
root of the taxonomy T . The node means that every
g-itemset in the subtree contains at least one of the
g-items in T .
• MAY-HAVE-PART-OR-ALL-OF (S3): every g-

itemset in subtree(N) may, but is not required to, con-
tain g-items in the sub-taxonomies rooted by g-items
in S3. For instance, consider the node “(X)()(C)”.
Every g-itemset in the subtree must literally contain
X, and may or may not contain C. Hence, the sub-tree
has two g-itemsets: XC and X.

Notice that if at some node N , the S2 part contains
some leaf item i in T , moving i to S1 will create an
equivalent node N ′. For instance, ()(A)(C) is equiva-
lent to (A)()(C). For this reason, we require that only
a non-leaf g-item can appear in the S2 part of some
node in the classification tree.

To define the classification tree, it remains to dis-
cuss how to generate the child nodes for an arbitrary
node. If this is done, the whole classification tree can
be produced by keep generating the child nodes of all
nodes, starting from the root node ()(Y)(). A further
requirement is that the S2 part of any tree node is ei-
ther a single non-leaf g-item, or the empty set. For
instance, the root node of the classification tree sat-
isfies this requirement. And it will be clear that the
way we generate the child nodes ensures this. In the
discussion below we differentiate these two cases.

5.2.2 Child Nodes of (S1)(X)(S3)

Here X is a non-leaf g-item in T . Let the children
of X in T be X1, . . . , Xk. The node N = (S1)(X)(S3)
has the following k + 1 children in the classification

tree, ordered as follows:

1. (S1)(X1)(X2 . . . XkS3)
2. (S1)(X2)(X3 . . . XkS3)
3. (S1)(X3)(X4 . . . XkS3)

...
k. (S1)(Xk)(S3)

k + 1. (S1X)()(S3)

The g-itemsets in subtree(N) are classified into k+1
categories. The (k + 1)-th category consists of the
g-itemsets that contain the g-item X literally. Re-
call that tax (i) denotes the sub-taxonomy rooted by
i. For the remaining g-itemsets, since they must con-
tain some g-item in some tax (Xi), they can be clas-
sified into k categories. Category 1 contains the g-
itemsets that contain some g-item in tax (X1). Cat-
egory 2 consists of the g-itemsets that contain some
g-item in tax (X2) but does not contain any g-item in
tax (X1). Category 3 consists of the g-itemsets that
contain some g-item in tax (X3) but does not contain
any g-item in tax (X1) or tax (X2), and so on.

A special case is when any Xi is a leaf g-item in T .
In this case, the child node (S1)(Xi)(Xi+1 . . . XkS3)
should be replaced by the equivalent node

(S1Xi)()(Xi+1 . . . XkS3).

5.2.3 Child Nodes of (S1)()(S3)

Here we differentiate three cases. First, if S3 is also
empty this is a leaf node: no child node is needed.

The second case is when all g-items in S3 are leaf
g-items in T . The child nodes can be generated in
the following way: take each subset of S3 (including
∅) and add it to S1. For instance, the children of node
(A)()(C) are: (AC)()() and (A)()().

The third case is when S3 contains some non-leaf
g-item in T . Let S3 = {X} ∪ S′3 where X is a non-
leaf g-item in T . The node N = (S1)()(XS′3) has two
children ordered as follows:

1) (S1)(X)(S′3): whose sub-tree corresponds to the
g-itemsets that contain some g-item in tax (X);
and

2) (S1)()(S′3): whose sub-tree corresponds to the
g-itemsets that do not contain any g-item in
tax (X).

5.3 Classification-Tree-Based Mining
Algorithm MFGI Class

This subsection outlines the classification-tree-
based algorithm to mine max frequent g-itemsets,

86 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

given a taxonomy T , a transactional database, and
minsupport. The algorithm dynamically generates the
classification tree as defined in Subsection 5.2, with
pruning techniques to be discussed in this section. The
order in which nodes are generated will be important
for the false-positive elimination discussed in Subsec-
tion 5.4.

We mentioned before that an index node in the clas-
sification tree corresponds to a g-itemset, which is a
superset of all g-itemsets in the sub-tree. Let us for-
mally define the concept of corresponding g-itemset for
an arbitrary tree node.

Definition 6. The corresponding g-itemset of
a node (S1)(S2)(S3) is a g-itemset that contains ev-
ery g-item in S1 literally, and all leaf g-items in all
sub-taxonomies rooted by g-items in S2 and S3.

For example, given the taxonomy of Fig.2(a), the
corresponding g-itemset for (X)()(C) is XC, and the
corresponding g-itemset for ()(Y)() is AC .

Theorem 3. The corresponding g-itemset of an
index node in the classification tree is the smallest su-
perset of all corresponding g-itemsets in the sub-tree.

Proof. Let C be the corresponding g-itemset for a
classification tree node N . We first prove that C is a
superset of all g-itemsets in the sub-tree of N . Con-
sider an arbitrary g-itemset S in the sub-tree of N . By
definition of a classification tree node, the g-items in
S consists of N.S1 literally, and may contain some g-
items in the sub-taxonomies of N.S2 and N.S3. Since
C contains N.S1 literally, and contains all leaf g-items
in all sub-taxonomies of N.S2 and N.S3, every g-item
in S belongs to some g-item in C with regards to the
taxonomy T . Therefore C is a superset of all g-items
in the sub-tree of N . It remains to point out that there
exists a node in the sub-tree of N whose corresponding
g-itemset is C, according to the definitions of a classi-
fication tree node and the corresponding g-itemset for
a tree node. ¤

To mine max frequent g-itemsets, an efficient so-
lution should perform pruning of sub-trees whenever
possible, instead of generating the complete classifica-
tion tree.
• Pruning Technique 1: if the corresponding g-

itemset of a node N is frequent, prune subtree(N).
As an example, at the root node ()(Y)() we check

the frequency of AC . If AC is frequent, it is reported
as a max frequent g-itemset and the generation of the
sub-tree is omitted.
• Pruning Technique 2: when generating the child

nodes of some index node (S1)(X)(S3), we check the
frequency of S1 ∪ {Xi} for every child g-item Xi of X
in T . If S1 ∪ {Xi} is not frequent, prune Xi before

generating the child nodes.
As an example, at node ()(Y)(), we check the fre-

quency of X and C. Suppose X is not frequent, we
know no g-itemset that contains X or descendants of
X in T can be frequent. So to generate the child nodes,
we should imagine X does not exist, and Y has a sin-
gle child C in T . Thus only two child nodes should be
generated: (C)()() and (Y)()().
• Pruning Technique 3: when generating the child

nodes of some index node (S1)()(S3), where S3 only
contains leaf g-items in T , instead of enumerating all
subsets of S3, we should use MaxMiner[7] (or other ef-
ficient algorithms for mining max frequent itemsets).
The reason is that the problem can be transformed
into the traditional problem of mining max frequent
itemsets without a taxonomy. We basically want to
find, among the transactions that support S1, max
frequent itemsets when considering the items in S3.

Algorithm. MFGI class

Input: A transactional database D, and a taxonomy T
Action: Generate all max frequent g-itemsets.

1. Starting from the root node ()(Y)(), where Y is the root
of T , dynamically and recursively generate the classifi-
cation tree, in a depth-first manner.

2. At each node (S1)(S2)(S3), according to Pruning Tech-
nique One, we check the frequency of the corresponding
g-itemset. If it is frequent, it is identified as a max
frequent g-itemset and there is no need to expand the
subtree.

3. If S2 is not empty (but is a single g-item X), we ap-
ply Pruning Technique Two and then generate the child
nodes as defined in Subsection 5.2.2.

(a) Let {Xsi} (i ∈ [1..k]) be the set of child g-items
of X in T , such that ∀i ∈ [1..k], S1 ∪ {Xsi} is
frequent.

(b) Generate k +1 child nodes in the following order:
(S1)(Xs1)(Xs2 . . . XskS3),
(S1)(Xs2)(Xs3 . . . XskS3),

...
(S1)(Xsk)(S3),
(S1X)()(S3).

Again if some Xsi is a leaf g-item in T , add it to
the S1 part instead.

