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A New Current-Voltage Relation for Duct Precipitators
Valid for Low and High Current Densities

GENE COOPERMAN

Abstract-A closed-form analytic current-voltage formula for duct
electrostatic precipitators is presented. A short discussion of previous
theoretical and numerical solutions is given, followed by an ex-
planation of the theoretical formula derived here. A comparison with
experimental data is then given, showing that the present formula is
accurate over a wide range of conditions, including wide plate
spacing.

1. INTRODUCTION

p RESENTLY, the Imlost common geomiletry for electrostatic
precipitators is of the wire-plate form. A series of equally

spaced vertical wires are placed equidistant between two verti-
cal parallel plates. The plates are grounded and the wire is at
higlh voltage. A coronia about the wires causes an ioIn currenlt
to flow from the wires to the plates. It is assumiied that a gas
is uised for wlhich the free electron current is negligible.

Maxwell's equations and the continuity equations provide
the following mathenmatical descriptioin:

v2 u- -47r

V . j = O

j --KpVu

where u = V0 at wire; u 0 at plate; and au/3i' = 0 at points
equidistant from adjacent wires.

u is the electrical potential, p is the ion space charge density,
and y is in a direction parallel to the plates and perpendicular
to the wires. It is not necessary to include boundary condi-
tiotns for p, since p can be derived from u. To see this, note
that the three differential eqautions can be replaced by
VU.V(72I1) = 0.
A fornula for current density j as a function of the ap-

plied voltage VO will be given for this geometry. A niodifica-
tion of this formula is found whien particles are presenit in the
gas stream. The formula is to be applied using the absolute
value of the voltage (i.e., positive sign). However, the forimula
is valid for positive and negative polarity, provided an account
is taken of the differing ion mobilities.

Recently, there has been much increased interest in wide
plate spacing (see, for example, [5] ). The new formula should
be useful because it gives significantly greater accuracy in pre-
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dicting current density for wide plate spacing, while agreeing
with the already accurate formula of P. Cooperman [1] for
more conventional spacing.

The added accuracy will be useful because a mnore accurate
model will better predict when a precipitator is operating
abnormally. This would be especially important in cases of
hiigh resistivity, since the first warning often comes from ex-
ceptionally low current densities at lower voltages, and ex-
ceptionally high current densities at the higher voltages where
the back corona makes itself felt.

II. NUMERICAL METHODS

An inmportant question for the pertinence of any theoretical
work is how well a computer may numerically calculate the
desired data. So far, most numerical methods have used varia-
tions of the following scheme.

The applied voltage is divided into an electrostatic voltage
and a space charge voltage where the electrostatic voltage
equals the current starting voltage. The space charge voltage is
the difference between the total applied voltage and the elec-
trostatic voltage. The electric field strength at the wire is as-
sunied to equal the breakdown field of the gas.

Initially a space charge of zero is assumed. The electrostatic
potential equals zero at the plate and the starting voltage at
the plate. The poteintial betweeni the wire and the plate is then
computed by a relaxation method.

This electrostatic field is held fixed and an ion distribution
is theni computed by numerically allowing ions to 'flow" in
a discrete grid between the wire and the plate. The space
charge density is then normalized so that the total potential
between the wire and the plate equals the applied voltage.

With the space charge density held fixed and the applied
voltage taken as the boundary condition at the wire, the
electrostatic field is recomputed. Then the electrostatic field
is fixed and the space charge density recomputed. The method
is continued until convergence is achieved.

P. Cooperimian [1 uses the first two iterations of this
procedure to arrive at a tlheoretical current-voltage formula.
The full procedure is also described as a means of obtaining
a more accurate formula using further iterations.

Leutert and Bohlen [3] describe and use this numerical
procedure and a computer to obtain a number of sample
graphs of how field strength and potential vary with position
in the precipitator. Unfortunately, they do not normalize their
current density in the manner described above. Hence, they
are obligated to take current density and voltage as independ-
ent parameters. Thus, no current-voltage curves are given.

