
Transparent Checkpoint-Restart over InfiniBand

Jiajun Cao∗ Gregory Kerr∗∗ Kapil Arya∗∗ Gene Cooperman∗∗

College of Computer and Information Science
Northeastern University

Boston, MA 02115 / USA
jiajun@ccs.neu.edu, kerrgi@gmail.com, kapil@ccs.neu.edu, gene@ccs.neu.edu

ABSTRACT

Transparently saving the state of the InfiniBand network as
part of distributed checkpointing has been a long-standing
challenge for researchers. The lack of a solution has forced
typical MPI implementations to include custom checkpoint-
restart services that “tear down” the network, checkpoint
each node in isolation, and then re-connect the network
again. This work presents the first example of transpar-
ent, system-initiated checkpoint-restart that directly sup-
ports InfiniBand. The new approach simplifies current prac-
tice by avoiding the need for a privileged kernel module. The
generality of this approach is demonstrated by applying it
both to MPI and to Berkeley UPC (Unified Parallel C), in its
native mode (without MPI). Scalability is shown by check-
pointing 2,048 MPI processes across 128 nodes (with 16 cores
per node). The run-time overhead varies between 0.8% and
1.7%. While checkpoint times dominate, the network-only
portion of the implementation is shown to require less than
100 milliseconds (not including the time to locally write ap-
plication memory to stable storage).

Keywords

checkpoint/restart; InfiniBand; MPI; UPC

Categories and Subject Descriptors

D.4.5 [Operating Systems]: Reliability—checkpoint/restart

1. INTRODUCTION
InfiniBand is the preferred network for most of high per-

formance computing and for certain Cloud applications, due
to its low latency. Historically, transparent (system-initiated)
checkpoint-restart has typically been the first technology
that one examines in order to provide fault tolerance during

∗This work was partially supported by the National Science
Foundation under Grants OCI-0960978 and OCI 1229059,
and by a grant from Intel Corporation.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

HPDC’14, June 23–27, 2014, Vancouver, BC, Canada.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-2749-7/14/06 ...$15.00.

http://dx.doi.org/10.1145/2600212.2600219.

long-running computations. Checkpoint-restart is the pro-
cess of saving to stable storage (such as disk or SSD) the
state of the processes in a running computation, and later
re-starting from stable storage. The checkpoint-restart is
transparent if no modification of the application is required.
This is sometimes called system-initiated checkpointing.

Since transparent checkpoint-restart had not previously
been available for distributed computations over InfiniBand,
support for this important case had been based on: (i) “tear-
ing down” the InfiniBand network connection; (ii) check-
pointing the processed on each single computer node in iso-
lation; and (iii) then re-building the network connection.
Such schemes are typically implemented within each MPI
implementation [15, 16, 25, 26], while using the BLCR ker-
nel module [9, 14] for single-node checkpointing. However,
such MPI-based implementations carry the overhead of wait-
ing for completion of pending MPI messages, while blocking
the sending of any new messages.

We present a new approach to checkpointing over Infini-
Band. This is the first efficient and transparent solution for
direct checkpoint-restart over the InfiniBand network (with-
out the intermediary of an MPI checkpoint-restart service
that is implementation-specific). This also extends to other
language implementations over InfiniBand, such as Unified
Parallel C (UPC [10]).

The new approach for InfiniBand provides at least three
advantages:

1. Resuming after a checkpoint can be faster if there is no
need to tear down and re-connect the network. (Sec-
tion 4.2.2 shows the network-only portion of check-
pointing to be two orders of magnitude faster than the
older approach of Open MPI/BLCR.)

2. PGAS languages (e.g., UPC) often include two im-
plementations of InfiniBand support: a direct imple-
mentation for greater network performance, and a re-
factoring on top of MPI in order to gain the advan-
tage of MPI-based checkpointing. This work provides
checkpoint-restart support in the direct case, thus sup-
porting both speed and fault tolerance within a single
implementation.

3. The use of the popular BLCR kernel module implies
that the restart cluster must use the same Linux kernel
as on the original checkpoint cluster. The new work
eliminates this restriction.