4. If S2 is empty, we generate the child nodes as defined
in Subsection 5.2.3.

(a) If S3 is empty, this is a leaf node. Since the cor-
responding g-itemset is not frequent (otherwise
Step 2 of the algorithm would have identified it),
nothing needs to be done.

(b) If all g-items in S3 are leaf g-items in T , according
to Pruning Technique Three, we should plug-in
MaxMiner (or similar tools) to process the sub-
tree.

(c) Otherwise, let S3 be {X} ∪ S′3 where X is a non-
leaf g-item in T . Generate the two child nodes
(S1)(X)(S′3) and (S1)()(S′3) in the given order.

Fig.4. Classification-based algorithm for mining max frequent

g-itemsets.

Daniel Kunkle et al.: Non-Redundant Frequent Generalized Itemsets 87

Our algorithm for finding max frequent g-itemsets
can be summarized in Fig.4.

5.4 Online Elimination for False Positives

The algorithm of Subsection 5.3 may produce false
positives in the sense that it produces a superset of
the max frequent g-itemsets. Thus, the g-itemsets pro-
duced by the algorithm should be viewed as candidate
g-itemsets. Luckily, as we will show, the candidates
produced by our algorithm satisfy a superset-before-
subset property. That is, if S1 is a superset of S′1 in
the taxonomy T (S1 ⊇T S′1), and if both are produced
by our algorithm, then the algorithm will generate S1

before S′1.
Theorem 4. Algorithm MFGI class can find all

max frequent g-itemsets. The generated candidates
satisfy the superset-before-subset property.

Proof. To see that MFGI class finds all max
frequent g-itemsets, we point out that: (a) due to
the classification nature of the complete classification
tree, all g-itemsets exist in the tree; and (b) when-
ever MFGI class stops expanding a sub-tree, either
a superset of all g-itemsets in the sub-tree is identi-
fied to be frequent, or it is certain that no g-itemset
in the sub-tree can be frequent. The remainder of
the proof focuses on proving the superset-before-subset
property.

MFGI class expands the tree in such a way that
(S1)()() is always visited before (S′1)()() when S1 ⊇T
S′1. The ordering of the children in Subsections 5.2.2
and 5.2.3 guarantee that this is the case when the tree
is expanded depth-first.

To see this, first observe that for any node
(S1)(S2)(S3) in the classification, if i1 ∈ S1, i2 ∈ S2

and i3 ∈ S3, then tax (i1), tax (i2) and tax (i3) are pair-
wise disjoint. This follows from induction on the defi-
nition of child nodes in Subsection 5.2.

We can now demonstrate the superset-before-
subset property. In the context of Subsection 5.2.3,
note that any g-itemset produced from child node 1
must include at least one g-item from tax (X). Since
tax (S1) and tax (S3) are distinct from tax (S2), any g-
itemset generated from child node 2 cannot include
any g-item of tax (X).

A similar argument applies in the context of Sub-
section 5.2.2. Any g-itemset produced by the i-th child
node must include at least one g-item from tax (Xi).
Any g-itemset produced by a later child node cannot
include any g-item from tax (Xi). This is obvious for
child nodes i+1 through k. For child node k +1, note
that it literally includes X, but none of its descendants
from tax (Xi). ¤

This has two important benefits. First, the false
positives can be identified and eliminated online. Sec-
ond, in testing a candidate max frequent g-itemset S′1,
we need only compare it with the known max frequent
g-itemsets that have been generated so far. Therefore,
as each candidate max frequent g-itemset is produced,
it can be immediately checked and eliminated if it is a
false positive.

This method performs O(nm) comparisons of g-
itemsets, where n is the number of candidate max g-
itemsets and m is the number of true max g-itemsets.
The offline method, which would be required without
the superset-before-subset property, requires O(n2)
comparisons of g-itemsets. In cases where there are
many more false positives than true ones (when n À
m), the online method is much faster.

5.5 PHDB: Optimization to Batch-Compute
Frequencies

So far we have ignored the discussion on how to
compute frequencies. The discussion of MFGI class
implied a naive way: go through the transactional
database each time the frequency of some g-itemset
is needed. This is obviously inefficient, as it is typi-
cally very expensive to scan through the transactional
database. This section introduces an optimization
technique called PHDB, which aims to minimize the
number of database scans by computing multiple fre-
quencies per scan.

There are two issues that arise. A simple issue is:
for each database scan, how many frequencies should
be computed? To minimize the number of database
scans, we should compute as many as possible. This
number is limited by the available memory. Therefore
we assume this number is provided by the user who
knows the application settings.

The second issue is: given a number num of frequen-
cies to compute for each database scan, which num g-
itemsets should we pick? This is a challenging issue. If
we are computing one frequency at a time, we are sure
that all frequency computation is necessary. But if we
compute multiple frequencies at a time, some of them
may be “wasteful”. That is, we may compute the fre-
quency for some classification-tree node that could be
pruned if we had computed one frequency at a time. It
is challenging to predict which g-itemsets are “useful”.

We address this issue by using the Parameter-
ized Hybrid Depth-first Breadth-first expan-
sion (PHDB). It is a hybrid approach between depth-
first and breadth-first expansions, with a parameter
controlling the tendency. The depth-first approach
uses the following method to choose num g-itemsets

88 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

to compute frequency. It maintains the current tree:
the currently expanded part of the classification tree.
At each loop, it temporarily expands the current tree
in a depth-first manner, until num g-itemsets are met.
It then computes their frequencies and updates the
current tree accordingly. Similarly, the breadth-first
approach chooses num g-itemsets by temporarily ex-
panding the current tree in a breadth-first manner.

In PHDB, we use a parameter σ ∈ [−1, 1] to con-
trol the balance between depth-first and breadth-first
behavior. When σ < 0 the expansion is skewed toward
depth-first and when σ > 0 the expansion is skewed
toward breadth-first. Further, when σ = −1 the ex-
pansion is exactly depth-first and when σ = 1 the ex-
pansion is exactly breadth-first. Consider the nodes in
the current tree. Let a live node be one that has not
had all of its children expanded yet. Let a live level
be the set of live nodes with the same depth. PHDB
picks num g-itemsets by temporarily expanding the
current tree in the following way.

Algorithm. PHDB
1. Let L = (l0, l1, . . . , lm) be a list of live levels, sorted

in ascending order of depth.
2. Probabilistically choose a level, where the probability

of choosing level i is:

pi =

(1− σ)i

m∑
j=0

(1− σ)j

, if σ > 0;

(1 + σ)m−i

m∑
j=0

(1 + σ)j

, if σ < 0.

3. Expand one child of the left-most live node from the
chosen level.

4. If we have chosen num g-itemsets, stop; otherwise,

goto Step 1.

To understand PHDB, let us study an example
of probability distribution of choosing a level among
four levels, with different values of σ. Here S =
1 + 0.2 + 0.22 + 0.23.

σ = −1 σ = −0.8 σ = 0 σ = 0.8 σ = 1

Level 0 0 0.23/S 1/4 1/S 1
Level 1 0 0.22/S 1/4 0.2/S 0
Level 2 0 0.2/S 1/4 0.22/S 0
Level 3 1 1/S 1/4 0.23/S 0

When σ = −1, PHDB is equivalent to the depth-
first approach, since it always picks the deepest level
to expand. When σ < 0, PHDB is skewed towards the
depth-first approach, since the probability of picking

a deeper level is larger. When σ = 0, the probability
of picking any level is the same. When σ > 0, PHDB
is skewed towards the breadth-first approach. Finally,
when σ = 1, PHDB is equivalent to the breadth-first
approach.

5.6 Transaction Filtering: Optimization
to Reduce Scan Sizes

Subsection 5.5 above described an optimization to
greatly reduce the number of database scans needed by
MFGI class. However, even a small number of scans
can be expensive for very large databases. To address
this concern, we propose a database filtering method
that greatly reduces the size of the database that must
be scanned. This has the effect not only of scanning
smaller databases, but also of allowing most of the
database scans to happen in main memory, where the
full database would not fit.

Each node in the classification tree used by
MFGI class specifies a subset of all g-itemsets. For
a given set of g-itemsets, only a subset of the transac-
tions in the database can possibly support one of those
g-itemsets. Specifically, only transactions that contain
all of the g-items in the S1 part of the node and at
least one of the g-items in tax (S2) can support the g-
itemsets classified at a given node. So, at each classifi-
cation node, we filter the database and scan only those
transactions t where t ⊃T S1 ∪S2. So, at each level of
the classification tree we are working with smaller and
smaller subsets of the transaction database.

