
Proc. of Int. Symposium on Symbolic and Algebraic Manipulation (ISSAC-94), ACM Press, 1994 1

Constructing Permutation Representations

for Large Matrix Groups

Gene Cooperman1 Larry Finkelstein1 Bryant York2 Michael Tselman1

College of Computer Science

Northeastern University

Boston, MA 02115

Abstract

New techniques, both theoretical and practical, are pre-
sented for constructing a permutation representation for a
matrix group. We assume that the resulting permutation
degree, n, can be 10,000,000 and larger. The key idea is to
build the new permutation representation using the conjuga-
tion action on a conjugacy class of subgroups of prime order.
A unique signature for each group element corresponding to
the conjugacy class is used in order to avoid matrix multipli-
cation. The requirement of at least n matrix multiplications
would otherwise have made the computation hopelessly im-
practical. Additional software optimizations are described,
which reduce the CPU time by at least an additional fac-
tor of 10. Further, a special data structure is designed that
serves both as a search tree and as a hash array, while re-
quiring space of only 1.6n log

2
n bits.

The technique has been implemented and tested on the
sporadic simple group Ly, discovered by Lyons [9], in both a
sequential (SPARCserver 670MP) and parallel SIMD (Mas-
Par MP-1) version. Starting with a generating set for Ly
as a subgroup of GL(111, 5) [5], a set of generating permu-
tations for Ly acting on 9, 606, 125 points is constructed as
well as a base for this permutation representation. The se-
quential version required four days of CPU time to construct
a data structure which can be used to compute the permu-
tation image of an arbitrary matrix. The parallel version
did so in 12 hours. Work is in progress on a faster parallel
implementation.

1 Introduction

New techniques are demonstrated for constructing a permu-
tation representation for finite matrix groups specified by
a generating set of matrices. The techniques fit well into
recent efforts by a number of researchers [4, 6, 8] on the
problem of determining the structure of matrix groups de-
fined over finite fields. In addition, Gerhard Michler [10]
and his group at Essen make extensive use of permutation

1Partially supported by NSF Grant CCR-9204469.
2Partially supported by ARPA Grant MDA-972-93-1-0023.

representations for matrix groups as a means for switching
from one characteristic to another in the course of develop-
ing modular representations for the sporadic simple groups.

As a practical test for the ideas in this paper, we have
constructed specific permutation generators for the sporadic
simple group Ly discovered by Lyons [9] from a matrix rep-
resentation of dimension 111 over GF (5) described in [5].
This example has independent interest. In 1972, Sims [12]
announced the existence and uniqueness of Ly and simul-
taneously gave a presentation for Ly, which was verified by
performing a coset enumeration on a subgroup isomorphic
to G2(5) with index 8, 835, 156. Certainly, one could adapt
this enumeration to construct specific permutation genera-
tors of this degree, but it has not yet been done. A more
general approach, and one which we have followed, is to
work directly with the matrix representation of Ly and to
construct a permutation representation of degree 9, 606, 125
of Ly acting on a conjugacy class O of Z3 subgroups.

In general, our permutation representations will be con-
structed through the action of the matrix group on a “small”
conjugacy class of subgroups of prime order. This approach
can be justified, in part on theoretical grounds, by a result
of Babai and Beals [4], which asserts that for a simple group
G there is always a conjugacy class of subgroups of prime or-
der whose size is “comparable” to the degree of the smallest
permutation representation for G.

We use randomization to gain a significant speedup in
running time. This speedup is required for working with
very large examples. Randomization is used in two ways.
The first is to construct random elements of G in order to
identify suitable elements of prime order. A more formal
method for producing nearly uniformly distributed random
elements has been described by Babai [3], but its practicality
has yet to be tested in an implementation.

The second use of randomization occurs in the enumer-
ation of all elements of a conjugacy class O of subgroups of
G of prime order p. Suppose there exists a vector v with the
property that no non-identity element of G fixes v. Then
each g ∈ G can be uniquely identified by a signature defined
to be the image of v under g. This allows one to rapidly test
equality of two subgroups 〈x〉 and 〈y〉 of O. In particular,
〈x〉 = 〈y〉 if and only if the signature of x is equal to the
signature of yi, for some i, 1 ≤ i ≤ p − 1. In Lemma 3.1
it is shown that under suitable conditions, if v is chosen at
random, then v can be used to construct a signature with
extremely high probability, which in our example of Lyon’s
group is at least 1− 3.8× 10−23.

