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ABSTRACT
We outline a distributed, disk-based technique for comput-
ing over very large matrix groups. This technique is used to
compute a permutation representation for the Baby Mon-
ster, a sporadic simple group that acts on 13,571,955,000
points. Its group order is approximately 4 × 1033. This is
a landmark because it is 100 times larger than any previ-
ous construction of a permutation representation. By using
the computed on-disk data structures, computation over the
Baby Monster is now feasible using the distributed disks of a
cluster. Our work allows researchers to use either a matrix,
a permutation, or a word representation for computing over
the Baby Monster where previously only a matrix repre-
sentation was available. The methodology is demonstrated
by using as a signature the image of a vector that is sta-
bilized by the maximal subgroup. The technique extends
to finite simple groups and to other groups, through other
signatures.

Categories and Subject Descriptors

I.1.2 [Symbolic and Algebraic Manipulation]: Algo-
rithms—algebraic algorithms

General Terms
Algorithms, Experimentation

Keywords
permutation groups, matrix groups, group membership, disk-
based methods, parallel computation, Baby Monster group

1 Introduction
The goal of providing a uniform computational methodology
for working with the large simple groups has been a sought
after target for a long time now. Some major achievements
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have been reached, such as the first constructions of per-
mutation representations and strong generating sets for the
Lyons group [15] and Janko’s group J4 [19], and now even
the Thompson group [38, 39, 40, 20]. These accomplish-
ments have been helped along by the sharing of information
at websites such as Wilson’s Atlas Web Page [41] which pro-
vides initial matrix representations for standard generators.
This site also provides information for the sporadic simple
groups, a natural ladder of challenge problems for group
membership. Computing over the Baby Monster, the next
to last in the ladder, had been all but infeasible. But with
clusters that have access to terabytes of disk space and giga-
bytes of memory, a permutation representation for the Baby
Monster has been discovered, and a computation of a strong
generating set becomes feasible.

Computations such as these are more than just academic.
They provide the ability to decompose large groups to an-
swer many mathematical questions about them. They form
the base case of the Matrix Recognition Project’s [30, 31]
recursive decomposition into normal groups. All of the spo-
radic simple groups can be identified based on tests on ran-
dom elements [4]. Until now, however, individual group el-
ements could not be identified uniquely, in terms of a word
in the standard generators for example, for groups such as
the Baby Monster. It is this form of identification that is
required for the Matrix Recognition Project.

Previously permutation representations have been pre-
ferred to matrix representations for these large groups due
to the the rich and mature body of permutation group al-
gorithms [1, 2, 3, 7, 11, 12, 13, 14, 20, 29, 34, 36]. However,
as the size of the groups worked with increases, a permu-
tation representation becomes less attractive because of the
large space requirement to store the permutations. In these
cases, an effective solution utilizing a matrix representation
is desirable.

In the Baby Monster, for example, a single permutation
would require 65 GB using 5 bytes to represent a point.
This is impractical with today’s technology, though it may
become feasible (making a direct permutation approach such
as Cooperman’s and Robinson’s [20] feasible as well) once
terabyte disks become available. A matrix representation of
dimension 4370 over GF(2) is much more practical requiring
only 2.3 MB per matrix.

Because of these factors, we follow the approach outlined
by Butler [6] and extended by Murray and O’Brien [35]. We
use a matrix representation but view the matrix group as a
permutation group in which matrices act on vectors, rather
than permutations on points. We implement a modification
of the randomized Schreier-Sims algorithm that develops the
point stabilizer chain of subgroups by finding Schreier gen-



erators from random group elements.

Even though a matrix representation is used, a permuta-
tion representation can easily be derived. This is done by
identifying the transversal of the first point stabilizer sub-
group (the first fundamental orbit) with the points of the
permutation domain. While this is technically possible for
the Baby Monster, the size of the resulting permutations
(130 GB) make this computation undesirable.

While computing a fundamental orbit, we generate a data
structure for the corresponding Schreier tree. Schreier trees
are defined formally in Section 2.2, but it suffices to think of
them as small depth spanning trees for the fundamental or-
bit. Previously, in the work of Butler, Murray and O’Brien,
all of the data for these trees was stored locally. Thus they
could afford the traditional storage cost for a Schreier tree,
a full vector as well as a backpointer (pointer to the parent
in the tree).

