
An Efficient Programming Model for Memory-Intensive
Recursive Algorithms using Parallel Disks

Vlad Slavici†∗, Daniel Kunkle‡, Gene Cooperman†*, Stephen Linton♯

† Northeastern University, Boston, MA
‡ Google Inc., New York

♯ University of St. Andrews, St. Andrews, Scotland

vslav@ccs.neu.edu, kunkle@google.com, gene@ccs.neu.edu, sal@cs.st-andrews.ac.uk

ABSTRACT
In order to keep up with the demand for solutions to prob-

lems with ever-increasing data sets, both academia and in-
dustry have embraced commodity computer clusters with lo-
cally attached disks or SANs as an inexpensive alternative to
supercomputers. With the advent of tools for parallel disks
programming, such as MapReduce, STXXL and Roomy —
that allow the developer to focus on higher-level algorithms
— the programmer productivity for memory-intensive pro-
grams has increased many-fold. However, such parallel tools
were primarily targeted at iterative programs.

We propose a programming model for migrating recur-
sive RAM-based legacy algorithms to parallel disks. Many
memory-intensive symbolic algebra algorithms are most eas-
ily expressed as recursive algorithms. In this case, the pro-
gramming challenge is multiplied, since the developer must
re-structure such an algorithm with two criteria in mind:
converting a naturally recursive algorithm into an iterative
algorithm, while simultaneously exposing any potential data
parallelism (as needed for parallel disks).

This model alleviates the large effort going into the de-
sign phase of an external memory algorithm. Research in
this area over the past 10 years has focused on per-problem
solutions, without providing much insight into the connec-
tion between legacy algorithms and out-of-core algorithms.
Our method shows how legacy algorithms employing recur-
sion and non-streaming memory access can be more easily
translated into efficient parallel disk-based algorithms.

We demonstrate the ideas on a largest computation of
its kind: the determinization via subset construction and
minimization of very large nondeterministic finite set au-
tomata (NFA). To our knowledge, this is the largest subset
construction reported in the literature. Determinization for
large NFA has long been a large computational hurdle in
the study of permutation classes defined by token passing
networks. The programming model was used to design and
implement an efficient NFA determinization algorithm that
solves the next stage in analyzing token passing networks
representing two stacks in series.

∗This work was partially supported by the National Science
Foundation under Grant CCF 0916133.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1 Introduction
In the past 10 years, migrating traditional single-CPU

computations to clusters or supercomputers has become im-
portant, as developers are faced with the task of providing
solutions to problems handling increasingly larger data sets.
The expense of supercomputers precludes their wider use.
Hence, the majority of academic and commercial institu-
tions have embraced commodity computer clusters as a less
expensive alternative, albeit with less RAM than supercom-
puters.

To get the most benefit out of the use of commodity clus-
ters, developers need to use the aggregate disks of the cluster
in order to solve as large problems as possible. A typical 32-
node commodity cluster might have an aggregate of 32 ter-
abytes of disk, compared to an aggregate of only 512 GB of
RAM, which is a consequence of disk being two orders of
magnitude less expensive than RAM.

However, the modern out-of-core program developer still
has a challenging task ahead: migrating traditional, RAM-
based algorithms from the CPU to external memory on a
per-algorithm/per-problem basis. This work addresses that
challenge by introducing a general programming model and
a method of migrating traditional recursive RAM-based al-
gorithms to external memory programming.

Research ContributionsThere are two main research con-
tributions in this paper.

• A general programming model and method for migrat-
ing recursive algorithms to parallel disk-based comput-
ing
• A general method of migrating random-acess (that is

at the heart of most RAM-based algorithms for sequen-
tial programming) to parallel streaming access

Although there already exist many papers (e.g. see [27,
28] and their citations) written on a variety of parallel disk-
based algorithms, the algorithms they describe appear quite
different from their RAM-based counterparts, and seem to
mostly cater to the expert, i.e. the researcher already fa-
miliar with parallel disk-based computing. Moreover, these
already existing algorithms are providing little insight on
how to tackle future problems not already described. The
research presented here attempts to alleviate these obsta-
cles, by providing a general theory of migrating recursive
RAM-based algorithms to parallel disks.

There exist a number of tools for parallel disks program-
ming — such as MapReduce [12], Roomy [17] or STXXL [7]
— which allow the developer to focus primarily on the algo-
rithm, while the runtime library takes care of the underlying
details, such as working with the filesystem and sending data
over the network. While all these tools increase productiv-
ity, they do not address the design task of transforming a
RAM-based algorithm into a parallel disk-based one.

We propose a programming model that is independent
of the programming language/extension used. Unlike pre-
vious approaches, which focused on a single programming
language (MapReduce, STXXL, HaLoop [10]), the proposed
programming model can be implemented on top of many
tools for parallel disk-based computing, as described in Sec-
tion 2.2.

As validation of this programming model, we implement
examples in C, using the Roomy extension library. Roomy
was chosen because it provides a broad range of primitive
data structures including bit arrays, hash tables, unordered
sets (RoomyList), and other data structures important for
symbolic algebra. For particular programs, there exist ex-
tensions of the map-reduce platform (HaLoop [10], Pregel [21],
and others) that are also general enough to serve as an imple-
mentation platform for the proposed programming model.
The programming model tries to be agnostic about the choice
of implementation platform.

The ideas of this model were motivated by the particular
needs for recursion in symbolic algebra.

An important part of many symbolic computations is work-
ing with very large graph-like data structures, that only fit
on parallel disks: groups [25], binary decision diagrams [19]
and others. Very large finite state automata are useful in
many areas, within symbolic computations and outside of
it, as discussed in Section 3.

When working with the above mentioned large graph-like
data structures, techniques similar to dynamic programming
are often employed (for example, see [19, 25]). Migrating
dynamic programming to parallel disks is described in Sec-
tion 2.1 and in our parallel disk-based implementation of the
0-1 Knapsack problem in Section 4.

