
A Fast Cyclic Base Change for Permutation Groups

Gene Cooperman* and Larry Finkelstein”

College of Computer Science

Northeastern University

Boston, Mass. 02115

Abstract. Two new cyclic base change algorithms are pre-

sented for a permutation group G acting on n points. One

is cleterministic and the other is randomized. When G is a

small base permutation group both algorithms have worst

case time complexities which are better than existing algo-

rithms in their class. The deterministic algorithm requires

O(rz log2 IGI + nlSl log IGI) time. It outputs a Schreier vec-

tor data structure which requires O(n log IGI) space and in

which every Schreier tree has depth bounded by 2 log IGI.

The randomized algorithm returns a Schreier vector data

structure for which the sum of the depths of the resulting

Schreier trees is O(log IGI). It is shown that the algorithm

has probability exceeding 1 – 2/n of using O(n b log2 n) time

for b the size of a non-redundant base. As with most ral~-

domized base change algorithms, it is Las Vegas in the sense

that within the same time it can be deterministically verified

whet, her t,he answer is correct. In order to achieire this time

bound it is necessary that random elements of G be conl-

pntable in time O(rr log IGI). A final result is a randomized

algorithm which given an arbitrary strong generating set S

for G constructs a Schreier vector data structure which can

be used to compute random elements in O(n log IGI) time.

It is shown that this algorithm has probability exceeding

1 – I/l Gl of using 0(nlog2 IGI + nlSl) time.

1. INTRODUCTION

Let G be a permutation group acting on an n-element

set ~. Most important algorithms for performing conlputa-

tions with G assume the knowledge of a strong generating

set, ,S, relative to some ordering a of Q. Equally impel -

tant is the computation of a new strong generating set for G

relative to a different oldering a’ of 0, commonly Ieferled

to as a base change. An especially important subproblem

occurs when a’ is obtained from a by a rzght cyctJc sh~,ft.

This is called a cyclzc hose change-. The main results of th,s

papers are two new algorithms for performing a cyclic base

change which are more time and space-efficient for the inl-

portant class of srnali base permutation qroups tfkan existing

*Research partially supported by NSF Grant (;CR-

8903952.

Permission to copy without fee all or part of this material ie

granted provided that the copiee are not made or distributed for

direct commercial advantage, the ACM copyright notice and the

title of the publication and its date appear, and notice is given

that copying is by permission of the Association for Computing

Machinery. To copy otherwise, or to republish, requires a fee

and/or epecific permission.

ISSAC ‘92-71921CA, USA
@ 1992 ACM ()-89791 -490-2 /92/0007 /0224 . ..$1 ,50 ---

algorithms. G is said to be a small base group with pa-

rameters c ancl c1 if log lG\ < cl,log= IQI. For suitably chosen

small constants c and d every permutation representation of

a non-alternating simple group is a sm,all base group.

Applications of the cyclic base change include search

problems in the presence of symmetry [6, 7, 10, 16, 18],

and a strong generating test, “verify”, of Sims that has

been implemented in the Cayley system [8]. Applications of

the general base change include fast construction of strong

generating sets for normal closure, center, and certain oi,hel

subgroups [1 3], fast gioup membership [2, 3], and other

structural problems [19],

The filst result is a deterministic cyclic base change

algorithm which is both space and time eficlent.

Theorem A. Given a sfrong generating set S fo~ G,

a deterministic cychc base change algorithm can be cle-

scribed that requires O(tL Iogz IGI + j~l.!!l + ?Llog 7t) time and

O(nlog IG’1) space

Using randomized met hods one can gi~,e a substantial

theoretical improvement to Theorem A under the hypothesis

A formal defimtionof a short Schreier vector [Irfta structure .

is deferred, but such a data structure allows computation of

~alldom elements of G and sifting (or strippins or factoring)

in O(n log lG\) time.

Theorem B. t3J ven a, short Sci]r’eier ~“ector data struc-

ture for C;, a random cycllc base than.gc algo~ithm ca~l be

described ~vhich has probability at leas (1 – 2/n of using

O(nb log2 n) fime and 0(n b log n) space. FurtherIno~e the
algorithm Iet urns a short Sch~eiel vector data struct u~e ~vifh

respect to (he new ordering

Tl,e next result renlo,,es all unuecessaly hypothesis in

the general randomized base change algolithm given in [14]

using t,echniclues slnlilar t o those of ‘rheo~eln A.

Tlleoren~ C. Given a stIoJJg genelafing set S for C;, an

algolithm can be described for compli tJng a .sllort Sc]treier

vector clata structule ,vhich has p~obab~llf,] at /east 1 – l/1G’1

of using O(rr lo~” IC;I + ?I1.$1 lo~ 161) fillle

Au IIllrncdiate corollai.y is tlie follo~vllig sf I onger \,ersioll

of [14, Tlleoleni B].

Corollary D. Given a strorrg generating set S for G relative

to an ordering a, an algorithm can be described for perform-

ing a base change relative to an arbitrary ordering a’ using

O(n log IGI) space and returning a .sJrort Schreier vector data

structure with respect to the new ordering. The algorithm

has probability at least I–I/lGl of using 0(nlog2 IG[+zLISI)

time.

In many applications, it is necessary to repeatedly

perform cyclic base changes. The significance of Theorem

B coupled with Theorem C is that after one pays an initial

one-time cost for constructing a short Schreier vector data

structure, the input and output, data structures used for

all subsequent base change computations will have this

property.

The first base change algorithm was pre.sentecl by

Sims [1 9]. Sims’s algorithm used a Schreier vector data

structure in order to achieve the space efficiency Ieqnired

for working with permutation groups of very large rfegree

and was shown to have worst case time complexity of 0(n5)

time. This time complexity can be refinecl by incorporating

a parameter which measures the size of a bnse for G relative

to the new ordering. Nevertheless, Sims’s algorithm tends

to work faster in practice than the worst case time corn-

plexities. The reason for this is that one must incorporate

in the time estimates the depth of the Schreier trees which

are used to implicitly represent the cosets for the subgroups

of the point stabilizer sequence and which together form the

Schreier vector data structure. In general, these depths tend

to be “short>’, meaning O(log n), but, unless care is taken,

there is no guarantee that the trees won’t have depth 0(n).

Brown, Firrkelstein anct Purdom [5] presented a base

change algorithm which has worst case time complexity

0(rr3) using a generalization of Sims’s original argument and

a new data structure for representing the cosets of the point,

stabilizer secluence, Jerru~m’s labeled bmnchrrg [11, 15]. This

result is derived from a O(n 2) c,yclic base change algorithm.

Unfortunately, a labeled bra,nch]ng for G requires E)(n’2)

space when G is transitive on Q, and so this data structure

is only practical for moderate values of n.

