
A Disk-Based Parallel Implementation for Direct
Condensation of Large Permutation Modules

Eric Robinson
∗

College of Computer Science
Northeastern University

Boston, MA 02115 / USA
tivadar@ccs.neu.edu

Jürgen Müller
Lehrstuhl D für Mathematik

RWTH Aachen
52062 Aachen / Germany

juergen.mueller@
math.rwth-aachen.de

Gene Cooperman
∗

College of Computer Science
Northeastern University

Boston, MA 02115 / USA
gene@ccs.neu.edu

ABSTRACT
Through the use of a new disk-based method for enumerat-
ing very large orbits, condensation for orbits with tens of bil-
lions of elements can be performed. The algorithm is novel
in that it offers efficient access to data using distributed disk-
based data structures. This provides fast access to hundreds
of gigabytes of data, which allows for computing without
worrying about memory limitations.

The new algorithm is demonstrated on one of the long-
standing open problems in the Modular Atlas Project [11]:
the Brauer tree of the principal 17-block the sporadic sim-
ple Fischer group Fi23. The tree is completed by com-
puting three orbit counting matrices for the Fi23-orbit of
size 11, 739, 046, 176 acting on vectors of dimension 728 over
GF (2). The construction of these matrices requires 3-1/2
days on a cluster of 56 computers, and uses 8 GB of disk
storage and 800 MB of memory per machine.

Categories and Subject Descriptors
I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—algebraic algorithms

General Terms
Algorithms, Experimentation

Keywords
permutation groups, matrix groups, disk-based computa-
tion, parallel computation, Brauer trees, condensation, spo-
radic Fischer group

1. INTRODUCTION
In recent years, in particular in the framework of the Mod-

ular Atlas project mentioned below, but also in other applica-

∗This work was partially supported by the National Science
Foundation under Grant ACIR-0342555.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ISSAC’07, July 29–August 1, 2007, Waterloo, Ontario, Canada.
Copyright 2007 ACM 978-1-59593-743-8/07/0007 ...$5.00.

tions, the need of techniques to deal with very large permu-
tation domains acted on by finite groups became apparent.
Condensation, whose formalism is recalled in Section 2, is
one of the workhorses allowing one to handle those, by some-
times dramatically decreasing the size of the objects to be
managed explicitly, while retaining enough of their internal
structure to remain useful.

In [7] this was done for the orbit of some vector under a
linear action of the group in question, by first forming a per-
mutation representation, which was then processed to find
the associated condensed module. Such computations were
limited to permutations with at most hundreds of millions
of points, due to memory limitations. Those computations
used a space-time trade-off in order to stay within the limits
of aggregate RAM in a cluster. Under such a space-time
trade-off, optimizing any computation with more than a bil-
lion points typically pushed the time requirements so far
that the computation became impractical.

A more recent research direction [6, 22] looked at using
distributed disk for large computations such as orbit enu-
meration. Here the disks of a cluster are accessed in a
streaming manner for similar performance to a single mem-
ory module. Essentially this gives a computation access to
terabytes of fast storage where previously only gigabytes
were available. Many problems that were previously impos-
sible have become feasible due to a large space-time tradeoff.
Using one of these distributed disk-based techniques capa-
ble of generating orbits with tens of billions of vectors, it
becomes advantageous to work with the vectors in the orbit
directly rather than producing a permutation representa-
tion.

In this paper we present a distributed disk-based imple-
mentation of the direct condense technique. The details of
the underlying sequential algorithm and the new distributed
algorithm are given in Sections 3 and 4, respectively. Our
implementation, which of course is of general purpose, has
been successfully tested by way of the following example,
which is detailed in Section 5: We consider the sporadic
simple Fischer group Fi23, which has a transitive permu-
tation domain of size 11, 739, 046, 176. This is realized as
a set of vectors of dimension 782 over GF (2). Once this
orbit has been enumerated, it is partitioned into the 6, 486
suborbits of a suitable condensation subgroup, and the as-
sociated orbit counting matrices for several elements of Fi23
are produced.

1.1 Related Work
Enumeration and direct condensation of large orbits, and

their application to modular representations and other as-
pects of finite groups, have raised some interest in recent
years. The direct condense technique has been invented in
[20], already including a notion of landmarks. It has been
implemented as parallelized versions in [7, 12], and has been
further developed using subgroup structures in [15, 17, 19].

As for concrete examples dealt with, in [5] the sporadic
simple Thompson group was considered, where the com-
putational architecture STAR/MPI (currently ParGCL) [3]
was used, while in [18] the sporadic simple Lyons group was
considered. In both cases, the aim was to complete certain
Brauer trees. In [15, 16, 19, 22], the sporadic simple Baby
Monster group was considered.

1.2 Acknowledgements
The authors thank Leo Hill for providing on the North-

eastern University cluster the extensive disk resources needed
for this computation. We also thank Daniel Kunkle of North-
eastern University for helpful discussions concerning efficient
disk-based data structures and algorithms.