Because of the size of the Baby Monster, the computa-
tion must be distributed. Traditionally, a 600 byte vector
and backpointer would be passed across the network, now
we only pass across a 12 byte compressed signature and a
word in the generators. Because there are only 2 genera-
tors, a single step in the generator word costs only 1 bit,
we assume a maximum length of 150 (a generous assump-
tion), this implies a total of 20 bytes, and leads to an 83%
reduction in the total network time, as well as a significant
reduction in disk time (see Section 6 for more details).

The algorithm of this paper is an extension of the one
used to compute the Thompson Group[20]. However, be-
cause it is distributed and out-of-core, we must consider
additional factors such as network bandwidth, disk speeds,
synchronization, and both memory and disk size limitations.
The nodes in the computation both work on a piece of the
Schreier tree as well as store a piece of the hash.

The result of the computation of the first Schreier tree
is a collection of compressed signatures with correspond-
ing words in the generators distributed across many nodes.
These nodes can later be polled in reasonable time for spe-
cific vectors in a discovery of the remaining Schreier trees.
This enables group membership random generation, and
many other permutation algorithms for efficiently comput-
ing in the full Baby Monster.

Sections 2 and 3 provide the background of the Schreier-
Sims algorithm, along with definitions and notation. Sec-
tion 4 provides an overview of the algorithm, while Sec-
tion 5 provides further details. Section 6 estimates the run-
ning time of the Baby Monster computation within a factor
of two. Such estimates are useful for predicting running
times for other large groups. Section 7 discusses how the
constructed permutation representation will be used in the
future to apply the Randomized Schreier-Sims algorithm.
Section 8 provides experimental results.

1.1 Related Work
Sims presented a specialized construction of the Baby Mon-
ster in 1980 [37]. In 1998, in a tour de force, a special-
ized construction of the Monster was produced by Linton,
Parker, Walsh and Wilson [32]. This was later elaborated on
by Holmes and Wilson [28]. However, in each of those cases,
specialized techniques were needed due to the limitations of
CPU, RAM and disk.

In 1994, Cooperman, Finkelstein, Tselman and York [15,
16] constructed a permutation representation of Lyons’s group
of degree 9,606,125 from matrix generators, and also pro-
duced a strong generating set. Their representation was of
permutation degree 9,606,125 for Lyons’s group acting on a
conjugacy class of subgroups of order three.

A coset enumeration of Lyons’ group yielded a permu-
tation action on 8,835,156 points, based on Sims’ original
unpublished presentation. The coset enumeration was ex-
ecuted in two different ways. It was carried out as a par-
allel enumeration by Cooperman and Havas [17] (described
therein as part of the future work). It was also demonstrated
as a sequential coset enumeration by Havas and Sims [26].
That presentation was verified as producing Lyons’s group
by Gollan and Havas [25].

The next larger sporadic simple groups are Thompson’s
group acting on 143,127,000 points and Janko’s group J4

acting on 173,067,389 points. Cooperman, Hiss, Lux and
Müller [18] and Cooperman and Tselman [21] carried out a
condensation for Thompson’s group, which implicitly yields
a permutation representation. At approximately the same
time, Weller [40] carried out a direct computation of Thomp-
son’s group. Furthermore, Havas et al. [27] produced a per-
mutation representation for Thompson’s group via a coset
enumeration.

Weller [38, 39] also produced a permutation representa-
tion of Janko’s J4 group, using some of the hashing tech-
niques of [15, 16] and the double coset trick of [23, 24].
That work was used in a revised existence proof for Janko’s
group [19].

In all cases not involving coset enumeration, the starting
point was the matrix generators of Wilson’s Atlas [41].

The randomized Schreier-Sims algorithm used in this pa-
per depends on a source of random elements. For our pur-
poses, the method of random subproducts of [8] works well.

Most recently, an implementation by Cooperman and Robin-
son [20] was able to compute over the Thompson Group, a
sporadic simple group acting on 143, 127, 000 points, rela-
tively quickly (36 minutes). The resulting solution could
both answer questions of membership and solve for the or-
der of the group.

This computation was a landmark because in terms of the
number of points on which a group acts, it was the first to
solve for any sporadic simple group of this magnitude, pre-
vious computations had just managed groups of at most 10
million points. Whereas the computation of the Thompson
group is a factor of ten over previously computed groups, the
Baby Monster is a factor of one hundred over the Thompson
group. Computing over the Baby Monster necessarily must
consider a whole new range of potential limitations.

