
New Sequential and Parallel Algorithms

for Generating High Dimension Hecke Algebras
using the Condensation Technique

Gene Cooperman1 and Michael Tselman1

gene@ccs.neu.edu and misha@ccs.neu.edu
College of Computer Science

Northeastern University
Boston, MA 02115 / U.S.A.

Abstract

Condensation is an important technique for finding irre-
ducible representations of a group and other information.
It maps a representation to a representation of a smaller al-
gebra, the Hecke algebra or condensation algebra. A new
algorithm is described, which allows one to take very large
permutation representations and build a Hecke algebra of
larger dimension than before. The technique allows one to
make a space-time tradeoff with constant space-time prod-
uct. Further, the technique parallelizes in a distributed
memory environment (and hence also for shared memory),
yielding a speedup linear in the number of processors. This
has been used to obtain a condensed representation of di-
mension 5,693, for the finite simple group J4 acting on a
space of dimension 173,067,389. The computation was re-
peated using from 4 (lightly loaded) workstations up to 14
(heavily loaded) workstations with timings ranging from 6-
1/2 days down to 2-1/2 days. Both homogeneous (SPARC)
and heterogeneous (SPARC/Alpha) architectures were used.

1 Introduction

Condensation is an important technique first invented by
Richard Parker and Thackray at Cambridge University to
aid in finding new irreducible representations of a group
and to analyze existing ones. The technique is described
in Thackray’s Ph.D. thesis. It has been applied in a number
of settings [5, 9, 11, 12]. The condensation technique is used
to “condense” a reducible representation of high dimension
into a representation of a Hecke algebra or condensation al-
gebra of smaller dimension. One then looks for desired infor-
mation in the representation of the Hecke algebra, whose di-
mension is computationally more tractable, and then “lifts”
the information back to the original representation.

A common application of condensation is in finding new
irreducible matrix representations of a group. One begins
with an action of a group G on a vector space V , and then
forms the permutation representation on the orbit of a vector
of V . This representation is always reducible for dimension

1Partially supported by NSF Grant CCR-9509783.

To appear,
Proceedings of the International Symposium on Symbolic
and Algebraic Computation-96 (ISSAC-96),
August, 1996,
Zurich, Switzerland

greater than one. For small enough d, where d is the di-
mension of the permutation representation, there are other
techniques, such as Parker’s meataxe [7, 10] for finding irre-
ducible representations. For large d, analysis of the Hecke
algebra remains, as described in section 2.3, one of the few
viable techniques for finding new irreducible representations.
This produces a representation of a new, smaller subalgebra,
which can be analyzed by the meataxe or other techniques.

Until now, the dimension of representations of the Hecke
algebra was typically limited to at most 1,000 due to large
storage requirements proportional to d. Reducing the di-
mension to that extent typically results in much loss of in-
formation. For example, there is a Hecke algebra acting
on a module of dimension 1, but it is the trivial algebra.
This paper describes how to store only a fraction of the
d points through a space-time tradeoff with constant space-
time product. Further, the technique parallelizes in a dis-
tributed memory environment with linear speedup in the
number of processors. Using the new technique, one is now
limited primarily by one’s ability to compute with the ma-
trices of a high dimensional Hecke algebra. In the case of
J4, we have produced a representation of a Hecke algebra of
dimension 5693 from an initial permutation representation
of dimension 173,067,389.

For G acting on the module V , we choose f ∈ V such
that G acts faithfully on fG. As will be seen in section 2.2,
an arbitrary subgroup K < G yields a Hecke algebra acting
on a module of dimension k, for k the number of K-orbits
in fG. It will further be seen that the representation of the
image of g ∈ G in the Hecke algebra is the matrix (cij/|Oj |)
for which Oi and Oj are the ith and jth K-orbits and cij is
the number of points of Oi that are mapped to Oj under g.
Intuitively, the image of g in the Hecke algebra achieves a
smaller representation by smearing together the points in
each K-orbit.