2. BACKGROUND

2.1 Notation
In examining groups and their actions on a vector space,

it becomes useful to have some shorthand notation: We use
the expression vG, where v is a vector and G is a group, to
denote the G-orbit of v, or vG = {vg : g ∈ G} where vg

is the action of g on v by vector-matrix multiplication. In
addition, given a subgroup K ≤ G, a G-orbit O = vG is a
disjoint union of K-orbits S = {S1, . . . , Sk}, called the K-
suborbits in O. In particular, we have |S1|+ . . .+ |Sk| = |O|.
Finally, it will also be useful to have notation for applying
a particular group element g ∈ G to all elements in a set: if
O is a set of vectors, Og = {wg : w ∈ O}.

2.2 Condensation
Condensation, or more precisely fixed point condensation,

was invented in [23] to aid in finding new irreducible rep-
resentations of a group and to analyze existing ones. Its
theoretical underpinnings as particular Schur functors are
described in [9]. Since its invention it has been used in a
number of settings. The so-called direct condense techniques
related to the present work has already been mentioned in
Section 1.1. For more details we refer the reader, for exam-
ple, to the overviews in [14, 15].

Fundamentally, the goal is to condense a permutation rep-
resentation on a large number of points, or a matrix repre-
sentation of a high dimension, into a manageable matrix
representation. The condensed representation typically has
a much smaller dimension than the original one, which al-
lows one to reasonably compute with condensed matrices,
and to extract information about the original representation.
Computing with the original representation would have been
infeasible.

2.3 Fixed point condensation
Formally we consider the group algebra FG of the groupG

over the field F of characteristic p. Letting K ≤ G subgroup
having order |K| prime to p, a so-called condensation sub-
group, there is the idempotent e = |K|−1 ·

∑
g∈K g ∈ FG.

Then to any (right) FG-module M we associate the con-
densed module Me, which is a module of the so-called Hecke
algebra eFGe. In practice, Me is the subset of M consisting
of the elements left fixed by K, from which comes the name
fixed point condensation.

2.4 Permutation modules
If FO is the permutation module associated to the finite

G-set O, then the condensed module FOe is described as
follows: Letting S1, . . . , Sk be the K-suborbits in O, we let
S+

i :=
∑
w∈Si

w ∈ FO be the associated orbit sums. Then

{S+

i , . . . , S
+

k } is an F -basis of FOe, and for c ∈ G the action
of the condensed element ece on FOe is given as S+

i · ece =∑
j Cij(c) · |Sj |

−1 · S+

j , where

Cij(c) = |{w ∈ Si : w
c ∈ Sj}|.

Hence condensing c ∈ G essentially boils down to computing
the orbit counting matrix C(c) = [Cij(g)] of dimension k.

In the direct condensation technique, as it is used here, we
do not write down permutations to describe the G-action
on O, but instead use a linear G-action on a vector space V
to give an implicit description of O as follows: We specify
a subgroup H ≤ G and a vector v ∈ V such that H =
StabG(v). Thus the orbit O = vG is equivalent as a G-set
to the set of cosets of H in G.

3. SEQUENTIAL ALGORITHM AND
PREDICTED TIME

Here the sequential condensation algorithm is presented
along with an analysis predicting the running time for Fi23.
The running time is based on the architecture described in
Section 4.5.

3.1 Sequential Algorithm
Condensation, as described in Section 2.2, can be broken

up into three phases. These phases are shown below:

3.1.1 Orbit Enumeration
Once a suitable vector v ∈ V has been determined, O =

vG must be computed. This can be done in a straightforward
manner using a breadth-first search algorithm as shown in
Algorithm 1. Let gensG = {g1, . . . , gm} be the generators
of G.

Algorithm 1: discoverOrbit

Input: v, gensG
Output: O

let open← a queue with only v in it ;
set O ← an empty set ;
while open is not empty do

dequeue h from open;
for g ∈ gensG do

t = hg;
if t has not been seen then

add t to O;
enqueue t on open;

3.1.2 Suborbit Partitioning
Once the elements of O have been enumerated and a con-

densation subgroup K has been selected, O can be parti-
tioned into K-suborbits S. This is done by performing a

breadth-first search using the generators gensK = {k1, . . . , kn}
of K over the elements in O until all the elements have been
seen. This is shown in Algorithm 2.

Algorithm 2: partitionOrbit

Input: O, gensK
Output: S

set S ← ∅;
while O is not empty do

select any o ∈ O;
let s← discoverOrbit(o, gensK);
remove the elements in s from O;
add s to S;

3.1.3 Orbit Counting
Once O has been partitioned into K-suborbits S and a

condensation element c ∈ G has been selected, the orbit
counting matrix C(c) must be computed. This is done by
counting, for each suborbit, how many elements in that sub-
orbit map to each other suborbit, when c is applied to them.
This is shown in Algorithm 3.

Algorithm 3: orbitCount

Input: S, c

Output: C(c)

set C(c)← a |S| × |S| all-zeros matrix ;
for i ∈ {1, . . . , |S|} do

for s ∈ Si do

j = x s.t. sg ∈ Sx;
Ci,j(c) = Ci,j(c) + 1;

3.2 Optimizations
To store O in full for Fi23 would require storing approx-

imately 11.7 × 109 100-byte vectors. This would require a
total storage of approximately 1 terabyte. Here two meth-
ods for reducing that space are presented. These methods
add to the computation time required by the algorithms pre-
sented in this section. In addition, however, another method
is presented that reduces the time for vector-matrix multi-
plications.