In the next few paragraphs we discuss possible applica-
tions in symbolic computation that are likely to benefit from
the programming model proposed in this paper.

Possible Applications in Symbolic ComputationsIn com-
putational group theory, a hugely important example is the
matrix recognition project. The matrix recognition project
uses Aschbacher’s classification of the subgroups of the gen-
eral linear group into 9 categories [3]. For each of the non-
simple classes, the project provides an algorithm to identify
a normal subgroup. The matrix recognition algorithm then
recursively calls itself to identify both the normal subgroup
and the quotient of the original group over the given nor-
mal subgroup. Naturally, large groups lead to computations
requiring large memory.

In the case of permutation groups, the classic algorithms
for base and strong generating sets, and for partition back-
track (group intersection, centralizer, normalizer, etc.), both
offer natural examples of recursion in which memory require-
ments can grow (especially for large base finite permutation
groups).

Another important example of recursion lies in algorithms
for a sparse representation of multivariate polynomials in
many variables over a finite field. For example, in polyno-
mial multiplication the natural recursion leads to multipli-
cations of polynomials in fewer variables.

Given the wealth of topics, we chose the problem of NFA
determinization (subset construction) for extremely large fi-
nite automata because of a long-standing challenge problem
in this area (see “Token Passing Networks” in Section 3).
One outcome of the work was to produce a DFA consisting
of almost two billion states.

A second, smaller example is provided for dynamic pro-
gramming and the knapsack problem (Section 4). This ex-
ample is included to demonstrate the breadth of applicabil-

ity of the programming model.
In the rest of this paper, Section 2 presents the gen-

eral programming model and method for migrating recursive
RAM-based algorithms to parallel disk-based algorithms, to-
gether with a discussion on how this method fits with tools
such as Roomy, MapReduce and STXXL. Section 3 illus-
trates how the theoretical method is applied in practice by
looking at the well-know recursive legacy algorithm for con-
verting a non-deterministic finite automaton (NFA) to a de-
terministic finite automaton (DFA) via subset construction,
followed by minimizing the DFA. The NFA to minimal DFA
software is then validated experimentally by running it on
very large inputs obtained from an application in the field
of Token Passing Networks [4]. Section 4 presents a par-
allel disk-based implementation of the Knapsack problem.
Section 5 presents related work.

2 A General Method for
Migrating Recursive Algorithms
from the CPU to Parallel Disks

A recursive algorithm starts out with the initial problem,
and it generates sub-problems whose results are used to solve
the initial, larger problem. The generated sub-problems
form a callgraph, which is a directed acyclic graph (DAG).
The graph has an initial node, called the root, which de-
scribes the problem (the level 0 sub-problem), and the edges
point from a sub-problem to the smaller sub-problems it de-
pends upon.

For migrating such a traditional recursive algorithm to
parallel disks, we propose a general method based on travers-
ing the problem callgraph.

Figure 1a presents the callgraph of a simple
`

n

k

´

compu-
tation. Here n = 6 and k = 3. Even though there exists a
simple formula for

`

n

k

´

, for the sake of explaining how the

method works calculating C(n, k) =
`

n

k

´

is here done by
recursion:

C(n, k) =

n

k

!

=

8

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

:

`

n−1
k

´

+
`

n−1
k−1

´

, n > 0, k > 0

`

n

1

´

= n, n > 0

`

n

0

´

= 1, n > 0

`

n

n

´

= 1, n > 0

The
`

n

k

´

algorithm is a simple, binary recursion. On the
CPU, such an algorithm is straightforward to implement:
most programming languages support recursive functions.
Recursion is implemented by the programming language ei-
ther by using the process stack, or by using a custom stack
implementation. The implicit use of a stack leads to a
depth-first exploration of the callgraph. Using the same
approach for an out-of-core implementation is impractical,
because depth-first search (DFS) relies heavily on random
data access. It is well-known that streaming access should
be used in a disk-based implementation instead of random
access [25].

However, in order to solve the problem correctly, it is
enough to explore its callgraph completely in any manner,
not necessarily by DFS. For parallel disk-based program-
ming, a breadth-first search (BFS) of the callgraph is more
appropriate, since BFS can emphasize streaming access. More-
over, since a cluster has multiple nodes driving the locally-
attached disks, a parallel version of BFS can be used (Paral-
lel BFS) [20], which is the widest used pattern in computing
with parallel disks.

 C(6,3)

 C(5,2)

 C(5,3)

 C(4,1)

 C(4,2)

 C(4,3)

 C(3,1)

 C(3,2) C(3,3)

 C(2,2)

 C(2,1)

 C(4,2)

 C(3,2)

 C(2,2)

 C(2,1)

 C(3,1)

 C(3,2)

 C(2,2)

 C(2,1)

(a)

 C(6,3)

 C(5,2)

 C(5,3)

 C(4,1)

 C(4,2)

 C(4,3)

 C(3,1)

 C(3,2) C(3,3)

 C(2,2)

 C(2,1)

 C(4,2)

 C(3,2)

 C(2,2)

 C(2,1)

 C(3,1)

 C(3,2)

 C(2,2)

 C(2,1)

(b)

 C(6,3)

 C(5,2)

 C(5,3)

 C(4,1)

 C(4,2)

 C(4,3)

 C(3,1)

 C(3,3)

 C(3,2)

 C(2,2)

 C(2,1)

(c)
Figure 1: Simple recursive example: C(n, k) =

`

n

k

´

. (a) Callgraph for n = 6 and k = 3. (b) Highlighting overlapping
sub-problems in callgraph. (c) Callgraph after merging overlapping sub-problems.