1.2 Comparison of Disk-Based and Memory-
Based Approaches

Matrix-vector multiplication over small finite fields is limited
by the bandwidth of RAM and not by the CPU speed un-
der current technology. When the size of the orbit is larger
than the aggregate RAM in the cluster, a well-known ap-
proach [33] is to conceptually partition the orbit and store
only mimimal elements for each partition. In generating the
Schreier tree, the full set of points of the partition is dy-
namically regenerated as needed, and each generator is still
applied to each point of the partition.

We rejected this memory-based approach as being unac-
ceptably slow. Storing all points of the orbit on disk saves
us the cost of dynamically regenerating each partition re-
peatedly whenever it is the image of some point under some
generator. Even though our disk-based algorithm is opti-
mized to minimize memory bandwidth, we continue to find
that memory bandwidth, and not disk speed, is the bottle-
neck (see Section 6.4).

Secondarily, the disk based algorithm produces nearly op-
timal length transveral elements as words in the generators,



unlike the memory-based algorithm. This leaves us the op-
tion of saving all of our strong generators as relatively short
words instead of computing the corresponding matrix. This
saves memory space at the cost of time.

2 Background
The computation of the Baby Monster is possible largely due
to the fact that it is a group with a small base, probably well
under 10. We define base and other notation below, along
with some common computational methods.

2.1 Notation
Denote the points on which G acts by the integers Ω =
{1, 2, . . . , n}. For i ∈ Ω and g ∈ G, let ig denote the action
of the permutation g on the point i. (Hence, igh = (ig)h for
g, h ∈ G.) Let e be the identity element of G. Let H ≤ G
denote that H is a subgroup of G, and H < G that H is a
proper subgroup of G. Define the point stabilizer subgroup

G(i) = {g : g ∈ G, ∀j < i, jg = j},

sometimes called “G move i” (fixing points less than i). Note
that this yields a point stabilizer subgroup chain

G = G(1) ≥ G(2) ≥ · · ·G(n) = {e}

for e the identity. The base of a group is the number of
distinct proper subgroups of G in the chain above.

Let G/H = {Hg : g ∈ G} be the set of cosets of H in G

(where Hg = {hg : h ∈ H}). A transversal of G(i)/G(i+1),

T (i) is defined as a set of representatives of cosets of G(i+1)

in G(i). So,

|T (i)| = |G(i)/G(i+1)|.

2.2 Review of Schreier-Sims Randomized Group
Membership Algorithm

Computation of groups in this fashion is commonly done by
computing what is known as a Schreier tree, or a tree in
which the nodes represent vectors and the edges represent
matrices. The tree is built in a typical breadth first style by
starting out with the transversal at level l, then applying a
random element in level l (generated as shown above) to the
transversal. This is done repeatedly until no new points are
seen. After this, the same method is used to generate level
l + 1.

2.3 Generation of Random Elements
For more information about the generation of random ele-
ments of a group, see Cooperman and Robinson[20].

3 Notation
In describing the algorithm used to compute the first Schreier
tree for the Baby Monster, the following terms will fre-
quently be used.

Matrix, Generator The matrix generators for the Baby
Monster. There are two of dimension 4370 in GF(2).

Initial Vector The vector which when used as the root node
for the first Schreier tree leads to an orbit enumerating
the cosets of the maximum subgroup.

Signature Image of the initial vector under repeated appli-
cations of the generators.

Bitstring, Word in Generators A binary string indicating
which generators to apply to get from the Initial Vector
to some desired signature.

Compressed Signature A signature compressed to 96 bits.
Because |FirstSchreierTree|2 � 296, every signature
probabilistically has a unique compressed signature.

Hash Index A 40 bit value representing the hash of the
compressed signature. The high bits of the hash rep-
resent the machine, and the low bits represent the hash
entry on that machine.

Hash Array A bit array twice as large as the total number of
signatures, 50% occupancy. The bit indicates whether
the hash index is present, no corresponding hash value
is stored. This is stored in RAM distributed across the
nodes of the cluster.

Computation Queue A FIFO queue of entries containing a
word in the generators and the corresponding signa-
ture. Each node stores its Computation Queue locally
on disk.

Computation Block A fixed number (currently 25,000) of
computation entries containing a word in the genera-
tors and the corresponding signature. This is stored
in memory.

Check Message A message containing words in the gen-
erators and their corresponding compressed signature
from a computation block.