More recently, McDonald [4] at the Southern Research
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Institute and Paranjpe [61 at Research-Cottrell have con-
structed computer models using variations of this technique
in order to arrive at current-voltage relations. This author has
worked on the latter model, and examined the published re-
sults of the Stanford Research Institute and Leutert and
Bohlen models. The most difficult feature to model seems to
be the region near the wire.

Since the wire is typically 0.15 cm in radius, a reasonable
grid size might be 0.03 cm or less. When one recalls that the
wire-to-plate spacing and the wire-to-wire spacing may be of
the order of 15 cm, this means 250 000 grid points. When
one considers the many iterations necessary to alternately con-
verge both the ion density and the electric potential, a truly
accurate model becomes difficult without some special tech-
niques.

Two tests of any computer model are whether current
density and electric flux are conserved in going from the wire
to the plate. In this author's experience, one appears to be
doing quite well if these quantities change by less than 20
percent. Unfortunately, this author has not had access to
detailed printouts from models in the published literature. But
it is to be expected that similar numerical methods would
yield similar accuracy.

There are several possible alternative numerical techniques.
Among these are variable grid size (using a smaller grid size
near the wire), variational methods (minimizing a certain
integral), and a finite element method. However, it is possible
that these methods would contain their own difficulties. In
any case, this author has not seen reports on such numerical
methods for precipitators in the literature.

Hence, more theoretical techniques are used in hopes of
achieving better accuracy. The formula to be here derived is
based on two distinct methods created by P. Cooperman and
discussed in [9]. For a detailed discussion of one of the
methods, see [11 .

III. CURRENT-VOLTAGE RELATIONS
A. Description ofPrevious Results Employed

The first method, discussed in [1 ] , considers the case when
the electrostatic field is large compared to the space charge
field, as is true for low current densities. The current-voltage
formula derived there is

7Te0K
cb2ln (d/a)

Note the parabolic form j = sV(V - V0), which is often ob-
served in experiments. The derivation given here will also
numerically approximate a parabolic formula. Perhaps the
most important result for the purposes of this paper is the rig-
orous proof in [ 1 ] that the ion density will be uniform under
such circumstances.

In the second method [91 , one imagines the wires re-
placed by a uniformly current-emitting plate. Thus, the
electrostatic field becomes uniform, and the problem is re-
duced to one dimension, where it may easily be solved. This
approximation will clearly be a good one when the space
charge field is large compared to the electrostatic field. The

equation derived is

9 eoK
i8 b3 (V-V0)2.

As the voltage or current density becomes very large, the
formula given will reduce to the above formula.

B. Relation without Particle Space Charge
Our contribution is to imagine a plane parallel to the plate

and between the wire and the plate. On the wire side of the
plane, the electrostatic field dominates and the first method
is applicable. On the plate side, the electrostatic field is as-
sumed uniform. The first method tells us that the ion density
is uniform on the wire side of the plane. Hence, the space
charge field is also uniform on the wire side of the plane.
Thus, the total field is uniform on the plate side of the plane,
and the second method can be used.

The appropriate equation is taken from [9]:

2 dE p j
VV- =- =

dx co eoKE

This yields

Ex2 =E12+ 2
eoK

E1 is the average electrostatic field and can be determined
from Gauss' law to be

iraEo irVO
El-=

2c 2c ln d/a

It is clear that

Ib

Ex dx= V= (V-VO) + VO.

However, the formula for Ex was derived under the assump-
tion that we had a uniform electrostatic field E1. Hence,
to maintain the consistency of our approximation, the second
term Vo which represents the electrostatic voltage, must be
replaced by bE1. Strictly, the equation should apply only to
the plate side of the plane, but if the plane is close to the
wire, the approximation should be a good one:

V-Vo + bEl f Ex dx f E x dx
o o ~~~~~E0K

V-Vo ±bEl10[(=E12
2/ 3

+ 2/ b) -E3]
eoK

j = --- [a+Vct2+ 92(V- )(bE1)3J16b

237

Authorized licensed use limited to: Northeastern University. Downloaded on May 18,2010 at 19:58:17 UTC from IEEE Xplore.  Restrictions apply. 