Babai [1, Theorem 2.5] and Leon [Ii’] were the first to

apply randomized techniques to a base change, The cur-

rent authors together with Namita Sarawagi [12, 14] used

randomized methods to develop a general base change al~,o..

rithm using O(n log2 ICJ]) time and O(rZ log [G[) space, pLo--

vided that random elements can be compllt,ed in O(n log \G[)

time — a common situation. Thus, when the hypotheses

are satisfied, the algorithm operates in O(n loge n) time for

a small base group. The output of this algo[ithm is always a

short Schreier vector data structure allowing such fast com-

putation of random elements, but the initial data structrlle

potentially requires a more expensive pie-processing step,

Theorem C of this pape~ does the ple-prcrcessiug step in

0(nlog2 IG’I + nlSl log (Gl) tinre.

The key idea in [14] is to use ~arrclomizecl methods to

builcl short Schreier frees with plobabilistically guaranteed
lwunds on the depth of t,lie Schreicr t~ccs. The altelIIa,-

tive deterministic method of cube Schrerer I wcs [3] TYas 1e-

quired in the development of an almost lirieal time gloup

membership algorithm for small base permutation groups.

It is based on an effective implemelitat ion of an idea c1ne

to Babai ancl Szerne~-4di frrl l)l~ildi!ig straigl)t line proxrams

for finite groups [4] and produces Schreier trees of depth at

most 2 log IGI. The main results of this paper represent a

novel synthesis of the two methods of bounding the depth

of Schreier trees.

Section 2 introduces notation, and the important con-

structions of short Schreier trees and cube Schreier trees.

The proof of Theorem A is presented in section 3 as Theo-

rem 3.1. Theorem B is given in section 4 as Theorem 4.1 and

Theorem C in section 5 as Theorem 5.1. Most of the algo-

rithmic subroutines described here have been implemented

in the context of larger programs. For example, the rontines

used to compute short and cube Schreier trees play a crucial

role in our implementation of the small base group members-

hip algorithm [3]. Implementation of an independent base

change algorithm based on tf~e ideas described in this paper

is currentlv undergoing testing. Based on our previous com-

putat.iouai experience [12, 5], we expect to see a significant

improvement over existing methods.

2. SPACE-EFFICIENT GROUP MEMBERSHIP
DATA STRUCTURES

A fundamental issue in computing with permutation

groups is the choice of a data structure for representing coset

representatives of the subgroups in the point stabilizer se-

quence relative to some fixed ordering cr of the underlying

point set. In this section, we describe a space-efficient data

structure, fmowIL as a .$chreier vector data struct?~re, that

reduces the wo~st, case time required to access a specified

coset representative, together with ne~v a]gorit,hms for build-

ing this data structrrle.

Let G be a permutation group acting on an rr-element

set O with G’ specified by a generating set S, ancl let

a = (al, a~, . . , n,,) be a fixed ordering of the points of Q,

The potrlt sfafriiuer sequence of G relative to a is the chain

of s{Lbgroups

where G(t) = G’,,l, ,n, _,, 1 < z < n. S is called a strong

ge)2erat~rtg set for G’ Ielative to a if

(sn(+~)=d’)> 1 <r<n

~’(’)[# 1.The point a, is called a base pmt~t relative to o if /0,

The sequence of points L’ = (o,,, o,,, a,,,,) consisting

of all base points, with tl <)2 < < tAf, is called an

ordered base fol G relative to a. The significance of a base is

that each elelnent g of C; is uniquely cletermincd by its base

image (a:,, a~!a, n~,). Note that M ~ log \G’/. Also, the

size of a base ~nay vary wlt,h the oldering a, but, in general,

it is easy to show that two bases relative to two different

orderings differ in size by at most a, log n factor.

A Schreier vector data .s~ruc{ure for C; Ielative to the

ordeliug CI 1s a sequence {T! }~=1 of Schreter trees. Each

Schreier tlee 2j can be thought of as on oldeled pair (R,, T,),

Ivhere T, is .1 clirected labeled tree, looted at Oi, ~vith a set

of edge labels R, Q G’~~). Tlie nodes of TZ ale coutaincd in

the olblt, o ‘}<’) If r, is a IIOdC of T,, tllcn the concatenation
7.

of the edge labels along tllc path flom 0, to o in ‘T, is a word

ill the eienlcnt,s of II’, whose I)lodilct II LOVC’S G, to t,. ‘rhus

each Scl~reiel tree 7, defines a W(of coset rel)resent atives

for G(’+J) Ill 6’(’). ‘1’lIe set c,f all s,]ch coset representatives

225

forms a partial transversal system for G. T, is complete

if the set of nodes of T1 coincides with IV ~(’) \ and the

Schreier vector data structure is cornptete if Ti is complete

for 1 ~ i s n. In this case, the Schreier vector data structure

defines a complete transversal system.

We Iequire the following access functions for a Schreier

tree T: Root(T), Labels (T), Modes(T) and Depth(~). For

an arbitrary point v, Coset-rep–as-word(T, u) returns a

wo~d in Labels(r) that moves Root[~) to u if v E Nodes(~)

and returns NIL otherwise. Coset-rep(T, v) is similar, but

retu~ns a permutation rather than a word when possible.

The permn tation g is said to s~~t through {T, }:= ~ if we

can write g in the form

g=gn_l,yn_~, .y],

where gi is defined recursively as the element

YY; 1 9,–-11
Coset-rep(T1, Q!). The number of multiplies re-

quired to sift an element is proportional to the sum of the

depths of the Schreier trees. In the case where the Schreier

vector data structure is complete, the above factorization

has two important implications. The first is the ability to

generate random elements of G accolding to the uniform dis-

tribution. This is achieved by creating an element g whose

factorization has the above form with the elements g, cho-

sen at random according to the uniform clistribut,ion from

amongst the cosets for G(z+l) in G(L) defined by T!. The

function Random-elt({~, }~=1) will return a ~andom element

constructed in this manner. The second implication is a test

for membership in G of an arbitrary permutation. ‘r’he test

consists of attempting to factor an al bitrary permutation

through {T, }~= ~. The factollzation will succeed if and only

if the element belongs to G. This was Sims’s o~iginal group

membership test [19].

The notion of a Schreiel vectol data sttucture was in-

troduced by Sims in older to save up to an order of magni-

tude of space for typical cases, at the cost of up to an order of

magnitncie of time in computing coset representatives. For

example, if G is the symmetric gloup given by ,generatois

1 n , couslder a Schreier tree which uses(12), (?3),. (77- ~1

those labels for G/G’~”j. Such a tree wdl have depth a – 1

and computing a coset rep] esent ative can take as much as

n — 1 multiplies.

The not ion of a monotone Schleie~ tlee \vas introduced

in [3] as a method for reducing the time penalty for access-

ing coset representatives in Schreiel tlees wi lhout sevelely

increasing the storage requirements A Schleier tree T is

monotone if Labels(T) = (,ql, ,gk) is a sequence and

the edge labels along the p%t h from Root(T) to ezch el-

ement of Nodes(T) is a word in (gl , ., g~) with strlct]y

increasing Indices. One consequence of the definition is
that Depth(r) < lLabels(~)l. Two examples of monotone

Schreier trees \vill first be discllssed and then a ne~v con-

st~uction wi]] be described WhiC]~ is CI ucial foI the results in

latet sections The collstrllctio]] of a monotone Schieier tree

from a sequence R is a simple modification of a, breadtlL-

ftrst search algorithm for building Sch~eie~ t,tees and can be

pe~formed in time 0(7?]RI).