In computing cij , one must compute the image xg ∈ fG

for each x ∈ fG, and then identify which K-orbit contains
xg. The problem is that one cannot afford to store all of the
points of fG. The solution is a space-time tradeoff:

Key Idea: One chooses m and a pseudo-random
“hash-like” function, h: fG 7→ [0, . . . , M] for
M � m. (i.e. the function h should sat-
isfy the simple uniform hashing assumption [4,
pp. 224–227].) One then stores only those ele-
ments, x, of fG for which h(x) = 0 mod m.

Since one need only store approximately 1/m of the points
of fG, the storage becomes manageable.

1

One typically stores the points in a hash table, but the
choice of hash table or other data structure is independent of
the pseudo-random function, h(). Along with storing each
point x, one must also store a pointer to the orbit in which
it was found to lie. With this information, one can then
identify the K-orbit containing an arbitrary image point,
yg. If h(yg) = 0 mod m, then yg will be found in the table.
Otherwise, one does a search of other points in (yg)K . If
h(x) = 0 mod m for any point x ∈ (yg)K , the table is used
to identify the K-orbit of x, which is also the K-orbit of yg.
On average, one makes such an identification after examin-
ing m points. Thus, we will typically save a factor of m in
space, at the cost of an additional factor of m in time.

The algorithm we developed can be easily mapped on
to the master-slave parallel environment. We implemented
a master-slave version of the algorithm that can run on a
network of workstations (SPARC, Alpha). We used the
GCL/MPI software package which integrates a GCL ver-
sion of COMMON LISP and an MPI (Message Passing In-
terface) communication library, and provides a top level
master-slave framework. In a series of experiments the im-
plementation demonstrated excellent scalability of the algo-
rithm with the increase in the number of processors, while
maintaining nearly optimal load balance.

As a result, for the J4 group we computed a represen-
tation of a Hecke algebra of dimension 5693 in times rang-
ing from 6-1/2 to 2-1/2 days using from 4 to 14 proces-
sors. The condensation was carried out using the subgroup
K = 211 : 23 for generating K-orbits.

2 The Condensation Technique

Although the condensation technique is described in some
earlier papers, it is reviewed here to make the description
self-contained.

2.1 Informal description

In typical applications of condensation, one begins with an
algebra acting on a (possibly reducible) module of very high
dimension. Then one finds an image algebra under a certain
“natural”, non-invertible map to be described later. Fur-
ther, the image algebra (known as the Hecke algebra) acts
on a module of much smaller dimension, and the map in-
duces a map between the two modules. Under this induced
map, each element of the image module is a linear combi-
nation of elements of the original module. For this reason,
one can think of the “natural” map as acting as a type of
“averaging” operator.

Intuitively, one has condensed the information of the
larger representation into information of a smaller Hecke
algebra. The smaller algebra is much more tractable from
the viewpoint of computation, and one hopes to recover new
information about the larger representation (such as finding
irreducible submodules) from an analysis of the Hecke alge-
bra.

2.2 Formal description

Consider the following permutation representation. Let the
A be a group algebra FG for some field F and suppose that
the group G acts by permutation on the set Ω. Let V = F Ω,
the set of all functions from Ω into F . Then V can be made
into a right A-module by defining the action of G on V and
then extending by linearity to all of A. We define the action

of x ∈ G on V , according to the rule (fx)(i) = f(ix−1

) for

x ∈ G, f ∈ V, i ∈ Ω. For each i ∈ Ω, if one sets ui to be the
function which is 1 on i and 0 elsewhere, then {ui : i ∈ Ω}
is a basis for V and uix = u

ix−1 .
One next defines e ∈ A, which will depend on a chosen

subgroup H ≤ G. Assume that the characteristic of F is
coprime to |H|. Let O1, . . . , O` be the orbits of H acting on
Ω. Let e = 1

|H|

∑
h∈H

h. Then e is an idempotent of A and

eh = e for all h ∈ H. So, V e ≤ V is a right eFGe-subspace
of dimension `. V e has a natural basis, vi =

∑
j∈Oi

uj .