3.2.1 Fast Vector-Matrix Multiplication
The generators for Fi23 are of dimension 782 over GF(2).

Under optimal conditions, the memory subsystem on an in-
dividual node is capable of reading or writing 2.12 GB/s.
Given that we have access to 64 bit operations (specifically
XOR), the time to perform a vector-matrix multiplication
in Fi23 is 3.6 × 10−5s. This time is dominated by the time
to access memory.

However, to speed up the time for vector-matrix multipli-
cations, we can use a technique called greasing. Greasing,
which was invented by Richard Parker, precomputes mul-
tiplication tables by combining bands of rows for a matrix
in order to speed up subsequent multiplications. This tech-
nique is also used in GAP [8] and Magma [1]. Since we
only use two matrices (the generators), this method can be
used to speed up the computation using a reasonably small
amount of space.

3.2.2 Compressed Values
Rather than using full 100 byte vector values, 12 bytes

can be used to represent each element in O and guarantee
that it is distinct from every other element in O with a high
probability. The representation size must be on the order of
lg(|O|2) = 2×lg(|O|) in order to guarantee a high probability
of uniqueness.

Storing this representation along with the path in the gen-
erators to the value from v requires on average 30 bytes of
storage per element. In order to use these values for vector-
matrix multiplications, however, the path to the value from
v must be applied to get the full value. While the use of
compressed values reduces the space of the computation, it
results in additional vector-matrix multiplications.

Orbit enumeration requires storing full values only for the
frontier (or open queue). Once the generators have been ap-
plied to a value, it can be stored in its compressed form with
no additional computation time. Suborbit partitioning re-
quires rebuilding a single value for each suborbit. This time
is trivial in comparison to the time to generate the suborbit
itself. Finally, orbit counting requires rebuilding only one
value from each suborbit as well. After this, the full subor-
bit can be produced as it was in the suborbit partitioning
phase and c can be applied to all values in that suborbit.
Once again, the time to reproduce a single value is trivial in
comparison to the time to generate the suborbit itself.

3.2.3 Landmark Discovery
As the size of the orbit O grows, it becomes increasingly

difficult to store the elements of O seen during the enumera-
tion phase. While the enumeration phase can use streaming
disk in a breadth-first search, this cannot be done easily
for the suborbit partitioning or the orbit counting phases,
which must randomly look up elements. Therefore, an ap-
proach known as landmark discovery [4, 7] is commonly used
to allow O to fit in memory.

In landmark discovery, a subset of the orbit elements are
declared to be landmarks and retained in memory. The non-
landmarks are discarded. This leads to storing only 1/L
elements, where 1/L is the landmark ratio. Though this
reduces the total storage, it requires additional work during
the suborbit partitioning and orbit counting phases.

In the suborbit partitioning phase, if there exists at least
one landmark in each suborbit then a breadth-first search
from that landmark over gensK can be used to produce the
full suborbit. Because of this, the landmark ratio is typically
selected so that it is large enough to guarantee with high
probability that at least one landmark will be seen in each
suborbit. Any missing suborbit can still be detected and
added during the orbit counting phase.

In addition, in the orbit counting phase, if the elements
in sc : s ∈ Si are not landmarks, then a breadth-first search
from the non-landmark elements over gensK must be per-
formed until a landmark is found.

3.3 Predicted Time
Given the use of landmark discovery using greasing for

vector-matrix multiplication, the runtime of a single con-
densation can be predicted. Those times are presented in
this section.

3.3.1 Predicted Vector-Matrix Multiplication Time
We found that by using greasing with a band size of 8, a

reasonable speedup using only a small amount of memory
was obtained:

Mem Space 782× d782/8e × 28b 20MB
CPU Time d782/64e × d782/8eops 4.2× 10−7s
Mem Time d782/8e × d782/8eB 4.5× 10−6s

By using greasing and about 40 megabytes of extra space
per machine, a single vector-matrix multiplication can be
sped up by a factor of eight as compared to using the stan-
dard method. Experimentally, we obtained a greasing time
closer to 2.0× 10−5s, and it is this time we will use for the
predicted time of algorithm.

3.3.2 Predicted Sequential Time using Landmarks
Breadth-first search requires time proportional to the num-

ber of elements in the search and the branching factor. This
implies a total of |O| × |gensG| vector-matrix multiplica-
tions for the orbit enumeration phase, and |O| × |gensK |
vector-matrix multiplications for the suborbit partitioning
phase. The use of landmarks increases the number of vector-
matrix multiplications in the orbit counting phase from |O|
to L× |O|. Given the time for vector-matrix multiplication
by greasing and the fact that both G and K have two gener-
ators, this implies a total time of 25.8 CPU days on a single
machine.