A comp]ct< Schreler ,,eclol dat,l strucf!)le {T, }~=j is

~,=1 Depth(T,) <said io he shor(]f’ fo~ a flxml constant, ~,

c log \G[. It follows [rem tile defl}litroli that a sholt Schreicr

vector data structure requires the storage of at most clog IGI

permutations of G and Random- elt({T, }~=1) takes time

O(nlog [Gl).

Cooperman, Finkelstein and Sarawagi [14] presented a

random algorithm to construct a short Schreier vector data

structure, with a constant c of 44, from a strong generating

set for G. Subsequently the value of c was improved to 21.

The key to the result is the following procedure to build

short trees, which are monotone. In implementations, one

will often use a variation of Build–Short -Schreler-Tree

that re-builds the tree in a “breadth-first” manner with the

originaJ labels. yielding substantially shorter Schreier trees,

The subroutine Extend-Tree(T)g) extends the monotone

Schreier tree T by appending g to R, applying g to each

node of T, and, fo~ each newly discovered node, adding the

directed edge labeled byg.

Procedure Build-Short-Schreier-Tree({~,]~=l,v)

Inpt: A complete Schreier vector data structure {T, }~=l

and point v.

Ootput: Asho~t Schreier tree Twith Root(T)=v.

Set T+ (fl, {v}), O ~vG

While O#Nodes(Z_) CIO

Set g - Random-elt({T, }~=1)

Set T - Extend-Tree(~, g)

Return(T)

Proposition 2.1. (f~om [14, Theorem 3.5]) h Build-

Short -Schreier-Tree, let @ = VG. Then there exists a

constant c > 0 (we can takec= 21,) such tkat for allti~ 1,

ifd = [&cloga 101], Build–Short-Schreier-Tree will corn-

p]ete after at most d random element shave been generated

I!,ith probability at least 1–1//0/26.

Let R = (g~, . . ,g~) he a sequence of elements of

a group G’. The cufre C(k!) is the set of group elements

{g;lg;> . ..9. :c, E{O,l}} and C’-l(R)=(C’(R))-l. The

cube is rzon-degenerately IC(R)I = 2k. The idea of a cube

was originally int~oduced by Babai and Szemerkdi as part of

ado~ll>li~lg tllckto builclstraigllt-lil leprogranlsi ngroups [4].

Them fundamental pl-oposition follows. The proof is easy

ancl is omitted.

Proposition 2.2. Let (gl,...jy~,g~+~) be a sequence of

group elenr en Ls and C = c(g~,, .,g~). Then

lC’(gl,..., gk+l)l= 211ifan donlv~fgk+l+l @ C-l C’. In

particular, C(gl,gk+l) is non-degenerate if and ordyif

C(gl,gk)sn onodegeneratea ndgk+l+l @C-l C.

A Schleier tree T is said to be a cufre Schreier tree

if \Labels(~)[and Depth(~ ale both bounded by logl G1.

Also, {T,]~=1 is a ctibe Schreier vector data structure for G if

(i) forl<i~n. Usingeach I’_? is a cube Schleier tree for G

thenotionofcubes, itis shownin [31 that giv; nagenerat,ing

set S for C;, it is possible to determinist,ically build a cube

Schreier tree for any orbit, of G. The tree constructed was

also a monotone Schreier tree. RatheI than repeat that

argument, here, we present a new algorithm which is also

based on Proposition ~,~, bnt w]licll works faster in practice

and leads to a bettel theole+,ical Iesult,

Proposition 2.3. Let S be a st~ong generating set for G,

Then olle,;a,ncoll]pute}~] til]]fa 0(nlog21~;l +nl Sl+rl]o,grl)

226

both a.sequerrce Rofgrorrp elements of Gsuch that C(R)

is non-degenerate and a complete cube Schreier vector data

structure {Ti}~=l with the followingproperty. For each Z_i,

Labels(T,) ~ R, U R~l where Ri = G[%) n R is a prefix of

R of length at most log lG(ij\, for 1 s z s n. In particular,

{T, }~=1 requires O(n log \Gl) space.

Proof: We may assume that ISI s log IGI. Otherwise,

this can be accomplished in O(n\Sl + n log n) time by [11,

Theorem 2. I]. The code for building the Sch~eie~ trees ‘T,

for 1 s i s n is given below.

Build-Cube-Schre ier-Vector(S, a)

Input: .4 strong generating set S for G relative to the

ordering a

Output: A cube Schreier vector data structure SO.

Initialize R +- 0

For z ~ n downto 1 do

Set Root(~,) G {a,}, Labels(T,) – ~

While there existsy E SnG(7J

such that Nodes(~t)g # Nodes(7~) do

Let y E Nodes(T,) such that yy @ Nodes(T,)

Let h + Coset-rep(TZ, y)

Append h g to R
Build a new T, using breadth-first search

with R U R–] to level 21RI

Return {’Ti };= ~

L17e first claim that at any point in its construction, C(R)

is a non-degenerate, Wc prove this by induction on I RI.

The claim is true when I RI = 1 since wc nevei append the

identity element to R. For the induction hypothesis, assume

that \Rl z 1 and R is non-degenerate. Obselve that g’ is

added to R during the construction of some Schre)er tree

71, becalise it]s discovered that n ~’ @ Nodes(T,) Since

(.”,(R–l)CIR)
Nodes(T,) contains all points in a, , It follows that

g’ z ~(R–’)C(R). Therefole g’ doubles the cube C(R)
by Proposition 2.2 (i.e IC(R u {9’})1 = 21G’(R)I) and so

C’(R U {g’}) is non-degenerate. This pro~’es the claim. Note

also that IRI < log ICI.

Since {T, }~=1 is constructed in a bottom-up mannel,

at the time T~ is built, R C G’(z). By the claim, R is non-

degenerate and so lJi! < lo; IG(Z ‘/. But Depth(’T,) < 21 ~~1

and Label s(~~) ~ R U R– 1 by construction and so T; IIS a

cube Schreler tree, fol I s z s n.

It remain to verify the timing. IVe separate the analysis

into t~vo phases: a bllilding phase and checking phase. The

cost of bui]ding any of the trees each time a genctator is

aclded is O(n log IG’1) since IRI < log IG’I for I < z s n. This

has to be done at most log IGI times. Thus the total cost of

building all the trees is 0(n log2 IG’1). The cost of checking if

a glvmr ttee T, is complete is O(n\S n G’(’ ‘1) = O(n log IG’[)

since IS I ~ log IC;I. Initially, we most check if 01 is a base

point or]iot. TII1\ costs o(n]sl) = O(TLlog, \Cl). Thereafter,

we check if tl~e lrec is complete only when a nc\f7 generatol

has been added ancl the building phase Invoked. This must

be clone a{ most log IGI ilmes an(l so the checfilng I)hase has

tile same asylnptotic tinle I)oulid ilS the I)uildillg l~llase. This

(’Ompletts the ploof. o

3. DETERMINISTIC CYCLIC BASE CHANGE

Leta= (al,. ..,..., an) be a fixed ordering and let

cr’=(clj, ..., cr~) be a new ordering obtained from a by a

right cyclic shift. Thus

CY’=(cq, ..., ~r—l,~s,~r,~r+l,.. .~~s—l~as+l,.,, @n).