The methodology proposed here is based on converting
DFS to Parallel BFS. The important research contribution
here is that we view the callgraph of a problem as an implicit
graph to be explored. Whereas graph traversals are common
in disk-based programming, they are performed on object
graphs (the graph traversal itself is the solution - as is often
the case in group enumerations [18, 24]). In our case, while
the solution might be an object graph in some cases, the
method is concerned with traversing the subject graph (a
problem callgraph, which is not the answer to the problem,
but a control and data flow graph). In the case of computing
`

n

k

´

, the answer is a number, so there is no object graph, but
the method makes use of the traversal of the sub-problem
callgraph.

Historically, the conversion of a complex binary recursive
algorithm to one based on breadth-first search goes back at
least to Ochi et al. [23], in their paper on the manipula-
tion of very large binary decision diagrams (BDDs). Kunkle
et al. [19] converted the algorithm further to one based on
latency-tolerant, Parallel BFS, well-suited for parallel disks.
However, at that time, the considered algorithm was not
known to be just an instance of a more general method.

A generalization of binary recursive functions is the class
of n-ary recursive functions (also called exponentially recur-
sive) . Such a function makes n recursive calls to itself.
This type of recursion corresponds to a callgraph in which
a sub-problem can be solved by aggregating the results of
n sub-sub-problems. Translating n-ary recursion to Parallel
BFS can be summarized as follows:

• the first BFS frontier (represented as a list) contains
an encoding of the problem
• for each sub-problem on the current BFS frontier, gen-

erate all n sub-sub-problems and add them to the next
frontier.
• delayed duplicate detection is applied on the next fron-

tier with respect to all previous frontiers, to see if any
problems in the next frontier had already been discov-
ered.
• duplicates are eliminated from the next frontier, but

not before updating their parent nodes in the call-
graph, so that parents point to the duplicates’ rep-
resentatives in the next frontier.
• after BFS finished (which happens when the next fron-

tier is empty), scan each frontier, bottom-up, and for
each node in the current frontier, merge information
from the node’s children.
• the algorithm finishes when the bottom-up scan reaches

the root.

Some problems may allow representations in which nodes
in the next frontier need not be compared to nodes from
the previous frontiers [19]. In these problems, only sub-
problems at the same BFS level can be duplicates of one
another. The fewer frontiers that need to be checked at any
one time during the program execution, the more efficient

the program will be.

2.1 A Programming Model for Implementing
Recursion on Parallel Disks

To further explain how recursive programs can be adapted
into efficient parallel disk-based programs, we propose a pro-
gramming model adapted from the Cilk [9] shared-memory
model. In the Cilk model any task can create sub-tasks
without blocking. These sub-tasks can be performed in par-
allel. The task (also called a predecessor) is complemented
by a successor task, which does not start executing until all
sub-tasks of the predecessor have completed. Except for the
restriction placed on successors, any task can be executed
concurrently with any other task. The programming model
proposed here has many features in common with the orig-
inal Cilk model, but important restrictions and additions
were formulated so that it fits parallel secondary storage
computations. These significant changes are:

• The directed acyclic graph (DAG) created by task de-
pendencies is only explored by Parallel BFS. This means
that the dependency callgraph has to be generated in
a top-down fashion, and that, generally, a bottom-up
scan of the successor tasks graph is necessary in order
to execute the successors.
• Tasks will be generated and processed in batch, to al-

leviate the high-latency penalty of random accesses to
disk.
• As opposed to the original Cilk model, in the adapted

model sub-tasks cannot always be generated immedi-
ately. Some of the parameters needed to generate the
sub-tasks reside on parallel disks, thus introducing the
necessity of delayed batch access to obtain these pa-
rameters.

A graphical representation of the proposed programming
model is presented in Figure 2.

Parallel BFS scans the predecessor sub-graph (generating
the next BFS frontier at each step), while also generating
the successor sub-graph frontier by frontier in batch, to avoid
random access. As part of generating the predecessor sub-
tasks, parameters might need to be accessed from parallel
disks (denoted in Figure 2 by p1 and p2). These will also be
accessed in batch. Once all predecessors have been gener-
ated, Parallel BFS is used to scan the successors bottom-up.

A single recursive step in the programming model for disk-
based recursion is presented in Figure 3 and consists of 5
phases:

1. send a batch request to obtain necessary parameters
(denoted by p1, p2, a.s.o) for generating the next BFS
level of predecessor tasks from parallel disks.

2. receive a batched answer, containing p1, p2 a.s.o that
were requested in phase 1.

3. use information encapsulated in the current level of
predecessor tasks, together with parameters p1, p2, ...
to generate the data and possibly the code for the next
BFS level of predecessor tasks.

t1

t2 t3

t4 t5 t6

t7 t8 t9

t10 t11

s1

s2 s3

s4 s5 s6

s7 s8 s9

s10 s11

p1

 p2

Figure 2: Representation of the proposed programming model
for adapting recursive algorithms to parallel disks. Tasks
marked with t are top-down tasks (also called predecessors),
while tasks marked with s are bottom-up tasks, also know as
successors. Parameters already on parallel disks are denoted
p1, p2 and there can be as many of them as necessary.

1
1

2

2

3 3 4 5 5 5 5

delayed-access data

current BFS-level predecessor tasks current BFS-level ready successor tasks

next BFS-level predecessor tasks next BFS-level ready succesor tasks

Figure 3: Representation of one recursive step in the pro-
posed disk-based programming model. One recursive step
consists of 5 phases.

4. generate the current BFS level of successor tasks - their
purpose will be to aggregate the next BFS level of suc-
cessor tasks, which has yet to be generated

5. connect successor tasks in current BFS level to their
respective successor task parents, which have been gen-
erated in the previous recursive step.

Table 1 presents a brief comparison of the data structures
and programming patterns generally used, at a high level,
depending on the memory environment that the program
data resides in. The table also shows which programming
patterns are the most efficient for each of the possible mem-
ory environments.