6 Mining Essential Generalized Association
Rules

Subsection 6.1 briefly discusses the lattice-based so-
lution. The remaining of this section focuses on devel-
oping the classification-based solution.

6.1 Lattice-Based Solution

6.1.1 Overview and Challenges

Here we define a lattice of g-rules, using the impli-
cation relationship among g-rules. An ancestor g-rule
implies all its descendant g-rules in the lattice. To
mine essential g-rules, we dynamically browse the lat-
tice in a top-down fashion, generating child g-rules on
the fly. Whenever a strong g-rule is found, all its de-
scendants in the lattice can be pruned, because they
are implied by the identified strong g-rule and there-
fore are not essential. The algorithm is denoted as
EGR lattice.

Daniel Kunkle et al.: Non-Redundant Frequent Generalized Itemsets 89

Clearly, the algorithm relies on a subroutine to gen-
erate the child g-rules of a given g-rule. It turned out
that to design such a subroutine was very challenging.

Let us first study the algorithm that generates the
child rules in the ordinary case. Again r2 is a child of r1

if and only if r1 =⇒ r2 and 6 ∃r3 s.t. r1 =⇒ r3 =⇒ r2.
Theorem 5. In the ordinary case (no taxonomy),

a rule r2 is a child rule of r1 if and only if r2 can be
derived from r1 by deleting one item from the conse-
quent or by moving an item from the consequent to the
antecedent.

For instance, A → BC has four child rules. Two
of them result from deleting an item from the conse-
quent. They are A → B and A → C. Two of them
result from moving an item from the consequent to the
antecedent. They are AB → C and AC → B.

However, in the generalized case, the problem be-
comes much more subtle. For instance, instead of mov-
ing a g-item from the consequent to the antecedent,
our study shows that we should either add some se-
lected g-item (not necessarily in the original g-rule)
to the antecedent, or replace some selected g-item in
the antecedent by some other g-item (again, not nec-
essarily in the original g-rule). Designing such an al-
gorithm and guaranteeing its correctness are therefore
very challenging.

6.1.2 Algorithm GenChildGRules

We hereby propose an algorithm called GenChild-
GRules (Fig.5) which generates the children of a g-
rule ante → cons in the lattice, and a theorem which
proves its correctness.

In all three cases, in order to perform some oper-
ation (e.g., generalize i) to generate a child rule, a
g-item i may need to be deleted from cons. However,
if i was the only g-item in cons and thus cannot be
deleted (otherwise the child rule has an empty con-
sequent, which is not valid), we do not perform the
operation in the first place.

Let us examine an example. Consider the taxon-

omy and transactional database of Fig.1. Let min-
support = 1

3 and minconf = 1. There are two max
frequent g-itemsets: {AC} and {Z}. The lattice of
g-rules corresponding to {Z} contains a single g-rule,
Y → Z, which is not strong (its confidence is 1

3 , which
is smaller than minconf). The lattice corresponding to
{AC} is shown in Fig.6.

Algorithm. GenChildGRules

Input: A g-rule ante → cons, and a taxonomy T
Action: Generate all child g-rules in the lattice.

1. for every item i ∈ cons,

generalize i to its parent in T . If this results in
an invalid rule, delete i instead. Report the new
rule.

2. for every item i ∈ cons such that 6 ∃a ∈ ante more
general than i

Let n be the most general ancestor of i (including
i itself) in T such that n /∈T ante. Add n to ante.
If n = i, also delete i from cons. Report the new
rule.

3. for every item a ∈ ante, for every child c of a in T
such that c ∈T cons (and hence a ∈T cons),

specialize a from ante to c. If c ∈ cons (not just
c ∈T cons), also delete c from cons. Report the
new rule.

Fig.5. Generate all child g-rules.

To illustrate Case 1, consider generalizing g-items
from the consequent of the root g-rule Y → AC . If we
generalize A to X, we get a child g-rule Y → XC . If we
generalize C to Y , we get an invalid g-rule Y → AY .
By deleting Y from the consequent, we get the correct
child g-rule Y → A.

To illustrate Case 2, consider the g-rule C → A.
Case 2 can be applied here because there does not ex-
ist an item in ante more general than A. There are
three candidate g-items which may be added to the
antecedent in order to generate a child g-rule: A, X,
and Y . Among them, we want to pick the most general
one which /∈T ante. We pick X here, since Y ∈T C,
and X is more general than A. The resulting child
g-rule is XC → A.

Fig.6. Lattice of g-rules implied by Y → AC . Labels on edges refer to case numbers from Algorithm GenChildGRules.

90 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

To illustrate Case 3, consider the root g-rule Y →
AC again. Y has three children in T . Namely, X, C,
and Z. We cannot specialize Y to Z, as Z 6∈T {AC}.
Otherwise, there is no guarantee that the resulted g-
rule ALWAYS has a larger or equal support and con-
fidence. By specializing Y to X or C, we get the child
g-rules X → AC and C → A, respectively. Note that
in the latter case, C is removed from the consequent.

In the dynamic execution of EGR lattice, at the
second level X → AC is identified to be strong. Thus
the examination of its children (the shaded g-rules of
Fig.6) are omitted. Eventually, X → AC is reported
as the only essential g-rule.

Theorem 6. Given a g-rule, the algorithm Gen-
ChildGRules finds exactly the set of its child g-rules.
By recursively applying algorithm GenChildGRules
on the set of essential rules, one can find exactly the
set of all strong rules.

We have a long proof of the correctness of the above
theorem, by relating the problem with its counterpart
in propositional logic. The proof is omitted as the
lattice-based solution is not the main focus of this pa-
per. The theorem further emphasizes the importance
of essential rule mining. In other words, given a set
of essential g-rules, we can easily derive the set of all
strong g-rules (if needed) without checking any fre-
quency information from the transactional database.

6.2 Overview of the Classification-Based
Algorithm

Similar to the lattice-based algorithm, the
classification-based solution, EGR lattice, starts
with a set of max frequent g-itemsets. For each max
frequent g-itemset S, a classification tree is dynam-
ically constructed. Without pruning, the complete
classification tree corresponds to all g-rules where the
antecedent and the consequent are both subsets of S
(with regard to T). The key to the algorithm’s effi-
ciency lies in its pruning techniques, when browsing
the conceptual tree in a top-down fashion.

One may wonder: given that the lattice-based ap-
proach also performs a top-down browsing (of a lattice
which is somewhat similar to a tree) with pruning,
why do we need a classification algorithm? The an-
swer is that in the classification tree, we have better
pruning. As we will see, we can perform pruning “in
both ways”. That is, at each classification-tree node,
we compute a lower bound MINCONF and an upper
bound MAXCONF of the confidence of all g-rules in
the subtree. The examination of the subtree can be
pruned either because MINCONF > minconf or be-
cause MAXCONF < minconf . On the other hand,

the lattice can only perform pruning “in one way”.
Only when a lattice node is confident can we prune its
descendants.

The underlying reason for this difference is as fol-
lows. While each node of the lattice is a single g-
rule, each node of the classification tree is a com-
pact form representing all g-rules in the subtree. This
carefully designed form should enable us to compute
MINCONF and MAXCONF. Needless to say, this
form of tree node should also enable us to classify the
subtree. That is, from one tree node, we should be
able to generate its child nodes, which are also in the
same form, so that the classification can be recursively
performed. The set of g-rules that a node represents
should be exactly partitioned into the sets of g-rules
that its children represent. In other words, any g-rule
in the set of g-rules that a node represents should be-
long to one and only one set that some child node
represents.

6.3 Conceptual Classification Tree

This subsection defines the conceptual classification
tree of g-rules corresponding to one max frequent g-
itemset. It is conceptual in the sense that no pruning
is performed. (Pruning will be discussed in Subsec-
tion 6.4.)

Suppose AC is a max frequent g-itemset. We build
the classification tree of all g-rules whose antecedent
and consequent ⊆T AC . Notice that any such g-rule
only consists of g-items A, C or their ancestor g-items
in T . Thus when performing the classification, we only
need to consider the sub-taxonomy of Fig.2(a).