A computation that finds a strong generating set for G

relative to a’ from one for G relative to a is called a (right)

cyclic base change. (When ar is an arbitrary ordering, the

computation is simply called a base change.) The following

theorem is the main result of this section.

Theorem 3.1. Let G be a permutation group on n points

and let S be a strong generating set for G relative to

an ordering a. Let a’ be an ordering obtained from a

b.v a right cyclic shift and let Gr(’) be the corresponding

point stabilizer subgroup. Then one can compute in time

O(n log2 IGI + n[S1 + nlog n) a new strong generating set R’
relative to @r, of size log lGI. Further, R’ can be considered

as a sequence of group elements of G such that C(Rr) is non-

degenerate, yielding a compJete cube Schreiel vector data

structure {T’t }~=1 for G relative to a’ with the property

that Labels(Trl) ~ R; U R[–l, where R: = G’~’) n R’ is a

prefix of R’ of length at most log IGIZJ[for 1 < ? < n.]n

particular, {Tri };= ~ requires O(U log IGI) space.

The proof follows the algorithm given in [5] for a

cyclic base change but makes use of the Schreier vector

data structure. The key to obtaining the stated time and

space bounds is the application of Proposition 2.3 for the

construction of cube Schreier trees. In the case when log IGI

is sllbsta,ntially smaller than n, this avoids the pathology of

creating very deep Schreier trees.

It will be assumed for the remainder of the section that,

Q r is obtained from a by a right cyclic shift as given above.

~~’) will denote the z
ti(7)th flllldanlelltal orbit,[:z

relative to

a and A’(t) the z
rGth f,,ndamental orbit ‘~

relative to a’.

Note that for z < r or z > s, A (z) = Ar(7), For ~ < ~ < s,
.

,1(?) = Gal,cr~ = at_l, which implies t,hat C, ,a, _2,0S and so
G~f(i) = ~*_-;, az. -2!oS = *(Z-l) Al,o, ~r(!’) = ~$(r),

—

The following result is proved in [5] and helps guide the

base change algorithm.

Proposition 3.2. Let T < i < s and let x = cr~_l E A(’-l)

for some ~ E Gt’–l). Then z E A
,(~) -1

* cl:
~(:)

Ea.

Proof of Theorem 3.1:

Proposition 2.3 gnalantees us that we can construct

a sequence R of group elements of G such that C{ R) is

nort-clegenerate and a complete cube Schreier vector data

strllcttlre {TZ}~=l within the stated time bounds. we

~vil] build a complete cube Schreier vector clata structurr

{T’, };= ~ and a sequence R’ satisfying the same propert,y In

or(ler to apply Proposition 3.2, we also require ,1 sequence of
CIll)e ,Schleiel t]ees {TSi}~=r+l for maintaining the points

~(.)
and coset representatives in t he ol bit ~., fori<? <$.

‘llIe r-ode fol budding {7’, };=, + 1 iOllOWS

227

Initialize ‘Tss + ‘T,

Initialize R’ +-- R n G(s)

Fori+s– ldowntor+lclo

Initialize T’~ - trivial Schreier tree with root a,

While there exists g E S n G(’)

such that Nodes(~S,)g # Nodes(7S~) do

Let y c Nodes(~S~) such that yg @ Nodes(~Si)

Let h = Coset-Rep(T’~, y)

Append hg to R’

Build a new T’, using breadth-first search

with Rs U Rs–l to depth at most 21R’ I

The proof that the sequence {T’, }j=r+l satisfies the re-

quired properties follows easily once it is shown that the

cube for the sequence C(RS) is non-degenerate. This in turn

is proved exactly as in Proposition 2.3 and is omitted.

The construction of {T’, }~=1 takes place in three

sta es,
?

corresponding to the sequences of Schreier trees

{T ,}~=,+1, {T’i}j=r+l and {T’, }~=l respectively. In the

first stage, we simply set Tj = Tj for s + 1 s j ~ n. The

most difficult part is the second stage. Here, the observation

that A’(t) ~ A(i–l) r < z < s, gives an effective method for

th ‘fLlndamental orbit A’(i).detelminillg the t

Initialize R’ + R n G(S+l~

For t + s downto r + 1 do

Initialize Root(~’,) e {a:}, Labels(~’,) - @

[Check if any work needs to be done]

If IA(’–lJI >1 then

For each x ~ Nodes(~;_l)

such that z < Nodes(7’~) do

Let y ~ Coset-rep-as-word(7;_l, r)

If a?-’ E Nodes(T’,,) then

[Evaluate -Y as a permutation]
-1

Let ~ - Coset-rep(Tst, aj)

[,BY c G(’–l) n G’s, = G’(i)

and a~p’ = cr~~l = z]

Append ~-y to R’

Build a new T’, using breadth-first search

with R’ U R’–l to depth at most 21R’I

The key to the analysis of the second stage is the claim that

at any point in its construction, C(R’) is non-degenerate.

The proof is by induction. The base case is the initial value

of R’ as R n C;(s+l) in which case C’(R’) is non-degenerate

by inheritance f~om R. Let the induction hypothesis be

that C(R’) is non-degene~ate at some intermediate step of

the pseudo-code Thereafter ~jy E G’(7) is added to R’
during the construction of some Schreier t ree T“, because
it, is discovered ,]lat ~(P7

t @ Nodes(T’,). Since Nodes(T’,)

C(R’-’)C(),), it follo~i,s that g’ @
contains all points in cr~

C(R’–l)C(R’). Therefoie g’ doubles the cube C’(R’) by

Proposition 2.2 and so C(R’ U {g’}) is non-degenerate. This

proves the claim. Note also that IR’I < log IG ‘(’’+ ’)1

Since {T; }j=r+l is constructed in a bottom-up mannel,

at the time T; is bllilt, R’ ~ G’(i). By the claim, R’ is nol I-

de$enerate and so IR’I ~ log lG’~i)l. But Depth(~’z) < ?IR’I

aIICl Label s(T’l) ~ R’ U R’–l by constluctlon and so T’l IS

a rube Schreier tree for r < ? < s.

We now analyze how long the second stage takes. Let

b’ be the number of fundamental orbits A(Z – 1) which are

non-triviaf for r < z s s. Then O(nb’) points have to be

examined to test for inclusion in fundamental orbits relative

to a. The cost of each test is O(log IGI). This involves

the evaluation of the word y– 1 on a single point. Since

the word has length O(log IGI), the total cost of all tests is

O(nb’ log IGI) = 0(rzlog2 IGI).