3.3.3 Predicted Parallel Time with Linear Speedup
The predicted running time for each phase of the com-

putation is shown below. These times assume computation
on a cluster of 56 nodes with nearly linear parallel speedup.
These times compare closely to the experimental times for
the parallel disk-based algorithm found in Section 4.5. The
experimental time for orbit enumeration is notably larger
than the predicted time. The predicted time does not take
into account the time for duplicate detection in large disk-
based breadth-first searches. More details on this can be
found in [22].

Phase Time
Orbit Enumeration 2 hours
Suborbit Partitioning 2 hours
Orbit Counting 7 hours
Total 11 hours

4. DISTRIBUTED DISK-BASED
ALGORITHM

We present our distributed disk-based algorithms for the
computation of orbit counting matrices for G = Fi23. In
the language of Section 2, V has dimension 782 over GF (2).
Choosing a suitable subgroup H = O+

8 (2) : 2 < G there
indeed is a v ∈ V such that StabG(v) = H. Letting O = vG

this leads to |O| = 11, 739, 046, 176. Moreover, we choose
K = S6(2) : 2 < H, which leads to k = 6, 486 suborbits
in O. These choices are justified in Section 5.

The cluster we are using for this computation has 56 nodes,
each with 4 gigabytes of local memory and 10 gigabytes of
local disk. Due to the orbit size, |O| = 11, 739, 046, 176, O is
too large to store in memory across the cluster and must use
distributed disk. Here a disk-based solution to this problem
is presented in terms of the three phases of condensation
discussed in Section 3.1.

4.1 Terminology
Before examining the algorithm itself, some common ter-

minology must be considered.

Owner of a Vector Given the compressed signature wc of
a vector w, a subset of the bits of that compressed
signature are used to determine a unique node, N (wc)
in the computation that is responsible for storing that
compressed signature. For a set of compressed signa-
tures, O, Pi(O) = {wc ∈ O : N (wc) = i} is the set of
compressed signatures belonging to node i in O.

Owner of a suborbit Given a set of compressed signatures
W representing the values in a suborbit, a canonical or-
dering for those compressed signatures is chosen. The
smallest C(W) ∈ W is the canonical member of W .
The owner of W , N (W) = N (C(W)) is the node own-
ing the canonical member of W . It is responsible for
storing the information for that orbit. For a set of
suborbits S, Pi(S) = {s ∈ S : N (s) = i} is the set of
suborbits belonging to node i in S.

4.2 Orbit Enumeration
We follow the general approach of [22] for orbit enumera-

tion to produce O = vG. This approach uses a distributed
hash array while performing a breadth first search. Any
empty hash slot indicates a value has not been seen previ-
ously. If the hash slot is not empty, either the value is a
duplicate or there has been a hash collision. In this case,
the value is dropped from the frontier and placed in a colli-
sion queue. Values in the collision queue are later checked to
determine where hash collisions occurred by using external
sort and a streaming scan through the values. This allows
disk-based duplicate detection to take place using streaming
access only. After hash collisions have been detected, these
values are added to the frontier.

Given the use of compressed values, the amount of space
required by the entire search is only 6.4 gigabytes per node.
This fits easily on distributed disk. The hash used for this
computation required only 2 bits per entry, or 53 megabytes
per node. This allows for a hash that fits easily into dis-
tributed memory. This hash is organized in such a way that
for all values w ∈ O : w hashes to node i, N (wc) = i, or
every value hashes to the node that owns it. This allows
the messages that check the distributed hash to double as
the messages that store values in the orbit on the node that
owns them.

While the use compressed values reduces the amount of
space required enough to fit the search on disk, it also in-
creases the number of vector-matrix multiplications required.
Those values discovered whose hash slots are empty are
added immediately to the frontier and are never stored in
their compressed form in the collision queue. However, those
elements that have hash collisions must later be added back
into the frontier. In order to do this, their full values must
be computed. Fortunately, it is only a small percentage,
around 22.5%, of the values for which this must be done. In
addition, many of the calculations can be batched so that
value-generator pairs are not computed multiple times for
values that have similar paths.

4.3 Suborbit Partitioning
Suborbit partitioning to form theK-suborbits can be viewed

in terms of the actions of the nodes owning the data in ques-

tion on that data. This data includes the initial orbit, O,
the suborbits in S, and the landmarks in those suborbits, L.

4.3.1 Use of Landmarks
Since O is distributed and disk-based, it is not possible

to quickly remove values from it as they are encountered.
For this reason, instead of removing values from O, a list of
previously encountered values is maintained. Rather than
storing all values, only landmark values are recorded in or-
der to allow this list to fit in distributed RAM across the
cluster. A landmark ratio of L = 7 was selected, requir-
ing 360 megabytes of landmark storage of compressed sig-
natures, by the node that owns them. It would have been
possible to store all the values in their compressed form in
memory, using 2.5 gigabytes of memory. However, because
the cluster is shared, using a smaller percentage of the total
memory per node was preferable.

Landmarks had to be selected carefully. First, the portion
of the compressed signature that determined the owner of a
vector had to be distinct from the portion deciding whether
or not that vector was a a landmark. Without this, all
landmarks would be owned by a subset of the nodes of the
computation.