The root node of the classification tree should cor-
respond to the complete set of g-rules (for any g-item
from Fig.2(a)). Yet it should be in a succinct repre-
sentation with constant space. That is to say, enumer-
ating all g-rules at the root node is not a choice. By
borrowing ideas from the itemset-classification tree, we
can use the following to label the root node:

()(Y)() → ()(Y)()

Recall that ()(Y)() in the itemset-classification tree
represents the set of all g-itemsets (which contain some
g-item in the sub-taxonomy rooted by Y). Thus the
above proposed root node succinctly represents all g-
rules in the following sense: the tree contains exactly
the g-rules where both the antecedent and the conse-
quent contain g-items in Fig.2(a).

The root node indicates that a node N in our pro-
posed classification tree of g-rules has the following

Daniel Kunkle et al.: Non-Redundant Frequent Generalized Itemsets 91

form:

(left .S1)(left .S2)(left .S3)

→ (right .S1)(right .S2)(right .S3),

where left and right refer to the left- and right-hand
sides of a node of the classification tree. The com-
ponents S1, S2 and S3 then refer to the three com-
ponents, which correspond to a node in the itemset-
classification tree. Hence, for the node ()(Y)() →
()(Y)(), the components left .S2 and right .S2 have the
value Y , while all other components are the empty set.
It remains to discuss how to generate the child nodes
of N .

The basic idea is as follows. Consider the left part
of N as a node in the itemset-classification tree and get
its child nodes. Similarly for the right part of N , get
its child nodes in the itemset-classification tree. Then
join the two sets of child nodes.

An arbitrary child of the left part of N and an ar-
bitrary child of the right part may not form a valid
child node in the classification tree. Let us see an ex-
ample. Consider the root node of the classification
tree, i.e., ()(Y)() → ()(Y)(). The left part and the
right part are the same, which has three child nodes
in the itemset classification tree (Fig.2(b)). They are:
()(X)(C), (C)()(), and (Y)()(). A self-join of the
three nodes leads to nine temporary child nodes, e.g.,
()(X)(C) → (Y)()(). However, any g-rule repre-
sented by this example child node has as the conse-
quent Y itself. But since Y is the root of the taxonomy
and is more general than any other g-item, whatever
the antecedent is, the g-rule is invalid.

By removing the temporary child nodes where the
right part is (Y)()(), we get six temporary child nodes.
Note that when examining the child nodes of N ’s left
part, we read from right to left, e.g., in the order
of (Y)()() and then (C)()() and finally ()(X)(C).
(This is needed to ensure that a depth-first traversal of
the classification tree always meets a g-rule only after
meeting all g-rules that imply it.) The six temporary
children are:

(Y)()() → ()(X)(C), (Y)()() → (C)()(),

(C)()() → ()(X)(C), (C)()() → (C)()(),

()(X)(C) → ()(X)(C), ()(X)(C) → (C)()().

Here the three underlined temporary children need
to be changed. First of all, it is clear that (C)()() →
(C)()() is not a valid node. It represents a single g-
rule C → C which is invalid. In general, a temporary
node in the classification tree is invalid, if any g-rule
represented by it contains a g-item in the consequent
which is more general than or equal to a g-item in the
antecedent. More formally,

• a classification tree node, left → right , is invalid
and thus should not be generated, if ∃r ∈ right .S1,
such that r ∈T left .S1 ∪ left .S2.

It is critical not to confuse ∈ (literally a member)
with ∈T (belongs to, with respect to a taxonomy T) in
this criterion. Note that in (Y)()() → (C)()(), even
though Y ∈T right .S1 and Y ∈T left .S1, (Y)()() →
(C)()() still remains valid.

The other two underlined nodes also need change.
Unlike the previous case, these nodes are valid and
should remain in the classification tree. However, for
efficiency reason they need to be altered according to
the following rules.
• Remove every item l in left .S3 if ∃ a g-item r

in right .S1 such that r ∈T {l}. As an example, in
node ()(X)(C) → (C)()(), C in left .S3 is omitted.
We know that any represented g-rule has a consequent
C. Thus such a g-rule is invalid if its antecedent con-
tains C (or some descendant g-item of C in the tax-
onomy, if C were an non-leaf g-item). So there is no
point keeping C in left .S3. The equivalent node is
()(X)() → (C)()().
• Remove every item in right .S3 if it is a leaf g-

item which is equal to some g-item in left .S1. As an
example, in node (C)()() → ()(X)(C), C in right .S3

should be omitted.
The complete classification tree of g-rules corre-

sponding to the sub-taxonomy of Fig.2(a) is shown in
Fig.7.

6.4 Algorithm EGR Class

The classification-based algorithm that gener-
ates essential g-rules, which is named Algorithm
EGR class, is summarized in Fig.8.

Below we discuss the three pruning techniques and
the subroutine MINCONFProcessing.

6.4.1 MINCONF and MAXCONF Pruning

Let us start with computing MINCONF (N) (the
computation of MAXCONF (N) is similar). Below we
will use left and right to represent the left and right
part of N , both in the form of (S1)(S2)(S3). Consider
an arbitrary g-rule ante → cons represented by N .
The confidence of ante → cons is:

support(ante ∪T cons)
support(ante)

.

To minimize the confidence (i.e., the ratio), we want to
minimize the numerator and maximize the denomina-
tor. We know a subset has a larger (or equal) support

92 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

Fig.7. Classification tree of g-rules.

Algorithm. EGR class

Input: A set of max frequent g-itemsets, and a taxonomy T
Action: Generate all essential g-rules

1. for every max frequent g-itemset S

(a) Derive a sub-taxonomy Tsub from T , treating the
g-items in S as leaf g-items, and only keeping these
g-items and their ancestors in T . (As an example,
Given T in Fig.1(a) and a max frequent g-itemset
AC , the derived sub-taxonomy Tsub is shown in
Fig.2(a).)

(b) Generate the root node of the classification tree as
()(Y)() → ()(Y)(), where Y is the root of Tsub .

(c) Dynamically generate the descendant nodes in the
classification tree, following a depth-first fashion.

(d) At each node N , try to prune it using the following
pruning techniques:
i. The MAXCONF Pruning:

If MAXCONF (N) < minconf , prune the sub-
tree as no g-rule can be confident.

ii. The MINCONF Pruning:
If MINCONF (N) > minconf , call Algorithm
MINCONFProcessing to directly generate
the essential g-rules in the subtree.

ii. The Implication Pruning:
If ∃ an identified essential g-rule r such that all
g-rules represented by N are implied by r, the
subtree rooted by N can be pruned.

2. end for

Fig.8. Classification-based algorithm for mining essential g-

rules.

than that of its supersets. So to maximize the denomi-
nator, we want the antecedent to have as few g-items as
possible, while each g-item should be as general as pos-
sible. Such an antecedent should be: left .S1 ∪ left .S2.
It is easily understandable that every g-item in left .S1

should appear in ante as it is, according to the def-
inition of S1. If the S2 part is non-empty, it should
be a single g-item, and either this g-item or some of
its descendant g-item should appear in the antecedent
of every g-rule in the subtree. To maximize support
(ante), we pick the g-item (given in left .S2) itself and
not a descendant of it.

On the other hand, to minimize the numerator,
we should pick ante to be left .S1 ∪T leaf (left .S2 ∪

left .S3), and we should pick cons to be right .S1 ∪T

leaf (right .S2 ∪ right .S3).
Definition 7. Given a classification tree node N

in the form of left → right,

MINCONF (N) =

support(left .S1 ∪T leaf (left .S2 ∪ left .S3)

∪T right .S1 ∪T leaf (right .S2 ∪ right .S3))
support(left .S1 ∪ left .S2)

MAXCONF (N) =
support(left .S1 ∪T left .S2 ∪T right .S1 ∪T right .S2)

support(left .S1 ∪T leaf (left .S2 ∪ left .S3))

Theorem 7. MINCONF (N) and MAXCONF (N)
are a lower bound and an upper bound of the confidence
of every g-rule represented by a classification tree node
N .

One may have noticed that when calculating
MINCONF , we picked different ante for the numera-
tor and the denominator. This is necessary to compute
a lower bound of confidence for g-rules in the subtree.
However, it raises a significant issue. Picking different
ante may not lead to any g-rule. So if we omit the gen-
eration of the subtree, what g-rule(s) shall we report
as essential g-rules?