When a new element is added, this recluires the mul-

tiplication of a word of length O(logl Gl). The total num-

ber of new elements that are aclded cannot exceed IR’I <

log2 \G’(r+l)[= O(log IG[). Thus the total cost for adding

new elements in this portion of the code is O(n log2 IGI).

The Schreier tree T’i needs to be updated only when

a new generator is added. Since this occurs at most log IGI

times, the total cost of building the trees is O(n logz \G\)

time. Thus, the second stage operates within the required

time ancl space bounds.

We complete the proof by indicating how to complete

the third stage during which the remaining tcees { T’~ }~=1

are built. This is easy to do in light of previous developments

because G’(z) = G(i) for 1 ~ z ~ T. The code to do this

follows, and is almost identical to Build-Cube-Schreier-

Vector of Proposition 2.3. At this point, R’ will have the

value assigned to it at the end of the second stage.

For z ~ r downto 1 do

Initialize Root(T’,) – {cx~}, Labels(T’,) - @

While there exists g E S n G(’)

such that Nodes(T’~)g # Nodes(T’,) do

Let z E Nodes(T’,) such that Zg @ Nodes(T’,)

Let h - Coset-Rep(T’z, z)

Appencl hg to R

Build a new T’, using breadtl~-first sealch

with R U R–l to clepth at most, 21R\

The argument that G’(R’) is a non-degenerate and the

resulting implication that the Schreier trees T’?, 1 s z ~ r
are cube Schreier trees is almost identical to the argument

given for the proof of Proposition 2.3 and is omittecl. Fol-

the same reason, we omit the proof that, the time and space

requirements are O(n log2 \G’1) and O(n log IGI) rmpecti~,cly.

We now conclude that R’ and {T’, }~= ~ satisfy the conclusion

of Theorem 3.1 and that the algorithm wolks within t,lle

stated time and space requirements. D

An interesting corollary to Theorem 3 1 is a fast method

fo~ determining the number of nodes in the fundamental

orbits for an ordering a’ obtained from a by a right, cyclic

shift when a complete short Schreier vectol- data structure

is provided. This will be useful in section 4 where a fast

randomized cyclic base change algorithm will be presented.

Corollary 3.3. Let { T~ }!= ~ be a complete short ,Schreier

vectol data, structure for G relati~,e to an orclering a. Let

0’ be an ordering obt=”necl from a by a rlgh t cjclic shiff

Then n{ = lA’(~)l, 1< z < n can be defe~~ninecl i~, trme— —
O(I, lo~ IGI).

Proof: (Sketch) Assume that, o and 0’ arc Sivcn as befole.

It suffices to deterurln? the ~,allles of lA’(J ‘1 for r < j < ~,

Note that A’(’) = OS(’), which can be computed within the

given time bound. The key to the remaining fundamental

orbits is Proposition 3.2. In order to determine A’(~) as

J goes from s down to r + 1, note that each x c A(j ‘1)

defines a -y = Coset-rep-as-word(T~_l, z) and we must
-1 G(J)

check whether a~ Ca, By hypothesis, ~ is a word in

Labels(Tj .-l) of length at most Depth(’Tj _ l). There are

at _yost n such tests for each A.(J – l). Each evaluation of

~; requires O(Depth(Tj)) time and ~~=1 Depth(Tj) =

O(log IG[). Thus the total cost of all such evaluations is
–1

0(7t log IGI). Testing if al
G(3)

E Q’, takes constant time
G(2)

once the orbits as have been constructed. This call be

done in a bottom-up manner using an incremental breadtl~-

first search with the computation organized so that each

generator of G~rJ is never applied more than once to any

point of A(r). (See [5] for a more detailed description.)

Since there are at most c log [G(r) I generators for G(r), wlhich

appear as edge labels of Tj, r < j < s, it takes O(rr log IGI)

time to complete this phase. Thus the total running time is

as stated. H

4. RANDOMIZED CYCLIC BASE CHANGE

The new deterministic cyclic base change has the same

time and space complexity as the general randomized base

change [14]. This leads to the natural question, whether

there is a faster randomized cyclic base change. The next

theorem answers the question in the affirmative.

Theorem 4.I. Let G be a permutation group acting on n

points and let { Ti)~=1 be a complete short .%hreier vector

clata structu~e for G relative to an ordering CY. Let a’ be an

ordering o b tamed from a by a right cyclic shift. Then one

c-an buiJd a complete short Schreier vector data structure

{T; }jt=l for G relative to a’. With probability at least

1 – 2/n, the algorithm completes in tinre O(n b Iogz n), for

b the size of a non-redundant base with respect to c, or

a’. Further, each Schreier tree T: wilJ be of depth at most

6.3 log n,, for ni the size of the ith fundamental orbit.

The proof of this theorem is deferred, while a crucial

lemma and the necessary procedures are described.

Lemma 4.2. Let H be a subgroup of a finite permutation

group G and let U be a compiete set of righ tcoset represent-

atives for H in G. For g c H, let ij be the unique element

of U so that Hij = Hg, Let g be a uniformly random ele-

ment of G. The the element gy‘-1 is uniformly random in H.

Furthermore, if S ~ G is a set of mu t ual]y independent urri-

formly random elements of G, then T = {go-1: g E S} is a

set of m IJ t u a,~~y independent and rrniformly random e~em en ts

of H.

Proof: To prove the first part, assume that g is uniformly

random in G. Given an arbitrary h E H, there are exactly

\ U I elements of G which will produce h, namel~ the elenmnts

of the set hU. Since f?rob(g c hU) = lU1/lG\, Itfollows that

Prob(g~-l = h) = I/l HI. To prove the second part, let

s={gl). ..)g~). Then

Prob(

=Prob(

since gl, . . . , gk are~tually independent by assumption.

Thus glij; l,. ... gkg~ are independent and the second part

is proved. D

The previous lemma is important for understanding the

correctness of the randomized cyclic base change afgorithm,

below. For Schreier trees for G acting on !2, with T and ‘Ti

Schreier trees, a e Q, and g c G, the routines Labels(T),

Depth(7_), Coset-rep(~, a), and Random–elt({ 7~}~=r) were

defined in section 2. Their implementation is clear from the

definitions. The time required for Coset-rep is bounded by

the depth of ‘T times the time for a permutation nlultipli-

cation. We additionally define the routine Size(T), which

returns the number of a c Q for which Coset-rep returns a

non-NIL value.

Finally, we recluire, for technical reasons, a nlodi-

fiecf routine Extend-Tree-i. f-Success(T, g, n), where n is

a number. In applications, T will be a Schreier tree for an

orbit of G(i) for some t, and n will correspond to the orbit

length. The routine Extend-Tree- if-Success should call

Extend-Tree(T, g) as defined in section ?, but only if g is a

success, as defined below.

Definition. (from [14, Theorem 3.5]) Let P be the nodes

of a Schreier tree T for an orbit of length n. The group

element g is a success for T if either

IPI < n/2 and lP~ –P[> lP[/4 or

IPI z n/2 and lPg -PI z (n - lF’1)/4

Note that for an orbit of length 7), and an initial trivial

Schreier tree, and then rnodifying it by adding O(log n,)

successes Ielative to the current Schreier tree suffices to

build a Schreier tree with all n, nodes. This motivates the

following proposition.