The element e is an “averaging” operator. If v ∈ V , then
ve(j) is the average value of v(x) over all x ∈ jH . Thus ve
is constant on all orbits of H for all v ∈ V . Further, ege
depends only on HgH and not on the choice of g′ ∈ HgH.

Given the permutation representation G acting on the
|Ω|-dimensional module V , we want to construct the rep-
resentation for the algebra eAe acting on the smaller, `-
dimensional module V e. We produce the new representa-
tion with respect to the basis {vi} for V e above. Let us
compute it for an element ege, such that g ∈ G. One can
easily check that

viege =
∑

cijvj , where cij = |{k ∈ Oi: kg ∈ Oj}|/|Oj |.

As one expects, cij depends only on HgH and not on
the choice of g′ ∈ HgH.

The goal (see below) is to find eAe-submodules of V e
that correspond to interesting A-submodules of V . Note
that V e always has the invariant subspace spanned by the
single vector v1 + · · · + v`. So V e is never irreducible when
` > 1.

2.3 Application

An important goal is to study the submodule structure of V e
under eFGe. One then finds a w ∈ V e such that weFGe <
V e. One hopes that wFG is a proper subspace of V , and so
one may have discovered a new, irreducible representation
of G.

Note that if U is an invariant A-submodule, then U = Ue
is an invariant eAe-submodule. This follows since UA ⊆ U
implies Ue ⊆ U and so (Ue)(eAe) = (Ue)Ae ⊆ UAe ⊆ Ue.

2.4 Uncondense

An important requirement for the above is to find a pre-
image of an element of V e. Suppose we have a submodule
of V e generated by one element, and we wish to produce
a corresponding submodule of the pre-image, V . Let W =
weAe ≤ V e be the submodule of interest. Since vie = vi,
w =

∑
i

∑
j∈Oi

wiuj is a pre-image of w =
∑

i
wivi.

So, W = wA ≤ V is a pre-image of W under right mul-
tiplication by e.

2.5 Limits of applicability

Assume that G has a n×n matrix representation. Then the
limits of such a computation on a typical workstation using
standard linear algebra are about |Ω| ≤ 107 and n ≤ 104 (for
n×n matrices over GF (2)). It is easy to see how these limits
come about. For n = 104, one requires about 12 megabytes
per matrix and several hours for one matrix multiplication
on a fast workstation. The limit of |Ω| ≤ 107 comes from
the 40 Megabytes needed to store that many 4-byte words.
The new technique allows us to raise |Ω| to 109 or 1010.
One is then faced with the difficult, linear algebra problem
of extracting the smaller dimensional invariant subspace and

2

corresponding representation from such a large initial vector
space.

2.6 Background

The discussion of section 2.2 can be put in a more general
context. Let A be a finite dimensional algebra. Let V be a
right A-module. Then A ↪→ HomF (V).

Let e ∈ A, e2 = e. This implies that eAe ≤ A is a
subalgebra of A. Let V e be a right eAe-module and note
that eAe ↪→ HomF (V e). The subalgebra, eAe, is called the
condensation algebra of A, or the Hecke algebra.

One can then search for irreducible representations of
eAe in V e and hope to lift them to irreducible representa-
tions of A. There is a natural mapping (which is not one-one
in general) from the lattice of A-submodules of V to the lat-
tice of eAe-submodules of V e. To see this, note that if W is
an A-submodule of V , then WeAe = (We)eAe ≤ (V e)eAe
is a right eAe-submodule of V e.

Still another application is to find decomposition matri-
ces, as discussed in [9].