We first observe that the essential g-rules in the sub-
tree should be able to be identified without consulting
the transactional database for any frequency informa-
tion. Since all g-rules in the subtree are strong, we
can directly generate all the g-rules in the subtree and
compare them to each other and remove the implied
ones. The g-rules not implied by any other one are
reported as essential g-rules. But of course this is very
inefficient as there may have many g-rules in the sub-
tree. We hereby propose an algorithm to efficiently
identify the essential g-rules among them.

6.4.2 Algorithm MINCONFProcessing

Given a classification tree node N : left → right ,
suppose we know all g-rules in the subtree are strong,

Daniel Kunkle et al.: Non-Redundant Frequent Generalized Itemsets 93

our task is to design an algorithm that efficiently iden-
tifies the set of essential g-rules in the subtree.

Observation 1. Any essential g-rule in the subtree
of N must have right .S1∪T leaf (right .S2∪right .S3) as
consequent.

Proof. Let cons0 = right .S1 ∪T leaf (right .S2 ∪
right .S3). By the definition of the form of a classifica-
tion tree node, cons0 is a valid consequent. It remains
to prove that any g-rule whose consequent is not cons0

cannot be essential. Let ante → cons1 be an arbi-
trary g-rule in the subtree of N , where cons1 6= cons0.
We have: cons1 ⊆T cons0. Thus according to Theo-
rem 1, ante → cons0 =⇒ ante → cons1. Therefore
ante → cons1 is not essential. ¤

Observation 2. The g-rule r0 = left .S1∪left .S2 →
right .S1 ∪T leaf (right .S2 ∪ right .S3) is essential.

Proof. If r0 were not essential, there must exist
another g-rule r1 : ante → cons that implies it. It
follows that ante ⊆T left .S1 ∪ left .S2 and cons ⊇T

right .S1 ∪T leaf (right .S2 ∪ right .S3). But according
to the definition of the form of a classification tree
node, r0 already has the “smallest” antecedent and
the “largest” consequent among all g-rules in the sub-
tree of N . It follows that r1 and r0 are exactly the
same. ¤

For the discussion below we will keep the notations:

ante0 = left .S1 ∪ left .S2,

cons0 = right .S1 ∪T leaf (right .S2 ∪ right .S3),

r0 = ante0 → cons0.

Any other essential g-rule in the subtree of N (other
than r0) can be viewed as a transformation from r0 in
the following way: add some g-items from tax (left .S2∪
left .S3) to the antecedent. Of course, if some g-item in
tax (left .S2) is added to the antecedent, the g-item in
S2 itself (which was in the original antecedent of r0)
should be removed.

Observation 3. If one of the g-items, selected
from tax (left .S2 ∪ left .S3) and added to ante0, be-
longs to cons0 with regard to T , the resulted g-rule is
not essential.

Proof. Suppose we select the itemset S ∪ {i} from
tax (left .S2 ∪ left .S3) and add to ante0, where i ∈T

cons0. The resulted g-rule is S∪{i}∪T ante0 → cons0.
We argue that it is not essential because it is implied
by S ∪T ante0 → cons0. To see the implication rela-
tionship (Theorem 1), it is enough to point out that
S∪{i}∪T ante0∪T cons0 ⊆T S∪T ante0∪T cons0 since
i ∈T cons0. ¤

It is now clear how to generate the essential g-rules
in the subtree of N . We should examine tax (left .S2 ∪
left .S3) and eliminate all g-items i such that i ∈T

cons0. From the remaining g-items, we enumerate
all valid g-itemsets. Adding every such g-itemset to
the antecedent of r0 will result in a new essential g-
rule. We denote this algorithm as MINCONFPro-
cessing.

As an example, consider the classification tree node
N = ()(X)(CZ) → (A)(Z)(), regarding to the taxon-
omy of Fig.1(a). Let MINCONF (N) > minconf . Let
us run MINCONFProcessing to find the essential
g-rules in the subtree of N .

First, r0 = X → ADE is an essential g-rule. Then,
if we consider tax (XCZ) and remove all g-items i such
that i ∈T ADE , we get two g-items B and C left
(Fig.9). Therefore there are three more essential g-
rules: B → ADE , XC → ADE , and BC → ADE .

Fig.9. Illustration of tax(XCZ) with g-items ∈T ADE being

removed.

6.4.3 Implication Pruning

It is possible to prune subtrees using the identi-
fied essential g-rules. As long as we are sure that
all g-rules represented by a classification tree node
N : left → right are implied by an identified essen-
tial g-rule ante1 → cons1, we can omit the expansion
of N . This is called Implication Pruning. In more
detail, the pruning condition is:
• ante1 ⊆T left .S1 ∪ left .S2, and
• ante1 ∪T cons1 ⊇T left .S1 ∪T leaf (left .S2 ∪

left .S3 ∪ right .S2 ∪ right .S3).

6.4.4 Example

To conclude this section, let us run the algorithm
EGR class to find essential g-rules in Fig.1, where
minsupport = 1/3 and minconf = 1. The result is il-
lustrated in Fig.10.

At the root node ()(Y)() → ()(Y)(),

MINCONF =
support(AC)
support(Y)

=
1
2

< minconf ,

MAXCONF =
support(Y)

support(AC)
= 2 > minconf .

Therefore none of MINCONF Pruning or MAX-
CONF Pruning can be applied. The Implication Prun-
ing cannot be applied either since there is no essential
g-rule identified so far.

94 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

Fig.10. Finding essential g-rules using the algorithm EGR class.

At the first child node (Y)()() → ()(X)(C), since

MAXCONF =
support(X)
support(Y)

=
1
2

< minconf ,

the corresponding subtree can be pruned due to MAX-
CONF Pruning. Similarly, the second and third
child subtree can also be pruned using the MAX-
CONF Pruning (the corresponding MAXCONF are
support(C)
support(Y) = 2/3 and support(CX)

support(C) = 3/4, respectively).
The fourth child node, ()(X)(C) → ()(X)(C), can

be pruned using the MINCONF Pruning. This is be-
cause

MINCONF =
support(AC)
support(X)

= 1 > minconf .

There is a single essential g-rule in the subtree: X →
AC .

Finally, the last child node ()(X)() → (C)()() can
be pruned by the Implication Pruning, using the iden-
tified essential g-rule.

7 Experimental Analysis

Here, we provide an experimental analysis of both
MFGI class and EGR class.

As far as we know, the naive lattice-based algo-
rithm MFGI lattice is the only other algorithm that
has been designed to mine the set of max frequent
g-itemsets. So the first set of experiments we con-
duct is to compare our algorithm MFGI class with
MFGI lattice.

Next, we compare MFGI class with BASIC[3].
Note that BASIC was proposed to find all frequent
g-itemsets. So we give MFGI class the additional
handicap of producing all frequent g-itemsets from the
set of identified max frequent g-itemsets. Furthermore,
in the first two sets of experiments we do not apply the
PHDB optimization in the comparison graphs.

We also provide the following additional results for
MFGI class: a measurement of the effect of apply-
ing the PHDB optimization and experiment with dif-
ferent choices of the parameter σ; the effects of the

transaction filtering optimization; the performance as
database size scales.

Then, we analyze EGR class, including a compari-
son to EGR lattice, including variations in minimum
support, minimum confidence, taxonomy depth, and
database size.

Finally, we examine the performance of
MFGI class and EGR class with respect to a real
dataset, the Microsoft Anonymous Web Data set[30].

The algorithms were implemented in Sun Java
1.5.0, and executed on a Sun Blade 1500 with 1GB
of memory running SunOS 5.9.

The synthetic experimental data were generated
with the widely used Quest Synthetic Generator[31].
The specific properties of each of the datasets will be
described in detail in the following subsections.

7.1 MFGI class vs. Naive Lattice-Based
Enumeration

We compare MFGI class with the lattice-based
approach MFGI lattice. Because of the large relative
inefficiency of the lattice approach, this comparison
uses a very small dataset. The database has 1000
transactions, each of which contains between 2 and 5
randomly chosen items from the leaf-level items in the
taxonomy. The taxonomy has N g-items with constant
fanout 2. The specified minimum support is 0.3. Ta-
ble 3 demonstrates the practical infeasibility of lattice-
based methods for mining max frequent g-itemsets.