Proposition 4.3. For G acting on a set of size n and

for some t with z with 1 < z < n, if one knows the

index 7Lt = [G(t) : G(Z+l)] and has r z 21 log n rnutrra]l.y

independent t, random elements of G [but not necessarily

generating G’), then one can form a short Schleiex tree of

depth at mos(6.s log2(n, /2) for G(’)/G(’+l) in timr O(nr)

with probability at least 1 – l/n2,

Prooj: Let O be the orbit of cr, under G(z). fly Propo-

sition 2.1 for $ = log? n/ logq 10[, one can constluct a

Schreier tree of depth d = 216 logz \Ol = 21 Iogz n with

probability at least 1 – l/r12. The depth is too large for

our purposes. However, inspection of the original proof of

[14, Theorem 3.5], shows that, one can choose a subset of

the r random elements (the “successes’]) of size at most

2 log5,4(?2~/2) = 210g~(nL/2)/ log2(5/4) < 6.3 log2(r2t/2),

which \vill also bnilcl the Schreier tree with the stated prob-

ability. 0

The next procedure contains the key idea of this sec-

tion. It is called to incrementally const~uct, sliort Schleier
(;(~)

trees in two distinct, cases: for the orbits a , forr~t<s

in the procednle Random-Cycl it-Base-Change, and for the

fundamental oil>its o,
G(1)

for 1 ~ ? ~ n in the proof of

Corolla, y 4.4. As we s12a11 see, Augment-Trees w mole effi-

cient than an analogous routine clescribcd in [12. 1 I], since

all of the Schleiel t lees nlidel construct ion can he augmented

229

within the asymptotic time needed to construct a single ran-

dom group element.

Augment-Trees({ ~~}%c~, {fii}~~~, ~, {Ti}~zr)

Input: A collection of (possibly incomplete) Schreier trees

{TZ } indexed by a subset B, with each tree representing the

orbit (Root(~~))G(*), the known sizes Ei = (Root(~,))G(’) 1,

and a complete Schreier vector data structure {Tl }~=r such

that B z [r, n].

Output: No output, but {??, },EB is modified

Initialize g ~ Random-elt({TZ }~=r)

For~-r ton

Ifcrj~B

Extend-Tree-lf-Success(~j , g, Tj)

Set h - Coset-rep(Tj, rljy)

Setg--gh-l

An interesting application of Augment-Trees is to con-

struct a complete Schreier vector data structure in wluch

each Schleier tree is short.

Corollary 4.4. Given a short Schreier vector data struc-

ture {Tz } with ~~=1 Depth(TZ) < clog IGI, one can for~~l

short Schreier trees of depth at most 6.3 log n~ for all 1 <

~ < n (where n& = Size(’Z_l)) in time O(nclog IGI log n) with

probability at least 1 – I/n.

Proof: Let {~, }~=1 be the short Schreier trees that one

wishes to constluct. The sizes of the fundamental orbits

‘Labels) I are the same as for 7, and so are~t = I@z

known in advance. Initialize ~, to the trivial t~ee for each i,

and m alie 2110gn calls to

Augment -Trees({~Z}~=l, {n, }~=1, G’, {7, }~=1). By repeated

application of Lemma 4.2, the set of g at level j computed

by the algorithm ovel all 21 log n c~lls is mutually inde-

pendent,. By Proposition 4.3, each ~Z has depth at most

6.3 log2(n, /2) ~ 6.3 log2 n with probability at least 1 – I/nz.

Random elements at diffelent levels can be co~related. (Cow

sider, for example, what would happen to a random element

equal to the iclentity) Nevertheless, the probability of an

error at any level M at most n times the probability of er~or

on a particular level. So, with p~obabiht,y at le~st 1 — l/n,

all Schreier trees will have the indicated depth D

Finally, the landomizcd CYCIIC base change call be

presented. As in section 3, we assume that a’ is a new

ordering obtamecl from a by a right cyclic shift of the

subsequence {cvr, . . , a~_ 1, as } to {a,, err, ... Q,-1}, and

that G’(L) is determined with lespect to the ordering a’.

Random-Cyclic-Base-Change({7_, }~=1, 7, s)

Input: complete Schrcier trees 7, for G “)/ G(’+l) such that

x:=,ww~) scloglGl for’o’ne’a’’di’’diccs’. s
satisfying 1 < T < s < n

Output: complete Schreier trees

depth at most 6,3 log n{ (where

respect to the cyclically permuted

of fl, and nj = [G’(t) : C;(i+’~])

For j — 1 to f,
./(7)

Set 7tj = IA’(J)I (~ ltij~ 1)

Initialize Tj — tlivial Schl.eiel

T’~ fol G’(’)/G’(’+1~ of

the prime denotes with

Orclering CV’ of the points

[via (olollaly 3.3]

[lee WI(II loot n; ,

For I —rtos

Set nsj = [a:(’)\ [in O(n log IGI) time]

Initialize 7S1 t trivial Schreier tree with root as

Initialize B + {u, }U base points of {T, }~nr

While Size(T’i) < n; for some z do

Set g — Random- elt({T2 }~=1)

For~el ton

Ifn~>O

If~<ror]>s

Extend-Tree-if -Success(T\ ,g, n;)

llseifr<]~s

[For eficiency, compute {Ts, }onlyasnecessa,y

(by lazy evaluation) instead of pre-compnting

all of {~’+ 11

Tvhile c~se~~reP(T’J -1, CY,’) = NIL

Augment-Trees({ ~’, },c B, {n’, },cB, ~, {~i}~=,.)

Set h— Coset-rep(TsJ _l, &sg)

Extend-Tree-if -Success(~~ , gh–l, 7L~)

Else [when) =T1

Augment:Tree~({ ~sr}, {n”,}, {~r}, {~t}~=r)

Set 7’,. – 7s~

Set h — COset-rep(7J, r2jg)

Set y - (J1l-1

ileturn {7_ ’,}~=1

Proof oj Tht:or-em~. f:

We will sho!v that O(logn) iterations of the outermost

“while” loop suflice for conlpletiolt of the algorithm, In

addition, there ~vill be at most O(logn) calls to Augment-

Trees over the life of the algorithm. The probability of

fading tocolistlnct asholt Schreiel tree~~ of depth at most

6 310gn{ ~6..3logn CM] be shown to beatmost l/n2 in the.
same manner as in the proof of Proposition 4..3. A similar

case holds for T$J, whele IISJ < n. So, a proof smula~

to Corollary 4 4 fol {Ts, } shows that with probability at

]east] –2/)/, OllC(’dU COllStl UCt, ~Chreiel tleCS T’j of depth

at most 6.310g n’~ and Schleiel trees ‘TSj of depth at most

6.310gn with overall probability atl east l–2/n. (Note that

one ca,nnot lep]ace]og~j by]og~zj f’ol the depth of Tsj, and

there ale examples in which the snm of tile depths of T’j

for all J m,,y exceed O(log IC71))