3 Algorithm and Data Structure

As discussed in section 2.2, one version of the condensation
technique reduces to computing the orbit adjacency matrix
associated with the condensation method. First we describe
the notation and problem. Let a group G be generated by
S. Let K ≤ G be generated by S′. Assume a permutation
action and a faithful orbit, O, of G. When we refer to K-
orbits, we will have in mind only the K-orbits contained
in O. For purposes of computing the image of an element,
g ∈ G, in the Hecke algebra, one must first construct a
matrix such that the (i, j) entry is the number of points,
|{x: x ∈ Oi, x

g ∈ Oj}|, where Oi and Oj are the i-th K-
orbit and j-th K-orbit, respectively.

3.1 Data structure

One chooses a modulus, m, and creates a hash table with
c|O|/m slots to hold elements of O, where c > 1 is a small
hash factor (typically 1.5 or 2). One need not know |O|
in advance, since one can employ dynamic hash arrays, in
which the size of the hash array is doubled and all elements
are re-hashed whenever a certain load factor is reached.

Next a pseudo-random function h(): O 7→ [0, . . . , M] for
M � m, is chosen satisfying the simple uniform hashing
assumption [4, pp. 224–227]. The pseudo-random function
may or may not be the same as the hash function for the
hash table. Each element v ∈ O is stored in the hash table
if and only if h(v) = 0 mod m. Along with v is stored an
integer uniquely identifying in which K-orbit v lies. The
modulus m ≥ 1 is chosen as small as possible, so that the
hash array of length c|O|/m fits into semiconductor memory
(RAM).

Given an arbitrary element, v ∈ O, one then wishes to
discover the orbit number corresponding to v. The “key
idea” of the introduction (finding a x ∈ vK for which h(x) =
0 mod m) must be modified if there is an orbit vK such that
for all x ∈ vK , h(x) 6= 0 mod m.

In order to guarantee that each orbit has at least one
representative point to be stored, one stores all canonical
points, where “canonical” is defined as follows. Let m be a
power of 2. For a given orbit, O, let i = max0≤j≤log2 m{j: ∃x ∈

O, h(x) = 0 mod 2j}. A point x ∈ O is canonical in O if
and only if h(x) = 0 mod 2i.

Thus, one stores only the canonical elements of each or-
bit.

3.2 Algorithm

The algorithm consists of an appropriate integration of the
following three routines:

Find orbit(v,K): Return the set of elements of the K-
orbit, vK . To compute the K-orbit this routine uses breadth-
first search algorithm, starting with v and applying elements
of the generating set S′ until all elements are found.

Hash orbit(vK): Return a set of canonical elements (as
defined in section 3.1) of the orbit vK .

Find image orbits(vK,g): g ∈ G. Return a list of |vK |
elements, where for each element x ∈ vK the list contains
a canonical element y in the orbit (xg)K . Essentially, this
function returns a map of a given orbit into the other orbits
under the group element g.

The algorithm needs to find all K-orbits and for each K-
orbit find where a group element maps it to. This motivates
the definition of two major tasks. The first (type I) task
is, given a K-orbit representative, to compute the K-orbit
and save its canonical elements in the hash table. Such an
orbit is then tagged as “known”. Functions Find orbit and
Hash orbit are used to accomplish this task. The second
(type II) task is, given a K-orbit representative and a group
element g, to find where g maps each element of the K-orbit.
This is implemented through a call to Find orbit followed
by a call to Find image orbits.

One maintains queues of type I tasks and of type II tasks.
If a type I task produces a previously unknown orbit, a new
type II task corresponding to that orbit is placed on the
queue of tasks of type II. The information from a type II task
is used to then hash the resulting image vectors and update
the condensation matrix for those image vectors that hash
to a previously known orbit. If one of the resulting vectors
is part of a previously unknown orbit, then a new type I
task will be placed on a queue of type I tasks.

If we are executing tasks of type II and the queue of
type I tasks grows beyond some threshold and so requires
too much space, one switches to executing tasks of type I
(expanding orbits). When the queue of type I tasks is empty,
one switches to executing tasks of type II.