Final, Collision Queue A queue of entries containing a
word in the generators and the corresponding com-
pressed signature that has been checked against the
hash and either was a new entry (final) or resulted
in a collision (collision). These are used to determine
invalid collisions. Each node stores queues correspond-
ing to its portion of the hash locally on its disk.

Final, Collision Block A fixed size (currently 10 MB) of
final or collision entries containing a word in the gen-
erators and the corresponding compressed signature.

4 Distributed Algorithm for Search Space Dis-
covery

For our discovery of the Baby Monster’s first Schreier tree,
we use a breadth-first search space discovery technique de-
veloped by us for this application, but widely applicable.
This technique assumes a distributed computation where a
unique hash may not be available. There are three phases.

Initialization. First, we must initialize our data (load
our matrix generators) and obtain a hash space distributed
across our nodes. We know this hash array will not be
unique. In the case of the Baby Monster, it is only twice the
length of the fundamental orbit and therefor will have many
collisions. After this, the master node discovers a single
computation block in our search space based off a root sig-
nature (initial vector). This initial block is then divided up
between the nodes and added to their computation queues.

Phase One. During this phase, the computation queue
is grown by applying the generators to the signatures at the
head of the queue. The new signatures are then hashed
(as a 40 bit value of the compressed signature) to determine
uniqueness. Unique points are appended to the computation
queue, added to the hash, and added to the final queue. Col-
lisions are added to the collision queue. This phase finishes
when the computation queue is emptied.

Phase Two. Here the final and collision blocks are sorted
by their compressed signatures and duplicate values (values
with the same compressed signature) are stripped from the
collision queue. New values (invalid collisions) in the colli-
sion queue are sorted based on their word in the generators.
This allows us to recompute their full signatures with mini-
mal matrix-vector multiplications. Once the full signatures
have been computed, they are added to a new computation
queue locally.



Table 1: The Phase One Managers

Manager Purpose Block Passed Receiving Manager
Read Reads blocks from disk Head Computation Computation Manager
Computation Performs matrix-vector multiplications Tail Computation Check Manager
Check Strips duplicates from blocks Tail Computation Write Manager

Check Message Hash Manager (Network)
Hash Detects duplicates in block Check Message Check Manager (Network)
Write Writes blocks to disk Tail Computation None (Disk)

After this, Phase One and Two are repeated ad infini-
tum until no new values are discovered in Phase Two. At
this point, the search space (Schreier tree) has been fully
discovered.

4.1 Phase One Overview

In order to overlap network, disk, and computation time, the
tasks of Phase One are pipelined. The details of Phase One
are best described according to the responsibilities of the five
threads that manage the phases of this pipeline: the read
manager, the computation manager, the check manager, the
hash manager, and the write manager. Table 1 4.2 contains
a list of all the managers and who they pass information to.
Following is a description of those managers.

Read Manager. Because the computation queue is stored
in computation blocks on disk, This thread must load up a
new computation block from the head of the queue on disk
and hold it until it is ready to be processed.

Computation Manager. Recall that the Schreier tree
is generated by breadth-first search. This thread accepts a
head computation block from the Read Manager and then
computes the children signatures for that block by applying
the two generators. These new signatures form tail com-
putation blocks. Each of these blocks are held until they
are ready to be checked. Once all the tail blocks have been
discovered the head computation block may be freed.

Check Manager. Since the hash table is distributed, it
is this thread’s job to send out hash check requests to all of
the nodes. It starts by scanning the computation block. For
each entry, it appends the compressed signature and word in
the generators for that entry to a message whose destination
is the machine responsible for the hash of that compressed
signature. After this, it sends all of the messages out and
waits for replies. These replies tell it which signatures to
remove from the computation block. After removing these
signatures, it holds the block until it is ready to be written.

Hash Manager. This thread waits for an incoming hash
check request and checks each of the entries in it against
its hash table. If there is a collision, it marks the entry
with a deletion flag and adds it to its local collision block.
Otherwise, it updates the hash table and adds the entry to
its local final block. Once it finishes with the check request,
it sends back a response that contains the deletion flags. It
may also store the final and collision blocks to disk if they
have reached their size limits.

Write Manager. This thread writes computation blocks
to the tail of the computation queue and then frees the space
used by these blocks.

4.2 Phase Two Overview

Phase two goes through three distinct passes. Each of these
passes generates the data for the next pass. The passes are
described here.