The two methods are compared over three different
metrics: the number of nodes generated in either the
lattice or classification tree; the number of g-itemsets
for which support must be calculated; and running
time.

The infeasibility of the lattice based method is evi-
dent in these results. For example, the lattice method
required approximately 8 hours of running time for
a taxonomy with 31 items and a database with 1000
transactions, whereas MFGI class required only 1.5
seconds.

Daniel Kunkle et al.: Non-Redundant Frequent Generalized Itemsets 95

Table 3. Comparison Against the Lattice-Based Approach

N Lattice

Nodes g-Itemsets Time (s)

15 2645 668 3.9

31 3.6× 106 4.5× 105 3× 104

N MFGI class

Nodes g-Itemsets Time (s)

15 33 92 1.2

31 83 243 1.5

7.2 MFGI class vs. BASIC

We choose BASIC as the baseline algorithm
for comparison, following the tradition of previous
authors[3,7−13]. BASIC has been widely used as a base-
line algorithm because it has a clear, standard imple-
mentation whose speed will not be greatly biased by
the implementation. This is not true of many of the
other algorithms in the literature.

For example, we choose not to compare with the
FP-tax[2] because its performance may vary signifi-
cantly depending on the implementation. As one spe-
cific issue, it is not clear how to handle the case when
the FP-tree does not fit in memory.

The speedup over BASIC that we achieve, espe-
cially for taxonomies of depth 4 and greater, are sig-
nificantly beyond what is achieved by other algorithms
for mining frequent g-itemsets.

Since Srikant and Agrawal also presented Cumu-
late and EstMerge[3] and reported that they are 2 to
5 times faster than BASIC, in the performance graphs
we include a band of a factor of 5 in the speed of BA-
SIC.

The performance of Cumulate and EstMerge should
both lie inside that band. Additionally, Srikant and
Agrawal report that for one natural data set (depart-
ment store), Cumulate and Estmerge were shown to
be 100 times faster than BASIC. However, that exam-
ple occurs only for an 8 level taxonomy. Extrapolating
our own data, MFGI class appears to be more than
100 million times faster than BASIC for this case.

Table 4. Parameters for Dataset Generation

Parameter Default Value

Taxonomy

Number of Items 1 000

Number of Levels 5

Transactional Database

Number of Transactions 10 000

Average Size of Transaction 5

Transaction Size Distribution Poisson

Number of Patterns 300

Average Length of Patterns 4

Table 4 presents the default parameters used for
experimental data generation.

Fig.11. Comparison against BASIC. (a) Varying levels. (b)

Varying min support.

Fig.11(a) compares MFGI class with BASIC as
the number of levels of the taxonomy increases, while
holding constant the total number of items in the
taxonomy. Here minsupport = 0.05. In the graph,
the “previous best” line was manually generated by
taking 1/5 of the execution time of BASIC. Clearly,
MFGI class is exponentially faster than BASIC as
the number of levels of the taxonomy increases. With a
5-level taxonomy, BASIC took approximately 12 hours
to complete. In an extrapolation of the timing, it ap-
pears that MFGI class should be more than 1 000 000
times faster than BASIC for 7 levels.

Fig.11(b) shows the performance comparison by
varying minsupport while holding the number of tax-

96 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

onomy levels constant at 5. MFGI class shows ex-
ponential improvement over BASIC with decreasing
minimum support. Experiments for BASIC with min-
imum support lower than 0.05 were infeasible.

7.3 Effect of the PHDB Optimization

We use the same data as described in Table 4.
In particular, the taxonomy has depth = 5, and
minsupport = 0.05.

We first measure the effect of applying the PHDB
optimization, as shown in Table 5. Here num is the
number of frequencies to compute for each database
scan. And Speedup is the ratio between the number of
database scans needed when num = 1 and the number
of database scans needed for each given num.

Table 5. Speedup on the Number of Database

Scans Due to PHDB

num 1 5 10 20 50 100

Speedup 1 2.5 4.4 6.2 11.7 12.3

Finally, we experiment with the choice of parame-
ter σ. In Fig.12(a), when the number of frequencies
to check per scan is num = 100, the best choice of σ
is −1. In fact, our experiments revealed that for most
practical num, the depth-first approach is the best.
When num is very small, values of σ > −1 can be the
best choice. For example, in Fig.12(b) where num is
as small as 7, the best choice of σ is −0.8. We recom-
mend using σ = −1 (i.e., the depth-first approach) as
a default value in most scenarios, though application
specific tuning may provide additional benefits.

Even though we find the depth-first expansion or-
der to be optimal in most cases, we still believe that
the PHDB expansion method is worth mentioning here
for the following reasons. First, it was not previously
known that depth-first expansion is optimal in this
case. Second, the depth-first expansion order may not
by optimal for all possible data sets. Other expan-
sion orders can easily be explored through the use of
PHDB for application specific tuning. Finally, PHDB
is a general tree expansion ordering technique that can
be applied outside the algorithm MFGI class.

7.4 Effect of the Transaction Filtering
Optimization

Here we again use the same data as described in Ta-
ble 4, with a taxonomy of depth 5 and minsupport =
0.05.

Fig.12. Impact of the parameter σ in PHDB. (a) num = 100.

(b) num = 7.

As described in Subsection 5.6, we only need to scan
a subset of the transactions in the database at each
node in the classification tree used by MFGI class.
Fig.13 analyzes how effective this optimization is.
Here, the x-axis represents the size of a subset of the
database, as fraction of the total database size. The
y-axis is the number of database scans, as a fraction of
the total number of scans used by the algorithm, that
scan a subset of the database smaller than the values
on the x-axis. So, approximately 61% of the scans in
this case were on a database less than 10% the size
of the entire database. Further, approximately 94% of
the scans were on a database less than 25% the size of
the entire database. In practical terms, the x-axis can
be considered the size of main memory and the y-axis
the number of scans that can be completed without
accessing disk.

Note, these results are independent of the scan com-
bining optimization using PHDB. Combining the two

Daniel Kunkle et al.: Non-Redundant Frequent Generalized Itemsets 97

optimizations leads to a very small number of scans,
most of which can be completed in main memory.

Fig.13. Impact of the transaction filtering optimization.

7.5 Scalability, Number of Results, and
Percentage of False Positives

Some other experimental results are reported in
this subsection. Fig.14 shows that the running time
MFGI class scales linearly with increasing database
size. That is, the running time per transaction is ap-
proximately constant. In this case, databases with a
number of transactions ranging from ten thousands to
one million were used.

Fig.14. Scaling up database size.

Fig.15 shows the number of MFGI found for various
levels of minimum support. The exponential increase
in the number of MFGI with decreasing minimum sup-
port corresponds closely to the increase in running
time shown by Fig.11(b), suggesting that the running

time of MFGI class is dependent on the number of
MFGI found.

Fig.15. Number of MFGI with varying minimum support.

Table 6. Ratio of False Positives

Min. Support MFGI False MFGI Ratio

0.3 12 44 3.7

0.2 35 115 3.3

0.1 152 517 3.4

0.075 206 969 4.7

0.05 340 2122 6.2

0.025 947 7645 8.1

As mentioned in Subsection 5.4, MFGI class pro-
duces a number of “false” MFGI along with the ac-
tual set of MFGI. Table 6 shows the ratio between the
number of false positives to the number of actual max
frequent g-itemsets, corresponding to the number of
max frequent g-itemsets shown in Fig.15.

7.6 Comparison of Algorithms for Mining
g-Rules

This section provides an experimental comparison
of the algorithms EGR lattice and EGR class.

Fig.16 compares the running time of EGR lattice
and EGR class, varying minconf from 0.3 to 0.9.
Here we fix minsupport at 0.3. At low minimum con-
fidence levels, 0.3 to 0.5, both methods are fast as the
lattices/trees are shallow. The lattice method is some-
what faster at these levels because there is no compu-
tation to determine if pruning should occur and there
are very few pruning opportunities. As the minimum
confidence increases the lattices/trees become much
deeper and the pruning becomes more important. In
this case, EGR class outperforms EGR lattice by

98 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

a wide margin. For example, EGR class is about 10
times faster when using a minimum confidence of 0.9.