This algorithm may fail to discover all orbits if 〈g∪S ′〉 6=
G. This can be repaired by using other generators, g′ ∈ S,
to find additional orbits.

3.3 Space requirements

An analysis of the space requirements is particularly impor-
tant for a calculation of this size, since that often determines
the feasibility of the calculation. In order to describe con-
crete bounds, we assume G is represented as a matrix group.
We assume that there is a vector v0 for which v0

G is a regular
orbit of G.

Space requirements for the hash table are bounded above
by

c|v|(
|Ω|

m
+ Cn) bytes

where c > 1 is the hash factor, |v| is the number of bytes
needed to store a vector, Ω = vG

0 and so |Ω| is the size of
the regular orbit, m is the chosen modulus, n is the number
of K-orbits, and C is a constant that is approximately 1.45.

3

The bound is surprisingly tight, as shown by the calculation
in section 3.4.

Space requirements for the condensation matrix are es-
timated as n×n×dlog2le bits, where l is the largest matrix
entry. Obviously, l ≤ |K|, where K is the subgroup used
to generate K-orbits. One also temporarily needs approx-
imately |v||vK | bytes storage for the current K-orbit, vK .
Additional storage is required by the two queues described
in the section 3.2 and is proportional to the size of several
K-orbits.

If the field F of the group algebra is large or infinite (for
example, the rationals), then a careful encoding of the con-
densation matrix can save further space. The factor dlog2le,
where l is the largest matrix entry, can be reduced by the
following heuristic. If “most” matrix entries are known to
be less than l′ < l, then one uses a matrix data structure
that has only dlog2 l′e bits per entry. When a matrix en-
try reaches l′ or more during the course of the algorithm,
one stores exactly l′ for that matrix entry, and this serves
as an indicator to look for the “correct” matrix entry in a
second data structure. The second data structure can be
a hash vector with the matrix indices as keys, or one can
choose any other compact data structure for storing sparse
matrices.

3.4 Average number of canonical points per orbit

The space bounds are dominated by the necessary size of
the hash array. Accordingly, it is worthwhile to find more
precise estimates of the number of canonical points per orbit,
where the canonical points are defined as in section 3.1.

Let m = 2` be the chosen modulus. We now find the
expected number of entries that will be stored in the hash
table for an orbit, O, of length k, according the the algo-
rithm, above.

Assume that the pseudo-random function h is a true ran-
dom function from elements of O into the integers. Let
Qj = |{x ∈ O: h(x) = 0 mod 2j}|. In particular, define
Q0 = k.

Note that E(Q` | Q` > 0) Pr(Q` > 0) = E(Q` | Q` >
0)Pr(Q` > 0) + E(Q` | Q` = 0)Pr(Q` = 0) = E(Q`).

Note that the event Qi > 0 ∧ Qi+1 = 0 is the same as
the difference of the event Qi+1 = 0 and the event Qi = 0.
Then the expected number of entries is

E(Q` | Q` > 0)Pr(Q` > 0)

+

`−1∑
i=0

E(Qi | Qi > 0 ∧ Qi+1 = 0)Pr(Qi > 0 ∧ Qi+1 = 0)

= E(Q`) +

`−1∑
i=0

E(Qi | Qi+1 = 0)Pr(Qi+1 = 0)

−E(Qi | Qi = 0)Pr(Qi = 0)

= E(Q`) +

`−1∑
i=0

E(Qi | Qi+1 = 0)Pr(Qi+1 = 0)

= k/2` +

`−1∑
i=0

k/2i+1

1 − 1/2i+1
(1 − 1/2i+1)k

= k/2` +

`−1∑
i=0

1

1 − 1/2i+1
k/2i+1[(1 − 1/2i+1)2

i+1

]k/2i+1

≤ k/2` +

`−1∑
i=0

2k/2i+1 exp(−k/2i+1)

→ k/2` + (2/ ln 2)