Formatting the Blocks and Sorting. Initially the final
and collision blocks generated by the current pass contain
entries of different lengths in an unsorted order. It is the
job of this pass to standardize the entry sizes and sort them
based on their compressed signatures.

To do this, the program must keep track of the largest
word in the generator for each block. The values in the final
and collision blocks are then read from disk and converted
into new blocks each with a standardized size. Quicksort is
then called on the blocks to sort based on their compressed
signatures. This is done one at a time for each new block
discovered in phase one. Once a block is completed, it is
written back to disk.

Removing Duplicates. The process of removing dupli-
cates is made easy because the compressed signatures are
now in sorted order in each block. A single pass through
all of the final blocks and the collision blocks generated by
this pass can use a priority queue for each to strip all du-
plicates from the collision blocks, leaving only new elements
that were the result of invalid hash collisions. These ele-
ments are added to new final blocks and once a complete
final block has been discovered, it is sorted by the word in
the generators (leftmost in the tree first) and written to disk.

Rebuilding the Signatures. Now, with the new final
blocks discovered in the previous step, we can rebuild their
full signatures using the words in the generators. Because
our new blocks are now in sorted order, we can reconstruct
the tree using as few matrix-vector multiplications as pos-
sible. Intermediate vectors along the path are stored and
used for later computations where applicable. Because of
sorting, we can use another priority queue to store only a
vector for every level in the tree, and we also never repeat a
matrix-vector multiplication on a single node.

As the signatures are rebuilt, they are added back into new
computation blocks and put into the computation queue.
As stated above, once this is finished phase one is restarted.
The computation finishes when no new points are discovered
in phase two.

5 Details of the Algorithm

We are looking for a permutation representation of a finite
simple group, given a matrix representation. We will con-
struct a permutation domain in one of two ways: either as
the set of images of an appropriately chosen initial vector;
or as words in the matrix generators. Both representations
are compact. In both cases, the image of an appropriately
chosen vector serves as a signature for the element of the
permutation domain. The first scenario is somewhat more
efficient, but is not applicable to all finite simple groups.
The second scenario is fully general.



5.1 Initial Vector: Case of Action of Matrices
on Vectors

Many matrix representations of simple groups, including
those for which we present experimental results in the case of
the Baby Monster, Janko’s group (J4) and Harada-Norton (HN)
(see Section 8), there is an initial vector v such that elements
of the permutation domain can be represented as vector im-
ages vg, for g a matrix element g in the group. The vector
image, vg is the signature of the element of the permutation
domain.

We illustrate the case for the Baby Monster. For the
Baby Monster, the algorithm initially requires the two group
generators and a vector that is fixed by the largest max-
imal subgroup of the Baby Monster (which is isomorphic
to 2.2E6(2) : 2. It is well known that the orbit of such a
vector will form the smallest possible domain for a permu-
tation representation. Given any generators for the Baby
Monster in the desired representation (dimension 4370 over
GF(2)), Wilson’s Atlas Web Page [41] produces an efficient
algorithm to find standard generators (a, b). It also provides
generators (x, y) for the largest maximal subgroup in terms
of the standard generator. One then takes the intersection
of the fixed spaces of x and y. Any non-trivial vector in that
intersection will do.

5.2 Initial Vector: Case of Conjugate Matrix
Action

Since not all matrices have signatures based on an initial
vector under the matrix action, we employ an alternative ac-
tion for other matrix representations of finite simple groups.
This method was developed by Cooperman et al. [15, 16],
and the original papers describe details, and additional op-
timizations not discussed here.

We begin by considering the conjugate action of the group
on subgroups of prime order. We can construct a “small”
permutation representation, if not always the smallest de-
gree representation.

Next, in order to make such a construction effective, we
only use matrix-vector computations, instead of matrix-matrix
computations. To do so, we express each element of the per-
mutation domain as a word w in the generators of the group.
For a fixed subgroup H of the chosen conjugacy class, the
conjugate subgroup Hw = w−1Hw is a “point” in the per-
mutation domain. The matrices in the group act on these
permutation “points” by conjugation, yielding a new word
of length one more than the original word.