Fig.16. Varying minconf.

Fig.17 shows another comparison between
EGR lattice and EGR class, this time fixing the
minimum confidence at 0.8 and ranging minimum sup-
port from 0.05 to 0.3 (note the logarithmic scale on
the y-axis). EGR class is faster than EGR lattice
in all cases. In fact, below a minimum support of
0.2 EGR lattice becomes infeasible due to excessive
time and memory requirements. At a minimum sup-
port of 0.2, EGR class is about 700 times faster than
EGR lattice.

Fig.17. Varying minsupport.

Fig.18 fixes the minimum support at 0.3 and the
minimum confidence at 0.8 and ranges the depth of
the taxonomy from three to seven. The rest of the
taxonomy and transaction database parameters were
at their defaults, detailed in Table 4. EGR lattice
is faster with very shallow taxonomies because there
are fewer pruning opportunities to take advantage of.

With taxonomies of depth 5 and above, EGR class
is much faster than EGR lattice. For instance, when
the taxonomy depth is 6, EGR class is about 200
times faster than EGR lattice. The reason is that as
the taxonomy increases in depth the size of the con-
ceptual (i.e., unpruned) lattice and classification tree
grows. In the case of EGR lattice, there is no effec-
tive method for countering this growth and therefore
the running time increases exponentially. However,
EGR class utilizes a number of pruning methods to
combat this growth. As the taxonomy increases in
depth these pruning methods increase in effectiveness.
After depth 6, the growing effectiveness of the pruning
overtakes the growing size of the conceptual classifica-
tion tree and the computation time begins to decrease.

Fig.18. Varying taxonomy depth.

Overall, EGR class is far superior to
EGR lattice, unless the minimum support is very
high, the minimum confidence is very low, or the tax-
onomy is very shallow.

Fig.19. Database size scale-up.

Daniel Kunkle et al.: Non-Redundant Frequent Generalized Itemsets 99

Fig.19 shows the running time of EGR class for
increasing sizes of the transactional database. Here we
use logarithmic scales for both X and Y axes. Clearly,
EGR class scales linearly with the number of trans-
actions.

Finally, Fig.20 compares the usefulness of the three
pruning techniques by showing the number of occur-
rences of each type of pruning. The greater the num-
ber of occurrences, the more useful the corresponding
pruning technique. Here we choose minsupport = 0.3
and vary minconf. The figure reveals that at low
minimum confidence levels, the number of MINCONF
pruning occurrences is much greater than MAXCONF
pruning occurrences. With increasing minimum confi-
dence this relationship reverses. The level of implica-
tion pruning is relatively constant and low throughout.

Fig.20. Comparing the effectiveness of the three pruning tech-

niques.

7.7 Experimental Results on Real Data

Here we provide results for our algorithms using the
Microsoft Anonymous Web Data set, available from
the UCI KDD Archive[30]. This data represents the ar-
eas of the web site http://www.microsoft.com that
were visited by 37 711 random users for a one-week
time period in 1998. There is one transaction for ev-
ery user. There are 294 items, representing the areas of
www.microsoft.com that users visited. Transactions
have an average of 3.02 items. Originally, the data had
no taxonomy. However, descriptions of each item al-
lowed us to classify each as being a child item of one of
19 g-items. These 19 g-items represent classes of web
pages that users visited. They included such classes
as “Consumer Products”, “Support”, “Development”,
and “News”.

Fig.21 shows performance measurements for min-

ing max frequent g-itemsets using MFGI class. The
running time and number of MFGI are shown for min-
imum support values ranging from 0.025 to 0.4.

Fig.21. MFGI class applied to MS Web Data. (a) Running

time. (b) Number of MFGI.

Fig.22 shows performance measurements for mining
essential g-rules using EGR class. First, the running
time and number of g-rules are shown for a minimum
confidence value of 0.2 and minimum support values
ranging from 0.025 to 0.4. Second, minimum support
is fixed at 0.075 and minimum confidence ranges from
0.2 to 0.8. Notice that the running time and number
of resulting rules are more sensitive to changes in min-
imum support than in minimum confidence (hence the
logarithmic scales on the first two plots).

Note that the results above correspond to the base
version of the algorithms, without any of the optimiza-
tion techniques previously examined.

Table 7 shows a sampling of generalized association

100 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

Fig.22. EGR class applied to MS Web Data. (a) Running time. (b) Number of essential rules. (c) Running time. (d) Number of

essential rules.

Table 7. Some Generalized Association Rules Mined from MS Web Data

{*Consumer Products, *Downloads} → {Internet Explorer, Free Downloads}
{*Operating Systems} → {Windows Family of OSes}

{*Consumer Products, *Web Site} → {Microsoft.com Search}
{Internet Site Construction} → {*Online}

{*Consumer Products, *Development} → {*Downloads}

rules found with a minimum support level of 0.1 and a
minimum confidence level of 0.5. A “∗” indicates that
the item is a generalized item representing a category
of web site areas. All other items are actual web site
areas present in the transactional data.

7.8 A Note on Memory Usage

Both MFGI class and EGR class are forms of
depth-first search (DFS) with pruning. As such, they

have the same memory requirements as DFS, namely
logarithmic in the size of the classification trees. From
the counting arguments presented in Section 4, we
know that the size of the classification trees is exponen-
tial in the number of g-items. So, the two algorithms
use space proportional to the number of g-items (in
the worst case).

This will typically be only a small fraction
of the available memory. The remaining mem-
ory can therefore be put to use in two optimiza-

Daniel Kunkle et al.: Non-Redundant Frequent Generalized Itemsets 101

tions for MFGI class: PHDB for batch-computing
frequencies; and, transaction filtering (see Subsec-
tions 5.5 and 5.6). In PHDB, extra memory allows
more g-itemsets to be scanned for frequency in one
pass. For transaction filtering, extra memory allows
even larger filtered databases to be scanned in mem-
ory. So, these optimizations can avoid costly disk-
scans, especially when larger amounts of memory are
available.

8 Conclusions

This paper solved, for the first time, the problems
of mining max frequent g-itemsets and essential g-
rules. Our algorithms, MFGI class and EGR class
are both based on a conceptual classification tree (of
g-itemsets or g-rules). The key to these approaches
is the efficient dynamic generation and pruning of the
classification trees.

Further, several optimizations are proposed.
MFGI class was carefully designed such that the gen-
erated candidates satisfy the superset-before-subset
property. This enables on-line elimination of false pos-
itives. To reduce the number of database scans, we
proposed the PHDB optimization to batch-compute
frequencies. To reduce the size of those scans, we pro-
posed a transaction filtering optimization.

Experimental results showed that both
MFGI class and EGR class are superior to their
lattice-based counterparts. Further, these algorithms
are shown to be significantly faster than existing algo-
rithms for mining all frequent g-itemsets and strong
g-rules, such as those based on BASIC.

As a complimentary result, we provide closed form
lower and upper bounds on the number of possible g-
itemsets and g-rules.

We believe these algorithms and results will allow
the efficient discovery of more interesting patterns in
transactional data with taxonomies.

References

[1] Hipp J, Myka A, Wirth R, Güntzer U. A new algorithm for
faster mining of generalized association rules. In Proc. Euro-
pean Conference on Principles of Data Mining and Knowl-
edge Discovery (PKDD), Nantes, France, 1998, pp.74–82.

[2] Pramudiono I, Kitsuregawa M. FP-tax: Tree structure
based generalized association rule mining. In Proc.
ACM/SIGMOD International Workshop on Research Issues
on Data Mining and Knowledge Discovery (DMKD), Paris,
France, 2004, pp.60–63.

[3] Srikant R, Agrawal R. Mining generalized association rules.
In Proc. International Conference on Very Large Data
Bases (VLDB), Zurich, Switzerland, 1995, pp.407–419.

[4] Sriphaew K, Theeramunkong T. A new method for find-
ing generalized frequent itemsets in generalized association
rule mining. In Proc. International Symposium on Com-
puters and Communications (ISCC), Taormina, Italy, 2002,
pp.1040–1045.

[5] Sriphaew K, Theeramunkong T. Fast algorithms for min-
ing generalized frequent patterns of generalized association
rules. IEICE Transactions on Information and Systems,
March 2004, E87-D(3).