Also, it was known prior to the computation that v was
a fixed point under K, and therefore would be in a suborbit
by itself. Our landmark selection was made in such a way
that the v was always considered a landmark. Other miss-
ing suborbits would be discovered during the orbit counting
phase, although this did not occur in our computation.

4.3.2 Processing the Orbit Values
Each node n processes a piece ofO corresponding to Pn(O).

This is done in a manner similar to Algorithm 2. Now,
however, rather than removing values in O, a list of known
landmarks, Ln ∈ O, owned by node n is stored. Algorithm 4
shows how this is done.

Algorithm 4: ppartitionOrbit

Input: Pn(O), gensK

for each compressed signature wc ∈ Pn(O) do

if isLandmark(wc) and wc 6∈ Ln then

w = buildV alue(v, path(wc));
s = discoverOrbit(w, gensK);
s = compress(s);
s = stripNonlandmarks(s);
s = sortCanonical(s);
sendSuborbit(s, path(wc));

Each local landmark from Pn(O) is compared with a list of
landmarks sent by other nodes, Ln. For each local landmark
that has not been encountered previously, the suborbit for
that landmark needs to be built. Before this can be done, the
compressed value needs to be expanded into its full value by
following the path associated with it from v in gensG. Once
the suborbit has been computed locally, the values in it are
compressed, non-landmarks are stripped, and it is sorted in
canonical order. This places the canonical element for s,
C(s), first. The suborbit along with the path to reach that
suborbit are then sent to the node N (s).

4.3.3 Processing the Suborbits
When a node N (s) receives a suborbit s it owns, it must

process that suborbit. This is shown in Algorithm 5.

Algorithm 5: ppartitionSuborbit

Input: s, path

if s 6∈ Pn(S) then

Get an original number id ∈ {1, . . . , k};
Store {path, C(s), id} in Pn(S);
s = sortOwner(s);
sendLandmarks(s);

The suborbit is first checked to see if it is a duplicate
by scanning through Pn(S), the suborbits in S owned by
node n = N (s), and looking at the canonical elements. If
it has not been seen, it is processed. It first gets a unique
id ∈ {1, . . . , k}. This is obtained by requesting an id from a
unique master node, who keeps track of what ids have been
seen before. After this, the information for the suborbit is
stored locally in Pn(S) and the values in the suborbit are
sorted according to their owners. For each node n, the values
Pn(s) owned by the node n, along with the suborbit id, are
then sent to the owner n.

4.3.4 Processing the Landmarks
When a node n receives a set of landmarks it owns, it must

store those landmarks in Ln. This is shown in Algorithm 6.

Algorithm 6: ppartitionLandmarks

Input: l, id

l = sortCanonical(l);
Add l to Ln(id);

Each node n stores Ln, an array of size k. Each entry i in
that array, Ln(i), corresponds to the set of known landmarks
in suborbit i owned by node n. These values are sorted
canonically to allow for quick lookup.

4.3.5 Nearly Linear Speedup for
Parallel Implementation

The parallel algorithm provides a nearly linear speedup
compared to the sequential algorithm. Since the only time
the same suborbit is generated multiple times is when mul-
tiple nodes are producing the same suborbit simultaneously,
this means at worst a slowdown factor of n = 56. However,
since k is relatively large in comparison to n, on average,
each suborbit is typically generated only once. Since the
suborbits are processed in parallel, this provides nearly lin-
ear speedup.

Each suborbit is computed only once on average. This
implies each landmark l ∈ Si is sent only twice, once to
reach its suborbit’s owner, N (Si), and a second time to
reach its owner, N (l). The bandwidth of the network is
sufficient so that the bottleneck of the computation is still
the CPU-intensive vector-matrix multiplication and not the
sending of the data. The latency of the network is not a
factor because landmarks are sent out in large groups to the
nodes that own them. At most k × 56 = 363, 261 messages
will be passed across the network. Because of the algorithm
design, duplication checks for individual landmarks are local
to the nodes that own those landmark and do not incur a
communication penalty.

Finally, the time for sort, binary search, and hash lookup
in the suborbit’s breadth first search are relatively small

when compared to the vector-matrix multiplication time.
This implies a run time dominated by the time to perform
vector-matrix multiplications in the breadth-first search, just
as in the sequential algorithm.

4.4 Orbit Counting
Orbit counting can also be viewed in terms of the actions

of the nodes owning the data in question on that data. In
this case, the data is the set of suborbits, S, and the land-
marks of the neighboring values. For some condensation
element c, each node n holds a piece of the resulting or-
bit counting matrix C(c) corresponding to the set of rows
{i : N (Si) = n}. The resulting data is combined once the
computation finishes.

4.4.1 Initialization
In order to speed up the process of determining which sub-

orbits a large set of landmarks are in, the way in which Li
for each node i is stored is changed. On the node n, rather
than storing Ln = {Ln(1), . . . ,Ln(k)}, Ln is stored as a sin-
gle block in which each entry corresponds to the compressed
signature of a landmark along with the id of the suborbit of
that landmark. These values are then sorted based on the
canonical ordering of their compressed signatures.

4.4.2 Processing the Suborbits
Given some condensation element c, the subset Pn(S),

corresponding to the set of suborbits owned by node n, are
processed according to Algorithm 7.