Although a “point” may be represented by more than one
word, both words would have the same signature. This is
accomplished by choosing at random an initial vector v of
the underlying vector space. It is shown [15, Lemma 3.1]
that with high probability, the randomly chosen initial vec-
tor v has the property that a group element g in the group
is uniquely determined by the image vector vg. (The prob-
ability of having chosen a “bad” v is less than |G|/qn−m for
a group G ≤ GL(n, q) with m the maximum dimension of a
fixed point subspace of any non-identity element of G.

Assuming a properly chosen v, each “point” Hw is uniquely
determined by the set of image vectors vw−1Hw. Since H is
of prime order p (and usually small), it suffices to store the
lexicographically smallest of the p image vectors vw−1Hw
in a hash table.

Although this method was not implemented for the par-
allel architecture, it was the basis of a sequential imple-
mentation that constructed a permutation representation of
Lyons’s group for the first time [15, 16]. The permutation

degree of Lyons’s group in its smallest conjugate action is
9, 606,125.

5.3 Hash Table
A memory resident perfect hash is impossible for the Baby
Monster, This is because the compressed signatures alone
would require over 150 gigabytes of storage, or over 5 giga-
bytes of storage per machine in a 32 node cluster.

Other methods do exist for determining the uniqueness of
a point based on a smaller amount of data[9]. These meth-
ods rely on applying generators to the target to reach some
well known signature. This essentially trades computation
time to reduce computation space. Since we want to re-
duce the number of matrix-vector multiplications to make
our method as fast as possible, an approach such as this is
infeasible.

Instead of trying to determine without error whether a
compressed signature is a duplicate, we will only determine
whether that compressed signature is unique. Elements that
result in hash collisions will be queued up in a collision queue
to be checked later in the computation.

Using this approach, we can set a hash table comprised
of single bits to be twice the size of the expected number
of elements. This implies 28 × 109 bits, or approximately
4 × 109 bytes. This leads to a hash table that uses only
128 MB per processor.

From this, we can predict the number of elements in the
collision queue during the first (and largest) pass through
phase one to be the number of valid collisions plus the num-
ber of invalid collisions. For the Baby Monster this implies
14×109 +14×109/2/2, 18 billion element total, or 600 mil-
lion elements per node. Assuming a max tree depth of 150,
this implies the collision queue uses 350 GB total, or just
over 1 GB per machine.

5.4 Collision Queue
Recall that the purpose of the collision queue is to look at
items that hash to the same value and determine whether
they are actual duplicates or just hash collisions. The method
by which it does this is describe in the Phase Two section
of the Overview 4.2. Also, the space used by the collision
queue is approximately 1 GB per processor. This implies
that we can easily store the entire collision queue on disk.

Once the excess data has been removed from the collision
queue, the new structure will have approximately 25% of the
full tree. In addition, by sorting and not repeating multipli-
cations, we amortize the cost of rebuilding the tree. With 30
nodes, typically, this implies doing only 25% of the vector-
matrix multiplcations we would normally have to do. This
represents a major improvement over methods that find a
common node, because we only need to perform additional
matrix-vector multiplications in approximately 12.5% of the
cases and we only do 25% of these, meaning our cost is 3%
the depth of the tree per element.

6 Theoretical Computation Time
We can accurately estimate the running time of the com-
putation based purely on the architectural parameters and
the parameters of the Baby Monster group representation.
We will assume a 30 node cluster of 2 GHz computers with
512 megabytes of DDR-266 RAM (1 gigabyte of sequential
data per second). In addition we will assume 200 gigabytes
of disk space per node. (Note that even at today’s prices
of less than one dollar per gigabyte, the cost of disks on all
nodes is still under $6,000.) We also assume a conserva-
tively estimated transfer rate of approximately 10 megabyte



per second. Finally, we assume the computers are connected
by Fast Ethernet (100 MHz).

We assume that the depth of the first Schreier tree is no
greater than 150, and that the average depth is no greater
than 75. We know from computation that the depth of the
first tree in the Lyons group was 37 [15] and the maximum
depth of the first tree in the Thompson group was 72 [20].
Our current test run for the Baby Monster has finished the
full first pass discovering 9 billion of the 14 billion points,
and the maximum depth in the run is 144, with an average
depth approximately 75. Later passes extend the tree from
random nodes. We do not expect the average or maximum
depth to grow significantly.

6.1 Matrix-Vector Multiplication
Recall that the generators for the Baby Monster are of di-
mension 4370 over GF(2). We assume for the purposes of
these computations that we have access to a 64 bit “exclu-
sive or” operation. Most I/O to RAM follows a streaming
access pattern. Our cluster uses 266 MHz DDR RAM and
the 8 byte Pentium bus. Under optimal conditions, this
allows us to read or write to RAM at 2.12 GB/s.