IE-E TRANSACTIONS ON INDUSTRY APPLICATIONS, VOL. IA-17, NO. 2, MARCH/APRIL. 1981

where

)2' r~~rV0
a=9(V -Vo +bEl)21-12(bEl) El-2clnd/

Curiously, in the range of interest for precipitation, this
formula numerically approximates one of the form j = sV(V -
VO), where s is a constant. This compares well with experi-
mental data. Further, it exhibits a steeper than usual rise in
current at high currents, which is also observed.

C. Relation with Particle Space Charge Present

P. Cooperman [2] has given an extension of his method
to dust space charge. Unfortunately, this method is not
directly applicable to our equation. However, if one assumes
a uniform dust space charge p as would be indicated by the
high diffusion values of M. Robinson [71, the following
modified equation will result:

dE j p

dx eoKE e0

This has the solution

i

pK
Ex) = Px+E1

i CO

I
/

--Kn I +
pK\

pK Er)

This gives E, implicitly as a function of j and x. By letting

b2p b
V- Vo'+bE i+±- - JExdx,

, e6 0

it should be possible to numerically calculate j as a function
of V, even in the presence of dust space charge. (In fact, this
formula will give V explicitly in terms of j.) It should be noted
here that VO', the corona starting voltage in the presence of
dust space charge, is given by

b2p
vo' VO + -

2eo

D. Numerical Use of the Relations

V0 can be calculated by the formula VO = a ln (d/a)EO.
Eo can then be estimated by means of Peek's semi-empirical
formula. However, this route is not recommended due to the
variability of Eo with wire roughness, cleanliness, etc. Hence,
it is proposed that where possible, the usual method for
estimating VO be used, whereby a relation j = sV(V - V0)
is assumed for the experimental data from a test run, and
VO is taken from a straight line fit of the variables j/V versus

V.

Finally, once j is known, the ion space charge field is given
by the formula

Ex = (E12;X) -El.

The electrostatic field can be calculated by differentiating P.
Cooperman's formula for electric potential in a duct is given
in [9, p. 97].

IV. EXPERIMENTAL CONFIRMATION

Clearly, an ideal test of this formula would require excep-
tionally accurate data. In the case of gas with dust it would
be difficult to find good data for uniform, measured particle
space charge. However. M. Robinson and J. Shepherd [8]
have taken highly accurate data for clean air under a wide
variety of conditions. Care was taken to avoid edge effects
(by using large flared plates), and misalignment. There is
some controversy about the proper value of ion mobility.
The commonly used value of 2.2 cnl2/s was assumed through-
out.

Two examples with positive polarity are given for both
conventional and wide plate spacing. This formula consisteintly
overestimates the current density by about 7 percent. Re-
ducing the ion mobility to about 2.05 cm2/s would give
nearly perfect agreement between experiment and theory.
Since some researchers have reported the ion mobility for
positive ions to be lower than that for negative ions, the
experimental results are considered highiy encouraging.

For conventional plate spacing (Fig. 1), the new formula
agrees with both the experimental data and P. Cooperman's
formula to better than 10 percent. For wide plate spacing
and thin wires (Fig. 2), the new formula maintains high ac-
curacy, whereas P. Cooperman's formula is too low by about
30 percent.

V. CONCLUSION

The current-voltage relations given hlere are expected to
have an accuracy at least as good as many of the previously
considered relations. While it would be difficult to find an
error bound, both the derivation and the experimental evi-
dence indicate the accuracy to be good over most normal
(i.e., no back corona, etc.) operating conditions. This in-
cludes the case of wide-plate spacing, which was not as im-
portant when many of the older formulas were designed and
tested.