[6] Sriphaew K, Theeramunkong T. Mining generalized closed
frequent itemsets of generalized association rules. In
Proc. International Conference on Knowledge-Based Intel-
ligent Information and Engineering Systems (KES), Oxford,
United Kingdom, 2003, pp.476–484.

[7] Bayardo Jr R J. Efficiently mining long patterns from
databases. In Proc. ACM/SIGMOD Annual Conference on
Management of Data (SIGMOD), Seattle, WA, 1998, pp.85–
93.

[8] Agarwal R C, Aggarwal C C, Prasad V V V. A tree projec-
tion algorithm for generation of frequent item sets. Journal
of Parallel Distributed Computing, 2001, 61(3): 350–371.

[9] Han J, Pei J, Yin Y. Mining frequent patterns without can-
didate generation. In Proceedings of ACM/SIGMOD An-
nual Conference on Management of Data (SIGMOD), Dal-
las, TX, 2000, pp.1–12.

[10] Lin D I, Kedem Z M. Pincer-Search: An efficient algorithm
for discovering the maximum frequent set. IEEE Trans.
Knowledge and Data Engineering (TKDE), 2002, 14(3):
553–566.

[11] Pasquier N, Bastide Y, Taouil R, Lakhal L. Discovering fre-
quent closed itemsets for association rules. In Proc. Interna-
tional Conference on Database Theory (ICDT), Jerusalem,
Israel, 1999, pp.398–416.

[12] Pei J, Han J, Mao R. CLOSET: An efficient algorithm for
mining frequent closed itemsets. In Proc. ACM/SIGMOD
International Workshop on Research Issues on Data Min-
ing and Knowledge Discovery (DMKD), Dallas, TX, 2000,
pp.21–30.

[13] Wang K, Tang L, Han J, Liu J. Top down FP-growth for as-
sociation rule mining. In Proc. Pacific-Asia Conference on
Knowledge Discovery and Data Mining (PAKDD), Taipei,
Taiwan, 2002, pp.334–340.

[14] Agrawal R, Imielinski T, Swami A M. Mining associa-
tion rules between sets of items in large databases. In
Proc. ACM/SIGMOD Annual Conference on Management
of Data (SIGMOD), Washington DC, 1993, pp.207–216.

[15] Agarwal R C, Aggarwal C C, Prasad V V V. Depth first
generation of long patterns. In Proc. ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data
Mining (KDD), Boston, MA, 2000, pp.108–118.

[16] Burdick D, Calimlim M, Gehrke J. MAFIA: A maxi-
mal frequent itemset algorithm for transactional databases.
In Proc. International Conference on Data Engineering
(ICDE), , Heidelberg, Germany, 2001, pp.443–452.

[17] Gouda K, Zaki M J. Efficiently mining maximal frequent
itemsets. In Proc. International Conference on Data Min-
ing (ICDM), San Jose, CA, 2001, pp.163–170.

[18] Xin D, Han J, Yan X, Cheng H. Mining compressed frequent-
pattern sets. In Proc. International Conference on Very
Large Data Bases (VLDB), Trondheim, Norway, 2005,
pp.709–720.

[19] Yan X, Cheng H, Han J, Xin D. Summarizing itemset pat-
terns: A profile-based approach. In Proc. ACM SIGKDD
International Conference on Knowledge Discovery and Data
Mining (KDD), Chicago, IL, 2005, pp.314–323.

102 J. Comput. Sci. & Technol., Jan. 2008, Vol.23, No.1

[20] Calders T, Goethals B. Depth-first non-derivable itemset
mining. In Proc. the SIAM International Conference on
Data Mining (SDM), Newport Beach, CA, 2005.

[21] Ke Y, Cheng J, Ng W. Mining quantitative correlated pat-
terns using an information-theoretic approach. In Proc.
ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD), Philadelphia, PA, 2006,
pp.227–236.

[22] Xiong H, Tan P N, Kumar V. Hyperclique pattern discov-
ery. Data Mining and Knowledge Discovery, 2006, 13(2):
219–242.

[23] Ghoting A, Buehrer G, Parthasarathy S, Kim D, Nguyen A,
Chen Y K, Dubey P. Cache-conscious frequent pattern min-
ing on a modern processor. In Proc. International Confer-
ence on Very Large Data Bases (VLDB), Trondheim, Nor-
way, 2005, pp.577–588.

[24] Han J, Fu Y. Mining multiple-level association rules in large
databases. IEEE Trans. Knowledge and Data Engineering
(TKDE), 1999, 11(5): 798–805.

[25] Huang Y F, Wu C M. Mining generalized association rules
using pruning techniques. In Proc. International Confer-
ence on Data Mining (ICDM), Maebashi City, Japan, 2002,
pp.227–234.

[26] Aggarwal C C, Yu P S. Online generation of association
rules. In Proc. International Conference on Data Engi-
neering (ICDE), Orlando, FL, 1998, pp.402–411.

[27] Zaki M J. Generating non-redundant association rules. In
Proc. ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD), Boston, MA, 2000,
pp.34–43.

[28] Lui C L, Chung K F. Discovery of generalized association
rules with multiple minimum supports. In Proc. European
Conference on Principles of Data Mining and Knowledge
Discovery (PKDD), Lyon, France, 2000, pp.510–515.

[29] Tseng M C, Lin W Y. Mining generalized association rules
with multiple minimum supports. In Proc. International
Conference on Data Warehousing and Knowledge Discov-
ery (DaWaK), Munich, Germany, 2001, pp.11–20.

[30] Newman D J, Asuncion A. UCI machine learning
repository. University of California, Irvine, 2007,
http:mlearn.ics.uci.edu/MLRepository.html.

[31] Synthetic Data Generation Code for Associations and
Sequential Patterns (IBM Almaden Research Center).
http://www.almaden.ibm.com/software/quest/Resources/da-
tasets/syndata.html.

[32] Kunkle D, Zhang D, Cooperman G. Efficient mining of max
frequent patterns in a generalized environment. In Proc.
International Conference on Information and Knowledge
Management (CIKM), Arlington, VA, 2006, pp.810–811.

Daniel Kunkle is a Ph.D.
candidate in the College of Com-
puter and Information Science at
Northeastern University. He re-
ceived his B.S. degree in informa-
tion technology in 2001 and his
M.S. degree in computer science
in 2003, both from the Rochester
Institute of Technology. His re-
search interests include combina-

torial optimization, high performance computing, and
adaptive systems.

Donghui Zhang received his
Ph.D. degree in 2002 from the Uni-
versity of California – Riverside.
Since then, he has been working as
an assistant professor in the College
of Computer & Information Science,
Northeastern University. Professor
Zhang’s primary research area is
databases. In particular, indexing
and query optimization in spatial,

temporal, and spatiotemporal databases. Many real ap-
plication data have spatial and/or temporal dimensions.
For instance, the locations of apartment buildings, cars,
mobile-phone users which may or may not change over
time. The concern is how to index such objects and how to
efficiently compute the result of interesting queries. Profes-
sor Zhang received the NSF CAREER Award: Fast Query
Support for Emerging Spatial Database Applications. He
has written five book chapters and published over twenty
peer-refereed research papers. He has served on the panels
of two NSF programs, on the Program Committees of vari-
ous international conferences including ICDE’07, SSTD’07,
VLDB’05, ICDE’04 and EDBT’04, and as referee for over
10 journals such as TODS and VLDBJ.

Gene Cooperman received his
B.S. degree from the University
of Michigan in honors math and
physics, and his Ph.D. degree in ap-
plied mathematics from Brown Uni-
versity. He is currently a professor
of computer and information science
at Northeastern University, Boston.
His research interests include paral-
lel and high performance comput-

ing, and algebraic computations. Dr. Cooperman is an
associate editor of ACM Transactions on Mathematical
Software (TOMS) and on the advisory board of the Eu-
ropean Union SCIEnce project (Symbolic Computation in
Europe). Dr. Cooperman currently serves on three pro-
gram committees of technical conferences in computational
and parallel algebra and network computing. He is also
head of the Institute for Complex and Scientific Comput-
ing (http://www.icss.neu.edu) at Northeastern University.
Dr. Cooperman has published over 70 refereed publica-
tions.