Environ. Algorithm Data Duplicate detection
struct. pointer deep

equality equality

RAM-based, recursion stack memo. immediate
sequential (DFS) table (DFS)

iteration queue delayed
(BFS)

RAM-based, recursion per-thread sync’ed immediate
parallel (MT DFS) stack memo.

iteration per-thread table delayed
(MT BFS) queue

disk-based, latency- latency- delayed delayed,
parallel tolerant tolerant duplicate bottom-up

Parallel BFS parallel queue detection scan

Table 1: Fundamental algorithms, techniques and data
structures for various environments: RAM-based sequen-
tial, RAM-based parallel, disk-based parallel. MT stands for
multi-threaded. Memo. stands for memoization.

Performance EnhancementsThis section addresses the
problem of converting the performance enhancements of in-
RAM data structures and algorithms to parallel disk-based
programs.

A few general performance enhancements are used to in-
crease the efficiency of RAM-based algorithms, the most im-
portant being memoization. Memoization generally means
saving the results of already solved sub-problems. This way,
if they are encountered again during the computation, their
result is readily available.

On the CPU, the efficiency of memoization lies in the effi-
ciency of in-RAM random access: looking up a stored result
is fast. On parallel disks, the same technique is not appli-
cable because of the high latency of a random data access.
For parallel disk-based programs, this problem is solved by
delayed duplicate detection [15, 16].

It is worth noting that memoization only helps with de-
tecting sub-problems that are duplicates of previously gen-
erated sub-problems. Memoization cannot detect distinct
sub-problems that have the same result.

Detecting equal sub-problems is done by pointer equality,
while detecting distinct sub-problems with equal answers
is done by deep value equality. For the latter, disk-based
parallel programs need to perform an additional scan of the
dependency graph, usually bottom-up, so that equivalent
sub-problems can be detected (See Table 1).

Theoretical Performance of the Programming Model
An n-ary recursion has branching factor n, but overlapping
sub-problems account for a significant reduction in observed
branching factor (this is the real branching factor r, often
much smaller than n. For example, in the largest subset
construction that we present in “Experimental Results” of
Section 3, n = 14, but r = 2.09).

So the total number of generated predecessor tasks is rl×
n, where l is the number of BFS levels. The number of
generated successor tasks is at most rl, which is also the
size of the top-down callgraph.

In most data-intensive applications, in-RAM processing is
much faster than disk access, so, for simplicity, we can ignore
the time it takes to do CPU processing. For the most gen-
eral case of duplicate detection new tasks have to be dedu-
plicated against all previously discovered tasks. Assume we
have a cluster with P nodes, D disk bandwidth and N new-
tork bandwidth. All tasks have to be written and read at
least once from disk (in practice it could be more) and most
of them will have to be sent over the network once. This

brings the computation time to k·rl·(n+1)
P ·min(D,N)

+ j·rl

P ·D
. k and j

are small constant factors which include the total data that
needs to be read locally from disk without being sent over
the network, such as in deduplication.

Another factor that one needs to be aware of is the syn-
chronization time between BFS rounds, which depends on
the cluster hardware and workload distribution.

2.2 Integrating the Programming Model with
Practical Tools

This section describes how the proposed programming
model for migrating recursive algorithms to parallel disks
can be integrated with practical tools like Roomy, MapRe-
duce or STXXL.

Integrating with RoomyRoomy [17] is a library for com-
puting with parallel disks that is minimally invasive to the
original, traditional algorithm. It provides a few high-level
collection data structures (lists, arrays and hash tables) that
the low-level runtime distributes to parallel disks, allowing
the user to focus on the high-level algorithm.

Moreover, Roomy provides a smooth transition for the
user from RAM-based random access to parallel disk-based
streaming access. This is accomplished by allowing random
access in the programming model, but having the runtime
intelligently batching and organizing multiple random ac-
cesses so that they are presented to the file system in a
delayed, streaming manner. Along with delayed random ac-
cess, Roomy allows mapping a user-defined function over the
elements of a collection.

Let’s assume that we use a Roomy hash table to repre-
sent our current frontier in the callgraph, while a different
hash table represents the next frontier, at this time empty.
We can map a sub-problem generator function over the cur-
rent frontier, which contains the current level sub-problems.
The sub-problem generator function will first access, in a
delayed batched random fashion, all additional parameters
(p1, p2, ...) needed for computing the child sub-problems.
Once these parameters have been accessed, the child sub-
problems are computed and added to the next frontier. This
corresponds to a batched recursive step.

The main recursive application presented in this paper
(a package for converting an NFA to a minimal DFA - see
Section 3) was implemented in Roomy, due to its expres-
siveness and the fact that it requires fewer changes to the
subset construction algorithm, in comparison to MapReduce
or STXXL.

Integrating with MapReduceMapReduce [12] is probably
the most popular software for implementing parallel disk-
based programs. Based on the idea of LISP loops, it provides
two programming primitives: map, which allows mapping
a user-defined function over large collections of data, and
reduce, which aggregates the outputs of map, again by using
a user-defined function.

MapReduce does not allow random access in the program-
ming model. To the first-time user this might seem a ma-
jor drawback, but it is offset by the ability of using map
and reduce to define a join of two collections [8].Join is a
term borrowed from databases, which basically means com-
bining two collections of objects A = {a1, a2, ..., an} and
B = {b1, b2, ..., bm} into a collection of pairs
C = {(ai1, bj1), (ai2, bj2), ..., (aik, bjk)} based on some cri-
terion. The join operation in MapReduce is equivalent to
delayed, batched random access in Roomy.

In order to allow for efficient migration of RAM-based
programs to parallel disks, in addition to join, one could
build a map-to-many operation on top of map and reduce
(map-to-many can be simulated by a simple map emitting a
vector of elements).