It Ielnains to vellfv the time C;olllput,ing {nj}~=l

requmes O(nb]og n) tlnle by Chlollary 1.3. (lomputing

{n$,}:=r can bedonewa the hotton-up construction of

C;(’) in the ploofof Corollary 3.1 and Iequlres O(~doglGl)0$

time As alleady shown, with the stated plobabillty only

O(logn) IandonI elemc,nts j ~vill be constructed, llhe cost

of c~eatln~ eac]l random elelnent, and mllltiplying by coset

representatives Coset-rep(Tj, aJ$) IVI1l be 0(7~log/Gl).

since {~,)~=1 forms z sltolt Schleiel vector data struc-

ture. The cost of multiplying by coset representatives

Coset–rep(7_sj, a$g) is O(nb]og n). where b Is the base size,

or the number of nowtnv ial tlees {7, } Tllns, there a~e

O(loglt) random elements, an(l tile time related to each one

is O(nblogn), yieldin~ tlie overall tllne. 0

Note that In conimon \vltll most I)i)st, chaligc algo-

llthrns, tlie J~ew cychc la)idonuzml ~l,go~lthn~ IS Las Vc,ga5, in

the sense ll~at one CaII cletclJzlIllIst]cz~lljI I,elify if tile arls!ver

230

ized base change algorithm [14] with asymptotic complexity

0(nlog2 IGl), that is also Las Vegas.

5. FAST CONSTRUCTION OF SHORT SCHREIER TREES
FROM A STRONG GENERATING SET

Both the result of the previous section and the
original randomized cyclic base change [14] required as

input short Schreier vector data structures (satisfying

~l~i<n depth(Ti) = O(log IG[)), in o~der to gua,antee

that the output Schreier vectors have depth O(log II,).

This requirement can be remo~ed by Theorem 5.2 be-

low, which provides a recipe fo~ quickly constructing short

Schreier vector data structures In fact, a stronger re-
sult is achieved in constructing short Schreier trees (depth

O(log n;)) from the strong generating set alone, (Recall that,

~i = [G(i) ; G(i+l) 1)
The following result on reduction of a strong generating

set is well-known, and is included for completeness. In most

applications, O(log n) << O(lOe, 1~1).In suchsitu~tlons,[11.
Theorem 2.5] shows how to find a leclncecf strong generating,
set in time O(nl S] + n log n), and will usnally be fast,et in

implementations.

Lemma .5.1. Given a strong generating set S’ for a ,yc)up

finite G, one can construct a new strong generating set

S’ G S with IS’ I < log IGI in O(rrl Sl +nblS’\), where b is the
size of the smallest non-redundant base with ~espect to the

ordering of S.

Proof: The following pseudo-code fragment has tile corl cct
properties.

Initialize S’ -0
For z ~ n – 1 dcxvnt,o 1

For ~ c sn(l’) – CSZ+lJdo

If ~,({~}us’) # ~), (s’)

Set S’ – s’ u {g}
Return(S’)

In implementations, for each level ?, one cornputcs the set

~i({9}@) (S’) Fu~t,fler, for eacl~ j,Incrementally from a~

the elements of S U S’ shonld be applied to c:*c}1 point a t
most once. E~ch element, of ,S will be invoked fol at nlo>t

one level, i. From this, the time follows. After addilig each y,
the size of (S’) must at least (Iouble. Iiel!ce, IS’ I < log [CI’I.

c1

Theorem 5.2. For a permu ta tion group C; of degree H with
strong generating set S, one can construct all .Jtort Schreicr

trees for G(z)/G(i+l~ for I < t < n in time O(nlog” 16’ +

rJIS\) of depth at most 6.310gnt, Ivitll pIoba bilitj. at leas(

1 – l/l Gl. Further, these short Sc+reier trees form a group
membership data structure from which I andom demen ts can
be derived in time O(n log IG’I).

Proof: The conclusion on the time to build rali,[orn elernen ts
follows from noting that a random group element is co]l-
struc ted from the product of at most, n —1 random coset rej>-

‘e’e’’’vesves ‘n “me Zl<!<,, -, 00? log n,) = 00, log IGI)

It suffices to plove the time and probabililv for ronstrnctlo[i
of sholt Scb[eier trees when ISI ~ log I(;I by lJemma 5 1.

By induchon 01) j, \ve assli]l)e nloliotonlc sl~ort Schlcicl
t,, ef:s for (-j? 1/(;(?+1) wit]) j <) < 1) h~ve Iwell l~nilt. a,r)d \\~c

will construct such a tree for G’(~)/G(~ + 1,. A (triviaf) short

Schreier tree for G(n)/G(n+l) can be built in O(I) time.

Let T’(i) for j < z s n be the set of coset representatives
for G($)/G(~+l~ , and let D(j+l) = T(n)T(7~–1) T(~+l) =

G(~+l) Note that each element of ~(1+1) call be bllilt as a

word of length O(log lG(~+l)l), since each T(t) is built f!om

a Schreier tree with depth O(log nt).

One first pre-computes, in time O(n log lG(j~l log nj), a

data structure which allows computation of a coset repre-

sentative of G(~)/G(~+l) in time O(n log lG(~)l). (This data

structule will then enable construction of a sholt, Schreier

tree for G(~~/G~~+l).) Let U be initialized to the identity.
By Proposition 2.2,

lD(J+lJIJ{g,l}l = 2@~+l)L’\

~g f! U–l(D(~+l))–lD(]+l)[~ = U-l G(~+l)U.

U-1(; (3+1)CT$
If there is a s c S n G(~) such that aj #

~r–l~(J+l)~r
mj then construct a g ~ ~~-lG(~+l)~js _

[T–1~(.r+l)~r, Replace U by U{g, 1). Repeat until
~T-JGb+l)U$ = ~C1-l@+l)U

‘1 for all s c S n G(J’. This

can be iepeated at: most log nj t,imc,s since log lG(~ ‘1)1 ~

lD(~+’)U\ < log lG(~~j, and lD[~+l)Lrl IS double{l eac}l time.—

So, the length of any worcl in ~– 1~[~’1 ‘[i is at most

O(log IG(J)I). Thus, g and any coset representative for
G(j)/C;(j+l) can he computed in time 0(n log IGI) (by re-

taining pointe] data structures from plevious levels).

Given the avad, ablllt, y or coset repl esc,ntatives for
C;(j) /G[j+l) in time O(n log lG\) and the avadability of

short Schreier trees (depth O(log n?)) for G[7 ‘/ G(l+l) for

,7 < 1 < v, one can construct ralldoln elemc,nts of C;(J) in

time 0(n log IG’(J)1), 6.3 log r~j sucl~ ra,nclom elcmcmts that

are successes (in the sense of section 4) can be used to build a

new Schreiex t~ee 7j , f’ol G(J ‘/G(~+l ! , lvliich is sholt. Thlls,

the time 1s O(n log I(;I log?~j) at level ,1, or 001 lo&2 IC;I)

ovelall. This compleies the ill(iuctlon oll j.