Algorithm 7: pcondenseSuborbits

Input: Pn(S), c

let C(c)← a distributed k × k all-zeros matrix for

so ∈ Pn(S) do

w = buildV alue(v, path(so));
i = id(so);
s = discoverOrbit(w, gensK);
s = sc;
s = findClosestLandmarks(s, gensK);
s = sortOwner(s);
sendLandmarks(s);
for m ∈ nodes do

Ci,·(c) = Ci,·(c) + receiveCounts(m);

Each node processes each suborbit it owns. It rebuilds
that suborbit and then applies the condensation element c
to each element in the suborbit. After that, it must perform
a breadth-first search for each element in s in gensK to
find the closest landmark (stored as a compressed value).
The compressed values are sorted according to the nodes
that own them and then are sent to those nodes. The result
returned is the number of landmarks in each suborbit owned
by that node. These results are added up to form Ci,·(c).

4.4.3 Processing the Landmarks
When a node n receives a set of landmarks it owns, it must

compute how many of those landmarks are in each suborbit.
This is shown in Algorithm 8.

First the result res is initialized to an all zeros vector
of size k. The landmarks received are sorted in canonical
order. By sorting, a single pass through Ln is sufficient to
find the ids of all landmarks in s. When an i = id(l ∈ s) is
encountered, resi is incremented.

Algorithm 8: pcondenseLandmarks

Input: s

res = an all zeros row vector of size k;
sortCanonical(s);
l = start of Ln;
for s ∈ S do

while Ln(l) < s do increment l;
i = id(Ln(l));
resi = resi + 1;

sendCounts(res);

4.4.4 Nearly Linear Speedup for
Parallel Implementation

Here also there is a nearly linear speedup for orbit count-
ing when compared to the sequential algorithm. Each sub-
orbit is processed only once, as in the sequential algorithm.
Each value in a suborbit, upon projection by c, is processed
only once to find the closest landmark in the generators of
gensK . This implies that the number of vector-matrix mul-
tiplications in the parallel algorithm is exactly the same as
the number in the serial algorithm.

Each suborbit is computed only once. Here, though, a
value for each compressed signature in the suborbit must
be passed across the network. Let the amount of data sent
across the network in the suborbit partitioning phase be
D, orbit counting requires the sending of L × D/2 data.
However, the same increase in the number of vector-matrix
multiplications must also be performed, meaning ratio of
time spent in the network and in performing vector-matrix
multiplications is identical. As before, the bottleneck lies
with the vector-matrix multiplications.

Finally, L must be scanned k times to locate the ids for
landmarks. While this does add some time to the com-
putation, it is still not significant when compared to the
vector-matrix multiplications.

4.5 Experimental Results
We used a cluster of 56 computers in the computation

of the orbit counting matrices. Each computer was an In-
tel dual-processor Xeon running at 3.20 GHz, running Red
Hat Linux 3.2.3 under Rocks. The time for each portion of
the algorithm, as well as the total storage requirements, is
presented here.

Phase Time Memory Disk
Orbit Enumeration 18 hours 500 MB 8 GB
Suborbit Partitioning 4 hours 800 MB 300 MB
Orbit Counting 20 hours 800 MB 300 MB
Total 42 hours 800 MB 8 GB

Given the predicted time on a single machine with a land-
mark ratio L = 7 of 25.8 CPU days, this would imply
0.46 CPU days on 56 computers, as shown in Section 3.3.3.
This is within a factor of four of the predicted time. The
factor would be only two if not for the naive predicted time
for the orbit enumeration phase from Section 3.3.2.

5. THE BRAUER TREE
We show how the computed orbit counting matrices are

used to determine the missing labels of the vertices of the
Brauer tree of the principal 17-block of the sporadic simple
Fischer group Fi23. We were particularly interested in this
example for the following reason:

Table 1: The principal 17-block of Fi23.

i χ χ(1) χ(e) 1GH
1 1 1 1 1
2 3 3588 1 1
3 6 30888 8 3
4 13 789360 2 1
5 15 837200 0 0
6 16 837200 0 0
7 24 5533110 27 4
8 60 97976320 58 3
9 62 153014400 44 1

10 63 153014400 44 1
11 76 264536064 35 0
12 77 264536064 140 0
13 79 287721720 147 1
14 92 476702577 185 0
15 94 504627200 167 1
16 95 504627200 167 1
17 98 559458900 128 0

5.1 The Modular Atlas project
The aim of the Modular Atlas project [11, 24, 25], which

was initiated two decades ago and is still running, is to deter-
mine the p-modular decomposition matrices and the Brauer
character tables of the groups listed in the Atlas [2]. As far as
the blocks of cyclic defect are concerned, which encompass
the case where p divides the order of the group under con-
sideration but p2 does not, the decomposition problem can
be rephrased as the problem of determining the associated
Brauer trees. For the sporadic groups and their automor-
phism groups, a comprehensive collection of Brauer trees
has been computed in [10], but quite a few questions still
remain open.