However, to speed up the time of matrix-vector multi-
plications, we can use a technique called greasing. Greas-
ing precomputes multiplication tables by combining bands
of rows for a matrix in order to speed up subsequent mul-
tiplications. This technique is also used in GAP [22] and
Magma [5]. Since we only use two matrices (the genera-
tors), this method can be used to speed up the computation
using a reasonably small amount of space. We found using
a band size of 8 gave a reasonable speedup for a reasonable
amount of memory:

Mem Space 4370 × d4370/8e × 28bits 76MB
CPU Time d4370/64e × d4370/8eops 2 × 10−5s
Mem Time d4370/8e × d4370/8eB 1.4 × 10−4s

We can see that by using greasing and about 150 megabytes
of extra space, we are able to perform a matrix-vector mul-
tiplication eight times faster than a naive method, and four
times faster than a method that skipped rows multiplied by
zero. Experimentally, we obtained greasing times closer to
3× 10−4, and it is these times we will use for the rest of our
calculations.

6.2 Minimum Computation Time
In the computation of the first Schreier tree, we can assume
that we need at least one matrix-vector multiplication for
each element discovered, as well as an additional matrix-
vector multiplication for dead ends (each node must connect
to some other node in the tree, bounding the maximum
number of matrix-vector multiplications performed). This
implies a minimum of 3 × 10−4 × 14 × 109 × 2 = 84 × 105

seconds or 84 computer days. Spread over 32 processors,
this implies at least 3 days of computation.

Traditional methods to reduce hash size operate by per-
forming extra matrix-vector multiplications at each node
discovered. Our method only performs on the order of 2 ad-
ditional matrix-vector multiplications per signature, for a
total of 9 days. Other methods typically do not achieve
such a low bound.

6.3 Time for Program Components
Time for Read and Write Managers. The Read and
Write Managers must make disk accesses to the full signa-
tures. In addition, they must load up the words in the gen-
erators for these signatures. This requires reading/writing
14 × 109 × (100B + 550B) = 9TB. Given our disk rate

this implies 9.1 days total, or 0.25 days per machine. This
implies a half of a day both reading and writing.

Time for Computation Manager. We know that the
Computation Manager will perform no more than the min-
imum number of matrix-vector multiplications, as it per-
forms a depth first search and eliminates duplicate nodes
along the way. This implies that the processor time spent
in the computation manager is approximately 3 days.

Time for Check Manager. The Check Manager can
make a single pass through the computation block when
removing invalid computation entries, since it will also be
writing these blocks to disk, it is assume that the single pass
through memory is significantly less than the time it takes
to write that memory to disk, and is therefore negligible.

Also, the Check Manager must do message passing. For
each computation entry recorded (including duplicates) it
must pass a message of size at most 20 bytes (derived from
the compressed signature and the maximum word length)
and receive a message of the same size. This implies a total
of 560 × 109 bytes. Given a network speed of 100 megabits
per second, this would require a total of one half network
day. This time is dominated by the time spent in memory
and on disk. Note that this does not hold true as more
nodes are added unless the aggregate network bandwidth
also grows.

Time for Hash Manager. The hash manager accesses
one bit of memory for each signature that it is given. Once
again, we can assume that this time is dominated by the
rest of the computation.

In addition, it must also write a 20 byte entry to disk for
each signature that it is given. Even though this is twice the
number of actual entries written by the Write Manager, the
size is 30 times smaller. Therefore we can expect the check
manager’s disk access to be the dominating time, and this
piece to require under 0.1 disk days.

Time for Formatting the Blocks and Sorting. We
only need to sort each block once. This requires a single
read and write to disk for each final and collision block.
Given the disk time computed for the Hash Manager, this is
a total of under 0.1 days. We assume the time for quicksort
is negligible compared to the disk access.

Time for Removing Duplicates. We only need to view
each element in the Collision Queue once for removing it as a
duplicate (half the items reading and writing implies under
0.1 days). The Final Queue, however, requires us only to
read, but we must check all of the values at each pass. The
base time to read half of the total items is 30 minutes. And
given that we have a hash twice the size of the Schreier tree
itself, we can expect to perform log2(14 ∗ 109) = 34 passes.
This implies a total time of 17 hours. Once again, we assume
the time for quicksort is negligible.