HaLoop [10] is a notable extension of MapReduce in the
sense that it provides built-in iterative support for programs,
which is essential for migrating recursive programs to par-
allel disks.

The use of extension frameworks to MapReduce, such as
HaLoop or the theoretical ones based on Datalog [1] offer
support for a limited class of recursions (the ones that can
be reduced to the Transitive Closure problem). Our pro-
posed model also deals with recursions that cannot easily
be converted to Transitive Closures. (See the dynamic pro-
gramming application in Section 4).

Integrating with PregelPregel [21] is a framework for large-
scale graph computations, which operates in supersteps. The
user implements functions which specifiy the behavior of a
vertex in a superstep. A vertex can receive messages sent
to it in the previous superstep, its contents can be modi-
fied, and it can send messages to other vertices, that will be
received in the next superstep.

Pregel was developed at Google to address the efficiency
shortcomings of large graph processing in MapReduce. To
quote from the Pregel paper [21]: “MapReduce, however, is
essentially functional, so expressing a graph algorithm as a
chained MapReduce requires passing the entire state of the
graph from one stage to the next—in general requiring much
more communication and associated serialization overhead.”

Pregel passes data and control between vertices in syn-
chronized rounds. In this regard it is close to Roomy, which
passes data and control between elements in large data struc-
tures, also in synchronized rounds. Roomy and Pregel are
probably, at present, the best fits for symbolic computations,
due to their flexibility and expressiveness.

Integrating with STXXLSTXXL [7] is an implementation
of the C++ standard template library (STL) for external
memory. While it supports multi-core parallelism, it does
not support distributed memory (it is still under investiga-
tion), which makes it, for the moment, unsuitable for clus-
ter computations. However, it supports multiple locally at-
tached disks to the same compute node, which makes it a
candidate for parallel disk-based computing. One has to
keep in mind that there is usually a small practical limit
to the number of disks that can be attached to the same
machine, which is, in many cases, a severe limitation to the
maximum size of the problems that can be approached using
STXXL.

Since it is an extension of STL, it allows users to work with
very familiar tools. However, users have to translate their
algorithms into an asynchronous pipelining model. There
is detailed information on how this can be done for vari-
ous types of access patterns (diamond flow graphs, etc.).
However, asynchronous pipelining is a much more restricted
model compared to n-ary recursion.

STXXL could potentially be used to solve complex n-ary
recursions like the NFA subset construction, which we im-
plemented in Roomy and is presented in Section 3, but addi-
tional effort has to be invested into converting general n-ary
callgraphs to asynchronous pipelined parallelism.

3 Application: From NFA to Minimal DFA
The first application of the proposed Programming Model

is an algorithm for NFA determinization via subset construc-
tion. The implementation of the subset construction algo-
rithm was validated on a series of challenge problems from
the field of forbidden permutations.

Finite state automata (FSA) are usually the most com-
putationally tractable form in which to analyze the regular
languages that arise in many branches of computer science.
That analysis requires efficient algorithms both for deter-
minization of NFA (conversion of NFA to DFA) and mini-
mization of DFA.

Recall that a deterministic finite state automaton (DFA)
consists of a finite set of states with labelled, directed edges
between pairs of states. The labels are drawn from an asso-
ciated alphabet. For each state, there is at most one outgo-
ing edge labelled by a given letter from the alphabet. So, a
transition from a state dictated by a given letter is determin-
istic. There is an initial state and also certain of the states
are called accepting. The DFA accepts a word if the letters
of the word determine transitions from the initial state to
an accepting state. The set of words accepted by a DFA is
called a language.

A non-deterministic finite state automaton (NFA) is sim-
ilar, except that there may be more than one outgoing edge
with the same label for a given state. Hence, the transition
dictated by the specified label is non-deterministic. The

NFA accepts a word if there exists a choice of transitions
from the initial state to some accepting state.

Recall that the subset construction allows one to transform
an NFA into a corresponding DFA that accepts the same
words. Each state of the DFA is identified with a subset of
the NFA states. Given a state A of the DFA and an edge
with label α, the destination state B consists of a subset of
all states of the NFA having an incoming edge labelled by α
and a source state that is a member of the subset A.

Subset construction for large NFAsSubset construction
can be viewed as a dynamic programming problem, which
is traditionally implemented by recursion. Algorithm 1 de-
scribes the RAM-based recursive approach for subset con-
struction.

Algorithm 1 RAM-based, Recursive Subset Construction

Input: Initial NFA, with initial state si and accepting
states As

Output: DFA, represented as a list, equivalent to NFA
1: Create subset I ← {si}, and an integer Id for it (IdI)
2: Insert pairs (I, IdI) in a hash table of visited subsets,

visited
3: Create DFA — a list that will store the resulting DFA,

containing 3-tuples of the form (Id, t, Idnext), meaning
transition t takes state with Id to state with Idnext

4:
5: Call subset construct(I, IdI).
6:
7: func subset construct(subset S, IdS):
8: for each NFA transition t do
9: Create empty subset Snext

10: for each state s in subset S do
11: t takes s to snext in the NFA
12: Add snext to Snext

13: if Snext is already in visited then
14: Get IdSnext

from visited and add 3-tuple
(IdS , t, IdSnext

) to DFA
15: else
16: Create a new Id for Snext, add pair (Snext, IdSnext

)
to visited and add (IdS , t, IdSnext

) to DFA
17: Recursively call subset construct(Snext, IdSnext

)
18: end func

Note that the recursive call from line 17 of Algorithm 1
is made for each newly discovered subset, which makes the
branching factor of the recursion variable.