In particular, for Fi23 the shape of the Brauer tree of its
principal 17-block, and the labeling of its vertices, up to four
possible cases, have been determined in [10]. Table 1 pro-
vides the numbering of the irreducible ordinary characters
in the principal 17-block, where their Atlas [2] numbers and
their degrees are given in the second and third columns, re-
spectively. The associated Brauer tree is as follows, where
{a, a′} = {9, 10} and {b, b′} = {15, 16}.

141213 4 211

5

6

871 3 17a a’b’b

ϕ ψ

The task now is to determine which of these four cases
actually occurs. We apply an analysis similar to that used
in [5, 18].

5.2 The Orbit

Standard generators gensG = {g1, g2} of G = Fi23, in
the sense of [26], are given in [24]. The standard generators
are given both in terms of the smallest faithful permutation
representation on 31, 671 points, and in terms of the small-
est faithful matrix representation in characteristic 2, i.e. in
dimension 782 over GF (2).

We now look for a subgroup H < G such that the sim-
ple modules Sϕ and Sψ, affording the Brauer characters ϕ
and ψ as indicated above, are modular constituents of the
permutation module 1GH . We choose a subgroup

H = O+

8 (2) : 2 < S8(2) < G,

where both H = O+

8 (2) : 2 < S8(2) and S8(2) < G are
maximal subgroups. Using the facilities to compute with
class functions and to determine fusions of conjugacy classes
available in GAP [8], we find the multiplicities of the ordinary
irreducible characters in the permutation character 1GH as
given in the fifth column of Table 1. These imply that Sϕ
and Sψ are modular constituents of 1GH .

To apply a direct condensation technique, the G-set un-
derlying 1GH must be realized as a set of vectors in a suitable
linear representation of G. Actually, it turns out that in the
representation space V of dimension 782 over GF (2) there
is a (unique) vector v such that StabG(v) = H. This yields
a manageable orbit O = vG ⊆ V .

5.3 The Condensation Subgroup
In general, given an FG-module M with Brauer charac-

ter ϕ, which is extended arbitrarily to a class function ϕ̃
on G, we have dimF (Me) = 〈ϕ|K , 1K〉 = 〈ϕ̃, 1GK〉G, where
〈·, ·〉G denotes the scalar product for class functions. As
each Brauer character can be written as a linear combina-
tion of ordinary characters, these scalar products can be
determined from ordinary characters. If the block under
consideration is described by a Brauer tree, these linear com-
binations can directly be read off from the tree.

Here, we choose the condensation subgroup

K = S6(2) : 2 < H < G,

a maximal subgroup of H. Using the facilities to compute
with class functions available in GAP [8], we determine the
dimensions χ(e) = 〈χ, 1GK〉G of the condensed modules of
the ordinary irreducible characters in the principal block,
as given in the fourth column of Table 1. In particular,
these dimensions imply that ϕ(e) = 124 and ψ(e) = 43.
Hence the condensed modules Sϕe and Sψe are constituents
of (1GH)e, having the indicated dimensions. Similarly, we find
k = dim((1GH)e) = 〈1GH , 1

G
K〉G = 6, 486. Thus the condensed

module has manageable dimension to be analyzed explicitly
using MeatAxe [21] techniques.

5.4 Determining the Brauer Tree
We specify c = g2, the second standard generator of G,

and compute the traces TrSϕe(ece) and TrSψe(ece) for the
possible cases [a, b] ∈ {[9, 15], [10, 15], [9, 16], [10, 16]}, using
the formula

TrMe(ece) = |K|−1 ·
∑

g∈K

TrM (cg),

where the right hand side can be determined from the Brauer
character of M by p-modular reduction, provided we know
the cardinalities of the intersections of the coset Kc with
the various conjugacy classes of G.

To find those, we have to run through all |K| = 2, 903, 040
elements of Kc, and to determine to which conjugacy class
of G it belongs. Conjugacy testing is done using the permu-
tation representation on 31, 671 points, the facilities dealing
with permutation groups available in GAP [8], and some
specially tailored programs using cycle structures and class

multiplication coefficients. This needs about 100 CPU hours
on a single machine to be completed. (Parallelizing this as
well would of course be possible, but we have not pursued
this further.)

We do not reproduce the full class distribution here, but
just note the following: The element c to be condensed must
be chosen such that the four cases can be distinguished by
looking at the above mentioned traces. Since the cases yield
Brauer characters which only differ on elements of order
divisible by 13, this essentially boils down to a condition on
the intersections ofKc with the conjugacy classes containing
such elements. Here is the result for c = g2:

13A 43044 13B 43526
26A 111166 26B 111782
39A 67678 39B 66560

Now this yields the following, where the entries are under-
stood to be in GF (17):

[a, b] [9, 15] [10, 15] [9, 16] [10, 16]

TrSϕe(ece) 10 3 14 7
TrSψe(ece) 7 14 7 14

5.5 Conclusion
We use the subalgebra of the Hecke algebra generated by
{eg1e, eg2e, eg1g2e}, where gensG = {g1, g2}. By the tech-
nique described in Section 4, we determine the associated
orbit counting matrices, which essentially describe their ac-
tion on the condensed permutation module (1GH)e.