∫ `−1

i=0

(ln 2)k/2i+1 exp(−k/2i+1) di

= k/2` + [(2/ ln 2) exp(−k/2i+1)]i=`−1
i=0

≤ k/2` + (2/ ln 2) exp(−k/2`)

= k/m + (2/ ln 2) exp(−k/m)

≤ k/m + 2/ ln 2

The number 2/ ln 2 is about 2.885. This analysis took 2 as
an upper bound for 1/(1 − 1/2i+1) = 1 + 1/(2i+1 − 1). A
finer analysis would analyze the summation separately for
the terms 1 and 1/(2i+1 − 1). The analysis is omitted for
reasons of space, but it would show an upper bound closer
to k/m+1/ ln 2 ≈ k/m+1.45, and a a numerical calculation
shows this to be a reasonably tight upper bound for a wide
range of k.

3.5 Time requirements

The time is dominated by Find image orbits. A single call
to Find image orbits requires approximately |vK |mt time
where t is the time for a single application of a group element
in G to an element v ∈ Ω. However, if we take advantage
of the common special case where G has a matrix represen-
tation and v is a vector, then the time can be considerably
shortened.

The optimization described here has not yet been in-
cluded in the software. We hope to have a future version
with faster timings based on this idea. One pre-computes
some large number of distinct matrices in the subgroup K.
When Find image orbits(V K , g) invokes a search for a canon-
ical element y ∈ (xg)K for x ∈ vK , one needs to find r so
that h((xg)r) = 0 mod m for some r ∈ K. One can choose
the pseudo-random function, h, in its action on w ∈ vG

0 so
that h(w) is uniquely determined by a fixed subset of the co-
ordinates of w. Thus, given the vector xg and the matrix r,
one need compute only the fixed subset of the coordinates
of (xg)r and not all of (xg)r. In this way, the time is re-
duced to |vK |(t + mt′) where t′ is the time to compute the
fixed subset of coordinates for the result of a matrix-vector
multiplication.

4 Parallelization

The algorithm in section 3.2 can be easily parallelized using
a master-slave architecture. This architecture is especially
well suited for search and enumeration problems, where the
master coordinates the search and the slaves asynchronously
execute heavy duty computations in the search space. A
master-slave architecture requires splitting the problem into
a set of tasks that can be executed in parallel. The master is
responsible for generating tasks and collecting results from
slaves. Slaves simply execute tasks issued by the master.

The algorithm maps onto this architecture well as it has
already been defined in terms of tasks (of type I and II).
This task decomposition dictates the following data layout.
The master maintains the main hash table as well as the
two queues mentioned above. Each slave contains the data
for computing in a group and hashing. This includes the
generating sets S and S′, the vector f , the modulus m, the
hashing functions, etc.

4

The results of a type I task are used to update the hash
array and add a new orbit and orbit representative to the
queue of orbits. The results of a type II task are added
to the queue of vectors for potential representatives of new
orbits. If the queue grows too large, the master switches
to generating type I tasks. If the queue becomes empty,
the master switches to generating type II tasks. As events
proceed asynchronously the master has to check if the po-
tentially new orbit representative still does not belong to
any known orbit, before the master issues a task of type I.

5 Implementation

The algorithm has been implemented using GCL, a dialect
of COMMON LISP. The matrix-vector multiplication rou-
tine was written in C. The parallel implementation uses the
GCL/MPI software package described in [3]. This package
can be obtained from
ftp://ftp.ccs.neu.edu/pub/people/gene/starmpi/.
The implementation consists of approximately 2250 lines of
LISP code out of which 1300 lines are previously developed
matrix/vector processing routines. The matrix/vector rou-
tines were implemented by storing for each matrix a lookup
table of all linear combinations of each set of four adjacent
rows over GF (2). This achieves a computation time for a
matrix-vector multiplication in GL(112, 2) of 37 microsec-
onds on a SPARC-5. Such a lookup table was first used by
Arlazarov et. al. [2] (see also [1]), and was popularized by
Parker [10] in his software for the meataxe algorithm.