Using the method for migrating RAM-based, recursive
programs to parallel disks from Section 2, the Programming
Model of Section 2.1 and the performance enhancements
(such as delayed duplicate detection) summarized in Table 1
of Section 2.1, we migrated Algorithm 1 to Algorithm 2,
which we implemented in Roomy and ran on a computer
cluster with 29 nodes. Note that visited, DFA and other
data structures representing collections (current frontier,
next frontier) are now parallel disk-based structures, in our
case provided by Roomy. Experimental results which, to our
knowledge, report the largest successully carried out subset
construction compared to previous literature, are presented
in Table 2 of Section 3.

In Algorithm 2, line 10 accounts for steps 1–3 in the Pro-
graming Model presented in Section 2.1. In this particular
case, the parameters p1, p2, a.s.o. needed to generate the
next BFS frontier are stored in RAM, since the NFA fits in
memory. Line 11 accounts for the disk-based performance
enhancement of delayed duplicate detection, presented in
Table 1, which is equivalent to immediate in-RAM dupli-
cate detection via a hash table. Line 13 implements step
4 in the Parallel Disk Recursive Programming Model - the
creation of successor data that will contribute to the result.

Algorithm 2 Parallel Disk-based Subset Construction

Input: Initial NFA, with initial state si and accepting
states As

Output: DFA, represented as a list, equivalent to NFA
1: Create subset I ← {si}, and an integer Id for it (IdI)
2: Insert pairs (I, IdI) in a hash table of visited subsets,

visited
3: Create DFA — a list that will store the resulting DFA,

containing 3-tuples of the form (Id, t, Idnext), meaning
transition t takes state with Id to state with Idnext

4: Add pair (I, IdI) into current frontier and create
next frontier, initially empty.

5:
6: Call pardisk subset construct().
7:
8: func pardisk subset construct():
9: while current frontier is not empty do

10: Call neigh(S, IdS) for each pair (S, IdS) in
current frontier, which returns a BATCH of
Snext subsets.

11: Perform delayed duplicate detection on the BATCH
of Snext subsets with respect to visited and, for al-
ready visited subsets, obtain their Id, while for newly
discovered subsets, create new Ids.

12: Insert all new (subset S, Idsubset S) in visited.
13: Add all (IdS , t, IdSnext

) to DFA, for all t, regardless
of whether Snext is new or not.

14: Add all new Snext to next frontier.
15: Remove contents of current frontier from parallel

disks
16: Rename next frontier to current frontier
17: Create an empty list with name next frontier
18: end func
19:
20: func neigh(subset S, IdS) returns neighbor subsets:
21: Create ordered set of subsets SET , initially empty.
22: for each NFA transition t do
23: Create empty subset Snext

24: for each state s in subset S do
25: t takes s to snext in the NFA
26: Add snext to Snext

27: Add Snext to SET .
28: Return SET .
29: end func

Note that, in this particular example, a bottom-up scan of
successor data is not necessarily needed, since the answer is
the successor data itself (the tuples of the DFA).

Finding the Unique Minimal DFABesides providing an
example of the proposed method for converting recursive,
RAM-based programs to parallel disks, a secondary goal was
to provide a Package for Very Large Finite Automata. In
order for such a package to be useful in practice, the very
large DFA obtained from subset construction needs to be
minimized to a canonical form.

The algorithm chosen for computing the minimal DFA
on parallel disks is based on a parallel RAM-based algo-
rithm used on supercomputers in the late 1990s and early
2000s [14]. We call this the forward refinement algorithm.
The central idea of the algorithm is to iteratively partition
the states (to refine partitions of the states) of the given
DFA, which is proven to converge to a stable set of par-
titions. Upon convergence, the set of partitions, together
with the transitions between partitions, form a graph which
is isomorphic to the minimal DFA. Initially, the DFA states
are split into two partitions: the accepting states and the
non-accepting states. For each state s, a 3-tuple is created:
(s, p, {pnext}), in which p is the partition of s and {pnext}
is the ordered set of partitions of next states, obtained from
s by following a fixed order of all transitions t. For each 3-

tuple, the pair (p, {pnext}) defines a new partition, in which
s will be placed. The iterative process continues with the
new set of partitions, until a refinement step yields no new
partitions. Since this is an iterative algorithm working on
constant amounts of data, it is easier to convert to paral-
lel disks via a simple Parallel BFS. Experimental results for
DFA minimization are provided in Section 3, Table 2.

Token Passing NetworksA token passing network is a
directed graph with designated input and output vertices.
Numbered tokens are considered to enter the graph one at
a time at the input vertex, and travel along edges in the
appropriate direction. At most one token is permitted at
any vertex at any time. The tokens leave the graph one at
a time at the output vertex. A permutation π ∈ Sn is called
achievable for a given network if it is possible for tokens to
enter in the order 1, . . . , n and leave in the order 1π, . . . , nπ.

The problem of achievable permutations by two stacks in
series can be modelled as a finite token passing network and
their behavior studied using the techniques of [5]. These
techniques allow the classes of achievable permutations and
the forbidden patterns that describe them to be encoded
by regular languages and manipulated using finite state au-
tomata using a collection of GAP programs developed by
the fourth author and M. Albert.

In previous work, the fourth author explored the cases of
stacks of depths 2 and depth k for a range of values of k
and observed that for large enough k the sets of minimal
forbidden patterns appeared to converge to a set of just 20
of lengths between 5 and 9, which were later proved [13] to
describe the case of a 2-stack and an infinite stack.

The application that motivates the calculations in this
paper is a step towards extending this result to a 3-stack
and an infinite stack, by way of the slightly simpler case of a
3-buffer (a data structure which can hold up to three items
and output any of them).

Computations had been completed on various sequential
computers for a 3-buffer and a k-stack for k ≤ 8, but this was
not sufficient to observe convergence. The examples consid-
ered in this paper are critical steps in the computations for
k = 9, k = 10, k = 11 and k = 12. Based on the results
of these computations we are now able to conjecture with
some confidence a minimal set of 12,636 forbidden permuta-
tions for a 3-buffer and an infinite stack of lengths between
7 and 18.