Using MeatAxe [21] techniques, in particular those to de-
termine submodule structures [13], it turns out that this sub-
algebra already is sufficiently large to pick the constituents
Sϕe and Sψe of (1GH)e. By inspection, it is found that
TrSϕe(ece) = 7 and TrSψe(ece) = 14 for c = g2, implying
a = 10 and b = 16, and we are done.

6. REFERENCES
[1] Wieb Bosma, John Cannon, and Catherine Playoust.

The magma algebra system i: The user language. J.
Symbolic Comput., 24:235–265, 1997.

[2] J.H. Conway, R.T. Curtis, S.P. Norton, R.A. Parker,
and R.A. Wilson. Atlas of finite groups. Clarendon
Press, Oxford, 1985.

[3] G. Cooperman. STAR/MPI: Binding a parallel library
to interactive symbolic algebra systems. In Proc. of
International Symposium on Symbolic and Algebraic
Computation (ISSAC ’95), volume 249 of Lecture
Notes in Control and Information Sciences, pages
126–132. ACM Press, 1995. software at URL:
http://www.ccs.neu.edu/home/gene/software.

html\#starmpi and
http://www.ccs.neu.edu/home/gene/pargcl.html.

[4] G. Cooperman, L. Finkelstein, M. Tselman, and
B. York. Constructing permutation representations for
matrix groups. J. Symbolic Comput., 1997.

[5] G. Cooperman, G. Hiss, K. Lux, and J. Müller. The
Brauer tree of the principal 19-block of the sporadic
simple Thompson group. Experiment. Math.,
6:293–300, 1997.

[6] G. Cooperman and E. Robinson. Memory-based and
disk-based algorithms for very high degree
permutation groups. In Proc. of International

Symposium on Symbolic and Algebraic Computation
(ISSAC ’03), pages 66–73. ACM Press, 2003.

[7] G. Cooperman and M. Tselman. New sequential and
parallel algorithms for generating high dimension
Hecke algebras using the condensation technique. In
Proc. of International Symposium on Symbolic and
Algebraic Computation (ISSAC ’96), pages 155–160.
ACM Press, 1996.

[8] The GAP Group. GAP — Groups, Algorithms, and
Programming, Version 4.4, 2006.
http://www.gap-system.org.

[9] J. Green. Polynomial Representations of GLn. Lecture
Notes in Mathematics 830. Springer-Verlag, 1980.

[10] G. Hiss and K. Lux. Brauer Trees of Sporadic Groups.
Oxford Univ. Press, Oxford, 1989.

[11] C. Jansen, K. Lux, R. Parker, and R. Wilson. An Atlas
of Brauer Characters, volume 11 of London Math. Soc.
Monographs, (N. S.). Clarendon Press, Oxford, 1995.

[12] F. Lübeck and M. Neunhöffer. Enumerating large
orbits and direct condensation. Experiment. Math.,
10:197–206, 2001.

[13] K. Lux, J. Müller, and M. Ringe. Peakword
condensation and submodule lattices: An application
of the MeatAxe. J. Symb. Comp., 17:529–544, 1994.

[14] J. Müller. Computational representation theory:
remarks on condensation. Lecture Notes, 2003. http:
//www.math.rwth-aachen.de/~Juergen.Mueller/.

[15] J. Müller. On endomorphism rings and character
tables. Habilitationsschrift, RWTH Aachen, 2003.

[16] J. Müller. On the action of the sporadic simple baby
monster group on the cosets of 21+22.Co2. Preprint,
2006.

[17] J. Müller, M. Neunhöffer, and F. Noeske. GAP-4
package orb, 2006.
http://www.math.rwth-aachen.de/~Max.

Neunhoeffer/Computer/Software/Gap/orb.html.

[18] J. Müller, M. Neunhöffer, F. Röhr, and R. Wilson.
Completing the Brauer trees for the sporadic simple
Lyons group. LMS J. Comput. Math., 5:18–33, 2002.

[19] J. Müller, M. Neunhöffer, and R. Wilson. Enumerating
big orbits and an application: B acting on the cosets
of Fi23. Preprint, to appear in J. Algebra, 2006. http:
//www.math.rwth-aachen.de/~Juergen.Mueller/.

[20] R. Parker and R. Wilson. Unpublished, 1995.

[21] M. Ringe. The C-MeatAxe, Version 2.4, Manual.
RWTH Aachen, 2000.

[22] E. Robinson and G. Cooperman. A parallel
architecture for disk-based computing over the Baby
Monster and other large finite simple groups. In Proc.
of International Symposium on Symbolic and
Algebraic Computation (ISSAC ’06), pages 298–305.
ACM Press, 2006.

[23] J. Thackray. Modular representations of some finite
groups. PhD thesis, Univ. of Cambridge, 1981.

[24] R. Wilson. Atlas of finite group representations.
http://brauer.maths.qmul.ac.uk/Atlas/v3/.

[25] R. Wilson. The modular atlas homepage.
http://www.math.rwth-aachen.de/homes/MOC/.

[26] R. Wilson. Standard generators for sporadic simple
groups. J. Algebra, 184:505–515, 1996.