The key to efficiency is to quickly compute a “signature”
for each point on which the group acts. For example, rather

Proc. of Int. Symposium on Symbolic and Algebraic Manipulation (ISSAC-94), ACM Press, 1994 2

than use the action of Lyons’ group onO of degree 9,606,125,
we could also have chosen the action on the right cosets of a
subgroup isomorphic to G2(5) which leads to a permutation
representation of minimal degree 8,835,156. Several possi-
ble signatures for the permutation action exist in this case.
Nevertheless, none appeared to be as efficient to compute as
the signature developed for the action on O and the com-
putation would have taken substantially longer despite the
relatively small decrease in the size of the point set.

Since this computation is near the limits of practical se-
quential computation, one must consider how to scale up
further. The sequential computation required 64 Megabytes
of memory and four CPU days on a SPARCserver 670MP.
Machines with ten times as much memory are available, but
ten times the CPU power is a more stringent requirement.
Accordingly, we also discuss a parallel implementation on a
MasPar MP-1 that performs eight times faster.

2 Conjugacy Class Approach

In this section, we assume that a “small” conjugacy class
of subgroups of G of prime order is available. It is easy
to see that the smallest conjugacy class of cyclic subgroups
must consist of cyclic subgroups of prime order. There are
good heuristic techniques for finding representatives from
each such conjugacy class, even when a character table is
not available. See Linton’s excellent discussion [7] of heuris-
tic techniques for finding group elements with desired prop-
erties.

Often the smallest conjugacy class will consist of sub-
groups whose order is a small prime. As one constructs the
elements of a conjugacy class, one can often estimate the size
of the conjugacy class before the construction is completed.
Assume, heuristically, that the candidates for new elements
of a conjugacy class (i.e. conjugate of a previous subgroup
by a random generator) are random with a uniform distri-
bution. This is similar to the uniform hashing distribution
that is often assumed in estimating the efficiency for hash
functions. As one adds new elements to the conjugacy class
O, one expects the first few collisions with previously dis-

covered elements to occur after
√

|O| elements have been
added. This yields a rough estimate for |O|, and one can
guess which conjugacy class is smallest without having to
find more than the square root of the number of elements
for any conjugacy class.

In section 3.2.3, it is shown how the existence of a sub-
group of G which acts semi-regularly on O can be used to
significantly speed up the enumeration of O. In the case of
Lyons’ group, we know from the character table that a cyclic
subgroup of order 67 must act semi-regularly on O. Other-
wise, such a subgroup must normalize, and hence centralize
a subgroup of order 3 in O, which is not possible. In the
more general case, one initially has little initial knowledge
of the structure of the group. Nevertheless, one can test an
element from each conjugacy class of large cyclic subgroups,
in order to find an element acting semi-regularly on O. Al-
though a general test may be expensive, it suffices to find
a single example and to verify semi-regularity using the fol-
lowing result. Here, the fixed point subspace of a matrix is
the eigenspace with eigenvalue 1.

Lemma 2.1 Let z ∈ G ≤ GL(n, q) be an element of prime
order r acting on a conjugacy class O of G of subgroups of
prime order p, with p 6= r. Let d1 be the dimension of the
fixed point subspace of z and let d2 be the dimension of the

fixed point subspace of x, where 〈x〉 ∈ O. If r does not divide
|GL(d2, q)| and d1 < d2, then 〈z〉 acts semi-regularly on O.

Proof: It suffices to show that z does not fix any points of
O. If z in fact has a fixed point on O, then z normalizes
〈y〉 ∈ O and hence must leave invariant the d2-dimensional
fixed point subspace of y. Since r is relatively prime to
|GL(d2, q)|, z must fix this subspace pointwise. But then
d1 ≥ d2, contradicting our hypothesis. 2

Remark Let g ∈ GL(n, q) have order r, relatively prime
to q. Let m be the dimension of the fixed point subspace
of g acting on the underlying vector space V . The dimen-
sion m can be quickly computed by a randomized algorithm
based on the following observation. If v is chosen at random
from V according to the uniform distribution, then

∑r

i=1
vg

satisfies the uniform distribution in the fixed point subspace
of g. (The last statement is not true in general unless r is
relatively prime to q.) To construct a basis for the fixed
point space of g, initialize B ← ∅. Execute a loop in which
the basic step is to choose a random v ∈ V and test if
u =

∑r

i=1
vg 6∈ 〈B〉. If the test fails, add u to B. After

t consecutive successes, the probability is at least 1 − 1/qt

that B is a basis for the fixed point subspace.