Experimental ResultsParallel disk-based computations were
carried out on a 29-node computer cluster, each node’s pro-
cessor being a 4-core Intel Xeon CPU 5130 running at 2
GHz. Nodes on the cluster had either 8 or 16 GB of RAM
and at least 200 GB of free disk storage and ran Red Hat
Linux kernel version 2.6.9.

Table 2 presents the sizes of the intermediate DFAs pro-
duced by subset construction, the sizes of the minimal DFAs
produced by the minimization process for the four consid-
ered token passing network problems, as well as the timings
for both subset construction and DFA minimization.

4 Application: 0–1 Knapsack Problem
To help demonstate the generality of the approach pre-

sented here, we apply these methods to the knapsack prob-
lem, which is usually defined recursively and solved using
dynamic programming.

Problem definitionGiven: n items, each with a positive
weight wi and positive value vi; and a knapsack capacity W .

Maximize
Pn

i=0 vixi subject to
Pn

i=0 wixi ≤W , where
xi ∈ 0, 1 represents whether item i is placed in the knap-
sack.

Recursive solutionDefine M [i, w] as the maximum pos-
sible value when choosing from the first i items, given a
knapsack of capacity w

M [i, w] is defined recursively as

• M [0, w] = M [i, 0] = 0
• M [i, w] = M [i− 1, w] if wi > w
• M [i, w] = max(M [i − 1, w], M [i − 1, w − wi] + vi if

wi ≤ w

Parallel breadth-first algorithmM can be computed bot-
tom up using dynamic programming, using the parallel breadth-
first approach given in Algorithm 3.

Algorithm 3 Parallel breadth-first dynamic programming
solution for the 0–1 knapsack problem.

Input: Item values v1, . . . , vn, weights w1, . . . , wn, and
knapsack capacity W .

Output: Matrix M , where M [i, w] is the maximum value
achievable using the first i items and a knapsack of ca-
pacity w.

1: Set M [0, w] = 0, for 0 ≤ w ≤W .
2: for i = 1 to n do
3: for all 0 ≤ w ≤W in parallel do
4: set M [i, w] = max(M [i−1, w], M [i−1, w−wi]+vi)

Experimental resultsAlgorithm 3 was implemented using
Roomy [17]. It was tested for a variety of problems sizes
using a shared-memory machine with with four quad-core
1.8 GHz AMD Opteron processors, 128 GB of RAM and 5
locally-attached disks adding up to 1.7 Terabytes, running
Ubuntu SMP Linux 2.6.31-16-server, and compiling code
with GCC 4.4.1

Items Capacity Size of M Run-time (s)

16 K 16 K 256 M (2 GB) 1097
16 K 32 K 512 M (4 GB) 1668
16 K 64 K 1024 M (8 GB) 2724
16 K 128 K 2048 M (16 GB) 5000
32 K 16 K 512 M (4 GB) 2966
64 K 16 K 1024 M (8 GB) 9582
128 K 16 K 2048 M (16 GB) 31081

Table 3: Experimental results 0–1 knapsack problem.

Table 3 shows the running times for various size knap-
sack problems. The smallest example has 16 K items and
a knapsack capacity of 16 K, resulting in a solution matrix
with 256 M entries. This took 1097 seconds to complete.

The next three rows show the effects of increasing capac-
ity, which adds additional columns to M . In this case, run-
time increases sub-linearly as the syncronization overhead
that occurs between computing each row is ammortized over
the larger rows.

Finally, the last three rows show the effect of increasing
the number of items. In this case, runtime increases super-
linearly, as syncronization overhead is increased.

5 Related Work
Converting sequential programs to parallel ones has been

an active topic of research for at least the past 25 years. The
following two general results form the basis of the conver-
sion from a sequential, RAM-based, recursive computation
(which uses a stack) to a parallel, external memory, non-
recursive computation (which uses the concept of a latency-
tolerant Parallel Queue, described for the case of a binary
decision diagram package in [19, Section 4.2]):

• Primitive recursive functions can be converted into it-
erations [6, 22]. Tail recursion can be converted into

Problem NFA size Intermediate DFA Minimal DFA
Instance (#states) size (#states) Peak disk (GB) time size (#states) Peak disk (GB) time

1 167,143 49,722,541 24 9min 32,561 6 38min
2 537,294 175,215,168 90 29min 95,647 22 2h 42min
3 1,667,428 587,547,014 327 3h 40min 274,752 81 9h 40min
4 5,035,742 1,899,715,733 1,136 1day 12h 774,172 295 1day 8h

Table 2: Solutions for the four NFA→ DFA→ minDFA considered problems.

an iteration without using a queue. Binary or n-ary re-
cursion can be converted to an iteration by replacing
the process stack with an explicit stack (implemented
using a queue).
• Any program that uses the process stack could be modi-

fied to use the heap instead by employing continuation-
passing style (CPS) [26], which thus makes programs
tail-recursive.

Significantly relevant to this research is the work of Arvind
and Nikhil [2], who show that there is an equivalence be-
tween dataflow diagrams and CPS.

The idea of converting the process stack to a queue led
to a successful shared-memory parallel language based on
work-stealing: Cilk [9]. A task does not wait for sub-tasks
to return, but instead it spawns a successor thread to receive
the sub-tasks’ results. The tasks are self-contained compu-
tations, also known as closures. To solve the problem that
a task might need arguments that are not readily available,
all missing arguments are treated as continuations.

Cormen and Davidson [11] proposed FG, a framework for
generating efficient secondary storage cluster computations.
Their research aims at hiding the effects of secondary storage
high-latency accesses for computations whose data flow fits
a pipeline structure, and later extended it for computations
that fit fork-join patterns and directed acyclic graph (DAG)
patterns. The dataflow paths in the DAG are determined
dynamically, but the DAG structure is fixed and cannot be
modified dynamically by the program. STXXL [7] shares
many ideas with FG.