Time for Rebuilding the Signatures. We perform
approximately 2 additional matrix-vector multiplications for
each element to determine whether it is a duplicate. Given
the base time of 3 days to compute all elements, this should
mean that rebuilding signatures takes 6 days.

6.4 Combined Times

The full time including all components of the process is
shown here.



Manager Disk Time CPU/RAM Time
Read/Write 0.5 days 0 days
Computation 0 days 3 days
Check 0 days 0 days
Hash < 1 day < 1 day
Formatting < 1 day < 1 day
Removing < 1 day < 1 day
Rebuilding < 1 day 6 days
Total 2 days 10 days

In addition, the algorithm will also spend a minimal amount
of network time checking computed blocks. This implies the
total time spent by our algorithm is 10 days assuming we
overlap disk and processor time.

These estimates indicate that the initial phase one com-
putation should complete in 3 days. Experimentally, phase
one finished in 4.56 days.

7 Future Work: Computation of Remaining
Levels

We expect to construct the first Schreier tree, with 1.4×1010

points, in approximately a week and a half. Once com-
puted, this Schreier tree can be used to easily discover the
remaining trees using the methods outlined by Cooperman
and Robinson [20]. We expect a further half day to make a
single pass through the final blocks to construct a sufficient
number of random elements of the point stabilizer subgroup.
With these random elements, we can use earlier methods to
compute the remaining Schreier Trees (which now are of a
reasonable size).

8 Experimental Results
As stated previously, the experimental time for a matrix-
vector multiply was 3 × 10−4 seconds. Some additional ex-
perimental times are shown below.

8.1 Times for Other Groups
In addition to running our algorithm on the Baby Monster,
we have also run it on other groups such as Harada-Norton
and J4. For Harada-Norton, where the initial Schreier tree
has 1,140,000 nodes, we use a representation of dimension 760
over GF(2). Our computation finishes within 15 minutes.
The times for this group are too small to be of use for pre-
dicting times for the Baby Monster.

J4 is a group whose first Schreier tree has 173,067,389
nodes. For it we use a representation of dimension 112
over GF(2). We ran a computation of the full Schreier tree
in a non-dedicated cluster of SunBlade 1500 workstations.
Each machine had a 1 gigahertz processor, 40 GB of local
disk, and 1 GB of RAM. The network was Gigabit Ethernet.

The initial first phase finished in 50 minutes. After this,
the initial second phase required only 2 minutes to compute.
This drastic difference in time is most likely due to the lack
of network communication in the second phase, coupled with
the fact that when the matrix-vector multiplications are be-
ing performed, our program is not running other managers
unlike during phase one. The first phase of the second itera-
tion required only 15 minutes and the corresponding second
phase time was negligible. In total, J4 ran for just over an
hour and a half and used only 16 MB of memory per node.

8.2 Times for the Baby Monster
At publication time, we have computed 9 billion of the 14 bil-
lion signatures in just 5.08 days (completing an initial first
phase in 4.56 days and second phase in 0.52 days). This

implies that the computation time for the full group should
be about 11 days. Due to systems programming issues, the
full computation is still pending.

Remark. In order to keep our method general to all
groups, we have not performed a simple optimization. Since
the generators for the Baby Monster are of order 2 and or-
der 3. We can reduce the total number of matrix-vector com-
putations by not checking those computations that lead to a
previously seen vector.

It is important to note that while discovery of new sig-
natures may slow down later in the computation, our times
are based on the total number of nodes discovered (including
duplicates).

8.3 Experimental Setup.
We used a cluster of 30 nodes: 1.5 GHz Pentium 4 CPU,
512 MB RAM, 1.2 TB of local disk space per node (Only
200 GB per local node was used.) The computation was
done under Redhat Linux 7.2 using the g++ 3.3 compiler
for C++. The MPI implementation used was MPINU (the
MPI subset provided with TOP-C [10]).
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10 Conclusion
Computing over the Baby Monster is not a matter of dis-
covering a unique and highly specialized algorithm for the
group, but rather one that emphasizes striking the right bal-
ance in terms of resources and time. We are required to use
the processor, disk, and memory efficiently and to balance
our load in a distributed computation for this group. By
optimizing our architecture for the difficult case of the Baby
Monster, other smaller groups can be addressed in smaller
time by the same, uniform architecture.
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