3 Algorithm

The algorithm is based on a data structure that serves both
as a hash array and as a search tree for the conjugacy class of
subgroups. We review the definition of hashing with open
addressing to fix notation. Our definition covers only our
own particular implementation of hashing, and makes no
attempt at full generality. Let O be a set of objects. Let
A be a hash array of length larger than |O|. (We use an
array with |A| = 1.6|O|.) The hash function hα,β is defined
in terms of α and β. The function α:O → [1, |A|] is a
primary hashing function on O if for a random element x ∈
O, α(x) is “nearly uniformly random”. A secondary hashing
function, β: [1, |A|]→ [1, |A|] is an invertible function (i.e. a
permutation on [1, |A|]) with long cycles under iteration by
β.

We now restrict O to be the desired conjugacy class of
subgroups of G. In implementations, it is most convenient
to hash on an element of the subgroup, instead of on the
subgroup as a whole. Each subgroup ofO will be represented
by exactly one generating element. Since the conjugacy class
O consists of subgroups of order p, at most p − 1 possible
generators are possible for each subgroup, and this must be
considered in building the hash table.

Let xinit be a fixed element of G with 〈xinit〉 ∈ O and let
root index = α(xinit). Let S generate G. The entries in the
hash array A are either NULL or of the form (i, g) ∈ [1, |A|]×
S. For x ∈ O, the hash function hα,β :O → [1, |A|] probes
the sequence (f(x), β(f(x)), β2(f(x)), . . .) until it reaches
the first index i ∈ [1, |A|] for which either A[i] = NULL or
A[i] = (i′, g′) matches x. We say that A[i] = (i′, g′) matches
x, with 〈x〉 ∈ O, if either i′ = root index and x = xinit or

if A[i′] matches y and yg′

= x. Finally, hα,β returns i and
sets a condition variable to “NULL” or “MATCH”.

Thus, the hash array A effectively encodes a search tree
having a branching factor of at most |S|. If A[i] = (i′, g′),
then one can view the search tree as containing an edge
from node i to node i′ labeled by g′. The node i is labeled
by x for which A[i] matches x, and the node i′ is similarly
labeled. If A[i] = (i, g), it is clear from the recursive def-
inition of “match” that one can find a word w in S such

Proc. of Int. Symposium on Symbolic and Algebraic Manipulation (ISSAC-94), ACM Press, 1994 3

that hα,β(xw
init) = i. This provides a partial inverse for

hα,β . With these tools, standard techniques of breadth-first
search are then employed until no new elements of O are
found. Two bit vectors, each with |A| elements, are used to
encode the elements of the last and next frontier set.

Thus, the space required by the algorithm is dominated
by the space required for A. In the case of Lyons’ group,
we chose |A| = 16, 000, 000 and each entry (i, g) fits in one
32-bit word, thus requiring about 64 megabytes for the full
algorithm.

The time is dominated by the time to compute hα,β(xw
init)

for w a word in S. Usually, α(xw
init) returns an index satis-

fying “NULL” or “MATCH”, and β(α(xw
init)) does not need to

be called. So, the time is dominated by the time to first
compute xw

init and then to test if α(xw
init) matches (xw

init)
j

for some power j. Since the conjugacy class O consists of
subgroups of order p, at most p − 1 possible matches need
to be computed in order to test if a conjugate of xinit gen-
erates a subgroup in O which has already been identified.
The time to test a match involves multiplying out a word in
S whose length is bounded by 2d + 1 where d is the depth
of the search tree. This is because the word in S acts by
conjugation on xinit ∈ O and each conjugation requires two
multiplications. So, p − 1 words of length 2d + 1 typically
need to be multiplied out in computing hα,β(xw

init). In our
experiment with Lyons’ group, we employ several heuris-
tics described below, so that most nodes are found at depth
d = 2, and all nodes are found by depth d = 3.