There has been significant work recently on implementing
some classes of recursive algorithms on parallel disks [1, 10,
21], but these approaches are less general, and usually tied to
programming in a specific programming language/extension.

6 References
[1] F. N. Afrati, V. Borkar, M. Carey, N. Polyzotis, and

J. D. Ullman. Map-reduce extensions and recursive
queries. In Proc. 14th Intl. Conf. on Extending
Database Technology, EDBT/ICDT ’11. ACM.

[2] K. Arvind and R. S. Nikhil. Executing a program on
the MIT tagged-token dataflow architecture. IEEE
Trans. Comput., 39:300–318, March 1990.

[3] M. Aschbacher. On the maximal subgroups of the
finite classical groups. Inventiones Mathematicae,
76:469–514, 1984. 10.1007/BF01388470.

[4] M. D. Atkinson. Generalized stack permutations.
Comb. Probab. Comput., 7:239–246, September 1998.

[5] M. D. Atkinson, M. J. Livesey, and D. Tulley.
Permutations generated by token passing in graphs.
Theor. Comput. Sci., 178:103–118, May 1997.

[6] P. Axt. Iteration of primitive recursion. Mathematical
Logic Quarterly, 11(3):253–255, 1965.

[7] A. Beckmann, R. Dementiev, and J. Singlery. Building
a parallel pipelined external memory algorithm
library. In Proc. 2009 IEEE Intl. Symp. on Par.&Dist.
Processing, IPDPS ’09. IEEE Computer Society.

[8] S. Blanas, J. M. Patel, V. Ercegovac, J. Rao, E. J.
Shekita, and Y. Tian. A comparison of join algorithms
for log processing in MapReduce. In Proc. 2010 Intl.
Conf. on Management of data, SIGMOD ’10. ACM.

[9] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: an
efficient multithreaded runtime system. J. Parallel

Distrib. Comput., 37:55–69, August 1996.
[10] Y. Bu, B. Howe, M. Balazinska, and M. D. Ernst.

HaLoop: efficient iterative data processing on large
clusters. Proc. VLDB Endow., 3:285–296, Sept. 2010.

[11] T. H. Cormen and E. R. Davidson. FG: A framework
generator for hiding latency in parallel programs
running on clusters. In ISCA PDCS 2004.

[12] J. Dean and S. Ghemawat. MapReduce: simplified
data processing on large clusters. In Proc. 6th Symp.
on Operating Systems Design & Impl. - Volume 6.
USENIX Association, 2004.

[13] M. Elder. Permutations generated by a stack of
depth 2 and an infinite stack in series. Electron. J.
Combin., 13(1), 2006.

[14] J. F. JáJá and K. W. Ryu. An efficient parallel
algorithm for the single function coarsest partition
problem. In Proc. Fifth Annual ACM Symp. on Par.
Alg. and Architectures, SPAA ’93. ACM.

[15] R. E. Korf. Best-first frontier search with delayed
duplicate detection. In Proc. 19th Natl. Conf. on AI,
AAAI’04. AAAI Press.

[16] R. E. Korf. Delayed duplicate detection: extended
abstract. In Proc. 18th Intl. Joint Conf. on AI.
Morgan Kaufmann Publishers Inc., 2003.

[17] D. Kunkle. Roomy: A C/C++ library for parallel
disk-based computation, 2010.
http://roomy.sourceforge.net/.

[18] D. Kunkle and G. Cooperman. Twenty-six moves
suffice for Rubik’s cube. In Proc. 2007 Intl. Symp. on
Symb. and Algebraic Computation, ISSAC ’07. ACM.

[19] D. Kunkle, V. Slavici, and G. Cooperman. Parallel
disk-based computation for large, monolithic binary
decision diagrams. In Proc. 4th Intl. Workshop on
Par. and Symb. Comput., PASCO ’10. ACM.

[20] C. E. Leiserson and T. B. Schardl. A work-efficient
parallel breadth-first search algorithm (or how to cope
with the nondeterminism of reducers). In Proc. 22nd
ACM Symp. on Par. in Alg. and Arch., SPAA ’10.
ACM.

[21] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert,
I. Horn, N. Leiser, and G. Czajkowski. Pregel: a
system for large-scale graph processing. In Proc. 2010
Intl. Conf. on Manag. of data, SIGMOD ’10. ACM.

[22] A. R. Meyer and D. M. Ritchie. The complexity of
loop programs. In Proceedings of the 1967 22nd
National Conference, ACM ’67. ACM.

[23] H. Ochi, K. Yasuoka, and S. Yajima. Breadth-first
manipulation of very large binary-decision diagrams.
In Proc. 1993 IEEE/ACM Intl. Conf. on
Computer-aided Design, ICCAD ’93. IEEE Computer
Society Press.

[24] E. Robinson. Large implicit state space enumeration:
overcoming memory and disk limitations. PhD thesis,
Boston, MA, USA, 2008. Adviser-Cooperman, Gene.

[25] E. Robinson, D. Kunkle, and G. Cooperman. A
comparative analysis of parallel disk-based methods
for enumerating implicit graphs. In Proc. 2007 Intl.
Workshop on Par. Symb. Comput., PASCO ’07. ACM.

[26] G. J. Sussman and G. L. Guy L Steele, Jr. Scheme:
An interpreter for extended lambda calculus. In Memo
349, MIT AI Lab, 1975.

[27] J. S. Vitter. External memory algorithms and data
structures: dealing with massive data. ACM Comput.
Surv., 33:209–271, June 2001.

[28] J. S. Vitter and E. A. Shriver. Algorithms for parallel
memory I: Two-level memories. Technical report,
Providence, RI, USA, 1992.