NOMENCLATURE
b Wire-plate spacing.
c Half-wire-wire spacing.
a Wire radius.
d Equivalent cylinder radius:

4b °° cosh (m7rc/b) + 1

7r 7 1 cosh (m7rc/b)
V Applied voltage.
VO Corona starting voltage.
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Fig. 1. Current-voltage for conventional plate spacing. Wire diameter
2.768 X 10-3 m (0.109 in). Plate-plate distance: 0.3048 m (12 in).
Wire-wire distance: 0.1524 m (6 in). Starting voltage: 37 kV.
Diamonds represent results from experiment. Circles represent re-
sults from P. Cooperman [1]. Crosses represent results from this
paper.
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Fig. 2. Current-voltage for wide plate spacing. Wire diameter 17.78 X

10-5 m (0.007 in). Plate-plate distance: 0.4572 m (18 in). Wire-
wire distance: 0.2286 m (9 in). Starting voltage: 25 kV. Diamonds
represent results from experiment. Circles represent results from
P. Cooperman [1]. Crosses represent results from this paper.

VO' Corona starting voltage in presence of dust space charge.
Eo Breakdown field of gas at wire.

El Average electostatic field at plate = 7raEO/2c
= 7rVo/2clnd/a.

Field at distance x from centerline.
Distance from centerline.
Current density.
Dust space charge density.
Ion mobility (2.2 cm2/V-s).
Permittivity of space (8.85 X 10- 1 2 F/m).

REFERENCES
[I] P. Cooperman, "A theory for space charge limited currents with

application to electrical precipitation," AIEE Trans., vol. 79, no.

47, 1960.
[2] "Dust space-charge in electrical precipitators," IEEE Trans.

Comm. Elect., vol. 82, July, 1963.
[3] G. Leutert and B. Bbhlen, "The Spatial Trend of Electric Field

Strength and Space Charge Density in Plate-Type Electrostatic
Precipitators," Staub-Reinhalt. Luft, vol. 32, p. 27, July, 1972
(English translation).

[4] J. R. McDonald, "A mathematical model of electrostatic pre-
cipitators," (Rev. 1), Southern Research Institute, Alabama, EPA
contract #68022114, vol. 1, 1976.

[5] S. Masuda, "Present status of wide spacing type precipitators in
Japan," in Proc. 1979 EPA Symp. on Transfer and Utilization of
Particulate Control Technology.

16] Paranjpe, "The wire plate precipitator computer model," Re-
search-Cottrell (in-house report), Res. and Dev., 1978.

[7] M. Robinson, "Effects of the corona discharge on electric-wind
convection and eddy diffusion in an electrostatic precipitator,"
U.S. Energy Res. and Dev. Adm., Health and Safety Lab., HASL-
301, New York, 1976.

[8] M. Robinson and J. Shepherd, "Preliminary Report on Wide Plate
Spacing," Research-Cottrell (in-house report), Res. and Dev.,
1977.

[9] H. J. White, Industrial Electrostatic Precipitation. Reading, MA:
Addison-Wesley, Inc., 1963, pp. 99-100.

Gene Cooperman was born in Union, NJ, on

May 14, 1952. He received the B.S. degree with

separate majors in physics and mathematics from

the University of Michigan, Ann Arbor, and the
Ph.D. degree in applied mathematics from Brown
University, Providence, RI, in 1974 and 1978,
respectively. He spent two years in a postdoctoral
position at Michigan State University, East

Lansing.
While working for his doctorate, he worked for

four summers in the Research and Development
Department of Research-Cottrell, Inc., Bound Brook, NJ. During that
time, he obtained two previous publications in the area of electrostatic
precipitators. He is currently employed as an Applied Mathematician at
GTE Laboratories, Waltham, MA.

0¢

239

2

Authorized licensed use limited to: Northeastern University. Downloaded on May 18,2010 at 19:58:17 UTC from IEEE Xplore.  Restrictions apply. 