3.1 Signatures of Group Elements

As described above, the algorithm requires approximately
|A|2d(p− 1) matrix multiplications plus additional time for
hash collisions, or at least 128,000,000 matrix multiplica-
tions in GL(111, 5) (assuming |A| = 16, 000, 000, d = 2 and
p = 3), which would be unacceptably slow. The key to mak-
ing the algorithm fast is to avoid the time for matrix multi-
plication. Fortunately, the following lemma shows that for
a randomly chosen vector vinit ∈ V111(5) the image of an
element of G on vinit will uniquely determine the element.
Given the generator x′ = xw

init for a subgroup in O, where w

is a word in S, one can then use the image vw−1xinitw

init of vinit

under x′ as input to hα,β instead of the matrix xw
init. This

results in a cost of 2|w| + 1 vector–matrix multiplications
instead of 2|w|+1 matrix multiplications, saving a factor of
roughly n in time, for n = 111.

Lemma 3.1 Let m be the maximum dimension of any fixed
point subspace of G ≤ GL(n, q). The probability that a ran-
domly chosen vector is not fixed by any non-identity element
of G is at least 1− |G|/qn−m.

Proof: At most (|G| − 1)(qm − 1) non-zero vectors of V
will be fixed by a non-identity element of G. Thus, the
probability that a randomly chosen vector is not fixed by
any non-identity element of G is at least 1− qm|G|/qn. 2

Remark One can achieve finer estimates by also consider-
ing the size of the conjugacy class corresponding to m and
the second largest dimension, m2, of a fixed point subspace.
With the use of a character table, one can do still better.
It is also clear that the use of k independent initial random
vectors increases the probability to at least 1−(|G|/qn−m)k.

For Lyons’ group, the image of vinit provides a unique
signature of a group element with probability at least 1 −
3.8× 10−23. To determine this, we computed the dimension

of the fixed point subspace for each conjugacy class of ele-
ments of prime order, since this dimension is maximized for
such conjugacy classes. For Lyons’ group, m = 55 (corre-
sponding to the involutions) and |G| = 5.2× 1016.

3.2 Software Optimizations

The first version of the program was tested on Lyons’ group,
and it is estimated that it would still have required more
than a month of CPU time to complete. Hence, a series of
software optimizations were successively applied to reduce
the computation time to the four CPU days currently ob-
served. We carry along and further refine the lower bound
of |A|2d(p − 1) matrix-vector multiplications required from
section signatures in order to illustrate how each successive
optimization is expected to lower the CPU time. The ac-
tual number of matrix-vector multiplications required was
usually larger by some proportional factor.

3.2.1 Faster Matrix-Vector Multiplication

A lookup table of all linear combinations of each set of four
adjacent rows under GF (5) is kept for each matrix. This
achieves a computation time for a matrix-vector multiplica-
tion in GL(111, 5) of 900 microseconds on a SPARCserver
670MP. Such a lookup table was first used by Arlazarov et
al. [1, 2], and was popularized by Parker in his software for
the meataxe algorithm [11].

3.2.2 Shallow Search Trees

We add 50 redundant generators chosen at random to the
original generating set of size 2 and then add in all in-
verses. This decreases the depth of the search tree d, re-
sulting in shorter words. If the number of generators |S|
is 2, then d ≥ log

2
|O|/(log

2
|S|) > 30. If |S| = 104, then

d ≥ log
2
|O|/(log

2
|S|) > 3.5. Experimentally, the value of d

is observed to be close to the lower bound. Towards the end
of the computation, when most of the elements of O have
been discovered, we revert to the original, smaller generating
set for finding the last ones.

3.2.3 Fast Completion of Subgroup Orbits

We choose a subgroup, and note that the elements of the
conjugacy class divide up into orbits under the action of
this subgroup. In our case, the subgroup is of order 67, and
all orbits are of length 67 or 1. All elements (matrices) in the
subgroup are pre-computed. Every time we discover a new
element of the conjugacy class, we can then conclude that
all remaining elements of the orbit are not yet in the hash
table. Thus, for each remaining element 〈x〉 of the orbit,
we need only probe for the next NULL slot. If A[α(βj(x))] is
not NULL for some j, then we can skip the test for a match,
since A[α(βj(x))] cannot match x. If ` is the length of the
orbit, then this reduces the approximate lower bound on
the time to |A|2d((p− 1)/` + (`− 1)/`) matrix-vector mul-
tiplications. Furthermore, when all orbits are of length `,
each application of a generator will find ` elements, and so
d ≥ log

2
(|O|)/(log

2
(|S|`)) > 1.8 in this case. Experimen-

tally, we observe that 6,968 (|S|`) new elements are found
after the first level (d = 1), and 9,536,646 new elements
are found during the second round (for d = 2). An obvi-
ous generalization, albeit potentially less efficient, exists for
non-cyclic subgroups of G.