It lemains to velify the reliability 6.3 log? lCI’ snccesses
among all levels will suffice to build SI]OI(Schreier tlees at
all le~;els. I\; llh probal)ilit,y at least p = 1/3, the random

element will be a success (in the sense of Proposition 4.3
and the previous definition) with rmpect to 7J Since the

fundamental orbit, lengths r?, ale known in advance, one
can discard those ranclom elements (hat, are not, sllcccsses.

(~hermof’s Bound [9] states that, for St the numl,ex of
successes In t independent, flerlio~]lli trials ~vit,ll probability

of success p, and for O < c < 1,

Prob(S* < 1(1 – c)pf]) < e-f’t’~/z

Choosing f = [/2, t = 54.51n IC;I = .37.8 Iogz IC;I and not-
ing p = 1/3 then yields (1 – c)pt = (37.8/6) log~ IGI =
6.3 log. lG\, the reqnilcxl numb{,r of snccessfd t [ials. C!ller-

noff ’s l)OIITICI predict: a lellabilily of c -“r’ff~ > 1 –

l/lG’1~.27 >1 – l/lc;l.

(Ill complrtio]l of (I1c al~oiilllm. D(1) will he of

len~tll ,~t mosl 6.3 log I(;l, Yeqnirlns 0(1/ lq~~ \(; \) tlllle for

231

its construction. The n short Schreier trees also require

0(nlog2 IGI) time. D

The proof used 37.8 log2 IG] Iterations to guarantee

the 6.3 log2 IGI successes with the indicated worst-case re-

liability. In implementations using breadth-first search,
many fewer than 6.3 log2 IGI successes will suffice, and a
largel fraction of the trials will be successes than would

be indicated by the worst case analysis The previous re-

sult allows us to strengthen our arbitrary randomized base

change [12, 14; Theorem B].

Theorem 5.3. Given a strong generating set S of size

O(log IGI) for a group G, thel e is a randomized base change
algorithm that, with probability 1 – l/lG’1, comt~ucfs a short

Schreier vecto~ data structure in O(n log2 IGI + nlS] log IGI)

time.

R-oof: I,emma 5.1 is first applied to find a strong generating
set of size at most log \Gl, followed by Theorem 5.2 to gener-

ate random group elements in 0(!2 log IGI). The hypothesis

of [14, Theolenl B] is then satrsfiedj yielchng the conclusion

of that theorem. c1

REFERENCES

1.

:>.

3.

-1.

.5.

6.

7,

8,

9,

L. J3abai, “Monte-Carlo .llgorlthms in Graph Isomor-
phism Testing”, University de Montr4al Tech. Report

D.M. S. 79-10 (1979), Dep. Math. et Stat.

L. Babai, G. Cooperrnan, L. Fiukelstein, J3.hf. Luks,

and A. Seress, “Fast Monte Carlo Algorithms for Per-

1<1 ACM STOC:(1991),mutation C710UPS’7, Proc. 2<?
pp. 90-100.

L. Babai, G. Cooperman, L. Finkelsteln, and .~. Ser-

ess, “Nearly Linear Time Algorithms foi permutation
Gzonps with a Small Base”, Proc. of the 1991 In ferna,-
tional Symposium on Symbo]ic and Algebraic CoII]pIi-

ta tion (ISSAC ‘91), Brmn, pp 20&209, July, 1991.

L. Babai and E. Szemer+di, “On the Complexity of

Matrix Group Problems I,” Proc. 25t}] IEEE FOCS

(1984), Palm Beach, FL. pp. 22!) -240.

CA. Brown, L. Finkelsteiu, and P.lV. Puldom, “.4
Ne~v Base Change .Algori thm fol Pernlutat,ion Gloliljs”,
SL4M J, ~OlnplltlJl~ 18 (I!189); pp. 1037-1047.

C.A. B~own, L. Finkelstein, and P.IV. Purdom, “Back-
track Searching in the P1csence of Symmetry”, Proc.

of the 6t” In terna fional Conference on Algebraic Algo-
rithms and Error Correcting Codes (A.\ ECC-6, Rome,

1988), Springei Verlag I.ectule Notes in Computer Sci-
ence, Vol. 357, pp !19–ll LI

G. Butler and C. Lam, “Isomorphlsm Testing of Con-
binatori al Objects”, J. of Symbolic (bmpu tation 1 ~
(1985), pp 363-381.

J.1 Cannon, “An Introduct,ron to fhc Groul) Tl~e-
ory Languagel Cayley”, in ConJpufafional ~;roup The-

o~,v, edited by M.D. Atkinson, Academic P] ess, 1984,
pp. 14.5-184

H. Chel]~off, “A Measure of As! l~lpto(i< flfflciel~cJ for
Tests of a Hypot,hcs]s]3ascd 011 t,]le Sllnl O(Obscl Va.

tions”, .!]tna].< of’ ifitt]I ,~fa tJ.sf}c,s 23, 1952. pp 4C);l-
507,

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

G. Cooperman and L. Finkelstein, “New Methods for
Using Cayley Graphs in Interconnection Networks”,

Discrete Applied Mathematics, Special Issue on Inter-

connection Networks, in press.

G. Cooperman and L. Finkelstein, “A Strong Gener-

ating Test and Short Presentations for Permutation
Groups”, J. Symbolic Computation 12 (1991), pp. 475-

497.

G. Cooperman and L. Finkelstein, “A Random Base
Change Algorithm for Permutation Groups”, J, Sym-

bolic Computation, under revision.

G. Cooperman, L. Finkelstein and E. Luks, “Reduc-

tion of Group Constructions to Point Stabilizers”, Pro

ceedings of the International Symposi urn on Symbolic

and Algebraic Computation (ISSAC 89), ACM Press,
pp. 351-356.

G. Cooperman, L. Finkelstein and N. Sarawagi, “A

Random Base Change Algorithm for Permutation
Groups”, Proc. of 199o International Symposium on

Symbolic and Algebraic Compu tafion, (ISSAC 90,
Tokyo), ACM Press and Addisow Wesley (1990), pp. 161

168.

M. Jerrnm, “A Compact Representation for Permuta-

tion Groups”, J. Algorithms 7 (1986), pp. 60-78.

C.W. H. Lam, “The Search for a Finite Projective Plane
of Order 10”, American Mathematical Monthly 98,

(1991), pp. 305-318.

J. Leon, “On an Algorithm for Finding, a Base and

St~ong Generating Set for a Group Given by a Set
of Generating Permutations”, Math. Comp. 35 (1980),

pp. 941–974.

J. Leon, “Computing Automorphism Groups of Corr-
binatorial Objects”, in Computational Group Theory,

edited by M. D. Atkinson, Academic Press (1984),
pp. 321–337,

C.C. Sims, “Computation with Permutation Groups”,
in Proc. Second Symposium on S,vm boJic and Algebraic
Il!fanipu]ation, eclited by S. R Petrick, ACM Press, Ne!v

York, 1971, pp. 23-28.

232