The implementation has been tested on clusters of SPARC-5
and Alpha 3000/300 workstations both in homogeneous and
in mixed architecture settings. Varying the number of slaves
on partial runs of the program showed almost linear scalabil-
ity of the algorithm. Experiments also showed an excellent
load factor on all slaves. Each slave process was run on a
separate workstation, and was using ≈90% CPU time on an
unloaded workstation and ≈ 30% on a workstation shared
with 2 other CPU intensive processes.

6 Saving the result

The condensation matrix produced by the algorithm may
take a large amount of memory. In the J4 case a condensa-
tion matrix was computed over the integers. So, the space
reserved for the condensation matrix was 5693 × 5693 × 16
bits, or about 64 Mbytes of RAM. This brings up a prob-
lem of storing several condensation matrices on the disk or
transferring them on the net. We developed a simple com-
pression scheme for our particular matrices, but the scheme
can be applicable to other cases too.

The compression scheme is based on the empirical obser-
vation that most entries are less than 31 in value (requiring
only 5 bits). We use three files to store the matrix entries
in a specified order (such as row major order). The first file
contains the low 4 bits, the second contains the fifth bit,
and the third contains the full value for those matrix entries
requiring more than 5 bits. If a matrix entry is less than 31,
it is stored directly using 5 bits. If a matrix entry is 31 or
larger, the first two files are used to store a value of 31, sig-
nifying that the actual matrix entry “overflowed” the 5 bits.
By scanning the first two files, one can find the index in the
matrix of all overflow entries. The third file is used to store
all overflow entries as 16-bit quantities, in the same order
in which the entries were found in the first two files. This
encoding brings the disk storage requirement for J4 down

from approximately 64 Mbytes per matrix to approximately
(5/16)64 = 20 Mbytes per matrix.

7 Results for J4

Condensation was carried out on a permutation represen-
tation of J4 of dimension 173,067,389, using the subgroup
K = 211 : 23 for generating K-orbits. The resulting Hecke
algebra representation acted on a module of dimension 5693.
In all experiments the same 25 MHz SPARC-10 was used as
a master because it had 256 Megabytes of memory (RAM),
most of which was required for the data structures.

The first complete run of the program was performed on
a cluster of 25 MHz SPARC-2 workstations. Eight work-
stations were used for running 8 slave processes. These
workstations were mostly taken from the student labora-
tory early in the quarter, and were lightly loaded by other
users. It took approximately 6-1/2 days to complete the
computation.

In the next experiment we used four 75 MHz SPARC-5’s
and one 25 MHz SPARC-10 as slaves with the same mas-
ter. All machines were lightly loaded by other users. The
computation was completed in 3 days (76 hours). As the
processing power used is roughly equivalent to 13 SPARC-2
workstations we see an approximately linear speedup over
the previous experiment.

We also ran the program in the mixed architecture en-
vironment using the same SPARC-10 workstation for the
master, but using 14 Alpha processors for slaves. We used
an older Alpha 3000/300x model with 175 MHz processors.
Unlike the SPARC workstations in our previous runs, the
Alpha workstations were heavily loaded due to two other
long term CPU-intensive jobs. So our program was not able
to use more than 1/3 of the resources on most machines,
with occasional use of 1/2 of the resources on some. On this
basis, the computation took 2-1/2 days.

We were also surprised that while the Alpha processors
have a clock rate more than twice as fast as the SPARC-5
processors, benchmarking the essential procedures on both
architectures showed a smaller advantage for the Alpha work-
stations (less than a factor of 1.5). We attribute this to the
nature of our application, which favored the SPARC pro-
cessor. First, we do not use floating point or 64-bit inte-
ger arithmetic, where the Alphas would have a significant
advantage. Second, our computation is highly non-local in
memory and the cache misses hurt the 175 MHz Alpha CPU
much more than they hurt the 75 MHz SPARC CPU.