In our situation, we invoke Lemma 2.1 to show that no
element of O commutes with an element of order 67, and

Proc. of Int. Symposium on Symbolic and Algebraic Manipulation (ISSAC-94), ACM Press, 1994 4

so the orbits of an element of order 67 acting on O all
have length 67. To see this, set ` = 67 and let O be the
“small” conjugacy class of subgroups of order 3. Direct com-
puter calculation shows d1 = 3 and d2 = 21 in the lemma.
The lemma will often have applicability, since elements of
larger order tend to have smaller dimensional fixed point
subspaces.

3.2.4 Elimination of Spurious Matches through Check Bits

We maintain an array of check bits for each entry in our hash
table. This is used to efficiently recognize hash collisions.
When hα,β(x) = i, we store four check bits in B[i] derived
from the computer encoding of x. Then whenever we must
check if A[i] matches y, with 〈y〉 ∈ O, we first check if
B[i] equals the four check bits for y. If not, we can quickly
eliminate the possibility of a match. This has the effect
of replacing p − 1 by max((p − 1)/16, 1) in the formula for
the minimum number of matrix-vector computations. It is
especially important in the latter phase, when few new orbits
are discovered.

3.2.5 Pre-computation of Common Subwords

Some matrix-vector multiplications can be saved through
pre-computation (matrix multiplication) of subwords. This
is especially valuable in conjunction with the optimization
on subgroup orbits in section 3.2.3. The subword corre-
sponding to the initial element of the orbit can be pre-
computed at the first encounter, saving computations during
the rest of that orbit.

3.2.6 Caching Common Prefixes

The image of vinit under prefixes of words in S can be
cached, instead of repeatedly computed.

4 Machines

Our SPARCserver 670MP is a general user machine, but
it has four CPU’s and usually at least one CPU was free
for our experiment. So, CPU contention was minimal. It
had 128 Megabytes of memory. Since the process was us-
ing about 154 Megabytes (with a smaller active working
set), and we were competing with a general user popula-
tion, memory contention may have been significant, but it
did not greatly affect the overall result. The SPARCserver is
an older 24 MHz machine that is not superscalar. Our tests
of matrix-vector multiplication indicate that newer work-
stations would achieve a factor of two to four times better
performance.

The sequential software for enumeration of a conjugacy
class of elements of order 3 in a 111-dimensional matrix
group over GF(5) was written in AKCL 1-615, a dialect of
COMMON LISP. The matrix-vector multiplication routine
was written in C. The implementation consists of approx-
imately 1,750 lines of code for all routines and comments,
and is self-contained.

The MasPar MP-1 has 4K processing elements (PEs)
with 64KB of memory per PE. The machine architecture
consists of a front-end computer (DECstation 5240), an asyn-
chronous control unit (ACU) and a data parallel unit (DPU)
or backend array of PEs. The PEs of the DPU are 4-
bit RISC machines with indirect addressing capability and
which are collected into clusters of 16 with very fast local
communication.

The parallel software is written in C and MPL (a MasPar
enhancement of C with syntax for specifying parallel oper-
ations on the DPU and communication between the front-
end, ACU and DPU). It consists of about 1,500 lines of C
and MPL code. It uses the LISP code to initialize the data
structures. Further, it does not implement all of the software
optimizations, due to the differing architecture.

5 Parallel Implementation

In the initial design of the parallel code we decided to lever-
age the existing serial code and to use the back–end simply
as a fast matrix–vector multiply engine. This yielded an im-
plementation that performed in one day of CPU time. The
goal was to develop a fast systolic matrix–vector multiply
routine in which the matrices and vectors are stored in the
DPU in a distributed fashion. Since there are 16 PEs per
cluster we extended the size of the problem from 111 to 112
(note: 112 = 7×16). This allowed us to store 7 components
(7 4–bit quantities) per 32-bit word. Since the computa-
tion occurs over GF (5) only 3 bits are required to represent
each field element. The chosen representation wasted 1 bit
per element and one 4-bit quantity per 32-bit word, but
this simplified the computation. Thus, one 112-vector is
represented by a single parallel (plural) integer variable dis-
tributed across the 16 PEs of a cluster. A 112× 112 matrix
is represented by a single plural integer variable stored over
112 clusters.

Recently we have developed an alternative scheme (still
in progress), which finds the signature for a different word
conjugation problem on each cluster. This yielded an imple-
mentation that currently performs in 12 hours of CPU time.
In this model the vector is stored in the same representation
as above. However, now all of the generating matrices are
replicated on each cluster. Thus, a single matrix requires a
plural integer array of 112 entries. This requirement reduces
the number of matrices that may be pre-stored in the DPU,
but increases the number of problems which can be solved in
parallel to 256, the number of clusters. The communication
time is measured at 2 of the 12 hours and is independent of
the number of the processors. We expect a linear speedup
in the remaining 10 hours of backend CPU time.

As part of the alternative scheme, we employ a new opti-
mization especially suited to this software architecture. The
DPU computes α(x) and returns i. In the first phase, we
never test whether a computed A[i] matches x. We note
only whether A[i] is NULL or not. If A[i] is not NULL, then we
assume that x is already in the search tree and we discard
x. By this heuristic, we may fail to enter an element x ∈ O
to the search tree when we first see it. However, as long
as we successfully add another element of the same orbit,
we can then employ the fast completion of subgroup orbits
discussed in section 3.2.3. This tells us that all remaining
elements of the orbit do not match any existing element of
the search tree, and we can probe for the next NULL slot.

If any elements of O are not discovered in this first pass,
a second pass is made to find those elements that are still
missing. The advantage of this scheme is that in the first
pass, we do not have to find the first index i in the se-
quence (α(x), β(α(x)), β2(α(x)), . . .) for which A[i] matches
x. This avoids the necessity of keeping 255 clusters idle while
one cluster tries to find a match for an element later in the
sequence.

Proc. of Int. Symposium on Symbolic and Algebraic Manipulation (ISSAC-94), ACM Press, 1994 5

6 Acknowledgements

The authors gratefully acknowledge discussions with the fol-
lowing people: Holger Gollan, Alexander Hulpke, Bill Kan-
tor, Wolfgang Lempken, Steve Linton, Gene Luks, Klaus
Lux, Gerhard Michler, Reiner Staszewski and Michael Weller.
The authors especially acknowledge that the matrix gen-
erators for Lyons’s group, for which these techniques were
tested, were constructed by Robert Wilson and provided to
us by Klaus Lux. Finally, we thank Bill Kantor for originally
suggesting the “testbed” of Lyons’s groups.

References

[1] Aho, Hopcroft and Ullman, “The Design and Analy-
sis of Computer Algorithms”, Addison-Wesley, 1974,
p. 245.

[2] V.L. Arlazarov, E.A. Dinic, M.A. Kronrod and I.A.
Faradzev, “On Economical Construction of the Tran-
sitive Closure of a Directed Graph”, Dokl. Nauk SSSR
194, pp. 487–488. English translation in Soviet Math.
Dokl. 11:5, pp. 1209–1210.

[3] L. Babai, “Local Expansion of Vertex-Transitive
Graphs and Random Generation in Finite Groups”,

Proc. 23rd ACM STOC (1991).

[4] L. Babai and R. Beals, “Las Vegas Algorithms for Ma-
trix Groups”, to appear.

[5] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker,
R. A. Wilson: Atlas of Finite Groups, Clarendon Press,
Oxford (1985).

[6] C. Leedham-Green et al., Lecture at the MAGMA Con-
ference, London, England, July, 1993.

[7] S. Linton, “The Art and Science of Computing in
Large Groups”, to appear in Proceedings of the Com-
putational Algebra and Number Theory conference
(CANT), Sydney, November, 1992.

[8] E. M. Luks, “Computing in Solvable Matrix Groups”,

Proc. 33rd IEEE FOCS (1992), pp. 111–120.

[9] R. Lyons, “Evidence for a New Finite Simple Group”,
Journal of Algebra, 20 (1972), pp. 540–569.

[10] G. Michler, lecture at Northeastern University, Octo-
ber, 1993.

[11] R. Parker, “The computer calculation of modular char-
acters. (The Meat-Axe)”, in M. Atkinson (ed.), Com-
putational Group Theory, Academic Press, London,
pp. 267–274, 1984.

[12] C. C. Sims, “The Existence and Uniqueness of Lyons’
Group”, Proc. of the Gainseville Conference (1972),
pp. 138–141.