We believe that a mixed architecture (SPARC master
and Alpha slaves) setup may also suffer in performance be-
cause of the byte conversion and extra malloc operations
done by MPI in situations when a different byte ordering is
used by different architectures.

It is important to note that while the algorithm was load-
ing all slaves up to the maximum, the load on a master
(running on a 25 MHz SPARC-10) was within 30-60% in
both SPARC experiments and around 80-90% in the Alpha
experiment. This suggests that the SPARC-2 master proces-
sor was nearing saturation, and a faster SPARC-5 or Alpha
would be required in order to add still more slaves with the
concurrent linear speedup.

8 Acknowledgements

The authors wish to thank Stephen Linton who first brought
the condensation method to their attention with his note on
the subject [8] (later expanded on by Larry Finkelstein).

5

The authors also thank Larry Finkelstein, Stephen Linton
and Klaus Lux for generous discussions on the condensation
technique. They also thank Klaus Lux and Jürgen Müller
for their detailed comments on this manuscript.

The authors wish to thank Robert Wilson for first sug-
gesting that the condensation technique be applied to J4,
and for providing the necessary group and subgroup gen-
erators. He was also very generous in describing his own
computational experiences with the condensation technique.

Finally, the authors wish to thank Clement Lam and
Concordia University for providing guest accounts and in-
formation with which to do initial testing on their DEC
Alpha workstations. The information was especially useful
in porting from the SPARC to the DEC Alpha architecture.

References

[1] Aho, A., Hopcroft, J., and Ullman, J. (1974). “The De-
sign and Analysis of Computer Algorithms”, Addison-
Wesley, p. 245.

[2] Arlazarov, V.L., Dinic, E.A., Kronrod, M.A. and
Faradzev, I.A., (1970). “On Economical Construction
of the Transitive Closure of a Directed Graph”, Dokl.
Nauk SSSR 194, pp. 487–488. English translation in
Soviet Math. Dokl. 11:5, pp. 1209–1210.

[3] G. Cooperman, “STAR/MPI: Binding a Parallel Li-
brary to Interactive Symbolic Algebra Systems”, Proc.
of International Symposium on Symbolic and Algebraic
Computation (ISSAC ’95), ACM Press, pp. 126–132.

[4] T. Cormen, C. Leiserson and R. Rivest, Introduction to
Algorithms, pp. 219–243, MIT Press and McGraw-Hill,
1990.

[5] H.W.Gollan and G.O. Michler “Construction of a
45694-dimensional simple module of Lyons’ sporadic
group over GF (2)”, Linear Algebra and Its Applica-
tions, preprint.

[6] W. Gropp, E. Lusk and A. Skjellum, Using MPI, MIT
Press, 1994.

[7] D.F. Holt and S. Rees, “Testing Modules for Irreducibil-
ity”, J. Austral. Math. Soc. Ser. A 57, pp. 1–16, 1994,

[8] S. Linton (revised by L. Finkelstein), untitled
manuscript describing Parker’s condensation technique.

[9] K. Lux, J. Müller, M. Ringe, “Peakword Condensation
and Submodule Lattices: An Application of the Meat-
Axe”, J. Symb. Comp. 17 (1994), pp. 529–544.

[10] R. Parker, “The computer calculation of modular char-
acters. (The Meat-Axe)”, in M. Atkinson (ed.), Compu-
tational Group Theory, Academic Press, London, 267-
74, 1984.

[11] A.J.E. Ryba, “Computer Condensation of Modular
Representations”, J. Symb. Comp. 9 (1990), pp. 591–
600.

[12] M. Wiegelmann, Fixpunktkondensation von Tensorpro-
duktmoduln, Diploma thesis, Dept. of Math., RWTH
Aachen, 1994.

[13] Message Passing Interface Forum (author),“MPI: A
Message-Passing Interface Standard”, International
Journal of Supercomputing Applications 8, Number
3/4, 1994.

6