The current work is implemented as a plugin on top of
DMTCP (Distributed MultiThreaded CheckPointing) [1].

CPU
RAM

HCA

pinned
RAM

CPU
RAM

HCA

pinned
RAM

Send Queue

Recv Queue

Completion
Queue

Send Queue

Recv Queue

Completion
Queue

InfiniBand

InfiniBand

HCA HARDWARE:

Figure 1: InfiniBand Concepts

The experimental evaluation demonstrates DMTCP-based
checkpointing of Open MPI for the NAS LU benchmark
and others. For 512 processes, checkpointing to a local
disk drive, occurs in 232 seconds, whereas it requires 36 sec-
onds when checkpointing to back-end Lustre-based storage.
Checkpointing of up to 2,048 MPI processes (128 nodes with
16 cores per node) is shown to have a run-time overhead be-
tween 0.8% and 1.7%. This overhead is shown to be a little
less than the overhead when using the checkpoint-restart
of Open MPI using BLCR. Tests were also carried out on
Berkeley UPC [5] over GASNet’s ibv conduit [3], with simi-
lar results for checkpoint times and run-time overhead.
A particular advantage of the older MPI-based approach

using network “tear-down” is the possibility to checkpoint
on an InfiniBand network and restart on a TCP network (or
vice versa). Such an interconnection-agnostic possibility was
presented for the checkpoint-restart service of Open MPI [15].
The InfiniBand plugin design is intended to also be compat-
ible with a future interconnection-agnostic capability for the
new approach. An early proof of principle is presented here,
showing an additional IB2TCP plugin, capable of check-
pointing over InfiniBand and restarting over TCP in the
special case of an MPI program over two nodes.
Finally, the number of lines of code of an implementa-

tion is a useful indicator of the likely effort required for
maintenance. The primary InfiniBand plugin consists of
2,700 lines of code (while the additional IB2TCP plugin com-
prises 1,000 lines of code).

Organization of Paper.
Section 2 covers the background on the InfiniBand Verbs

API and DMTCP. Section 3 provides design principles for
checkpointing over InfiniBand. An experimental evaluation
is presented in Section 4. Limitations and possible future
directions are presented in Section 5. Finally, the related
work (Section 6) and conclusions (Section 7) are presented.

2. BACKGROUND
Section 2.1 reviews some concepts of InfiniBand, necessary

for understanding the checkpointing approach described in
Section 3. Section 2.2 describes the use of plugins in DMTCP.

2.1 InfiniBand Verbs API
In order to understand the algorithm, we review some

concepts from the Verbs API of InfiniBand. While there are

several references that describe InfiniBand, we recommend
one of [19, 2] as a gentle introduction for a general audience.

Recall that the InfiniBand network uses RDMA (remote
DMA to the RAM of a remote computer). Each computer
node must have a Host Channel Adapter (HCA) board with
access to the system bus (memory bus). With only two com-
puter nodes, the HCA adapter boards may be connected
directly to each other. With three or more nodes, communi-
cation must go through an InfiniBand switch in the middle.
Note also that the bytes of an InfiniBand message may be
delivered out of order.

Figure 1 reviews the basic elements of an InfiniBand net-
work. A hardware host channel adapter (HCA) and the
software library and driver together maintain at least one
queue pair and a completion queue on each node. The queue
pair consists of a send queue and a receive queue. Sending a
message across a queue pair causes an entry to be added to
the completion queue on each node. However, it is possible
to set a flag when posting a work request to the send queue,
such that no entry is added to the completion queue on the
“send” side of the connection.

Although not explicitly introduced as a standard, libib-
verbs (provided by the Linux OFED (OpenFabrics Enter-
prise Distribution)) is the most commonly used InfiniBand
interface library. We will describe the model in terms of the
functions prefixed by ibv_ for the verbs library (libibverbs).
Many programs also use OFED’s convenience functions, pre-
fixed by rdma_*. OFED also provides an optional library,
librdmacm (RDMA connection manager) for ease of con-
nection set-up and tear-down in conjunction with the verbs
interface. Since this applies only to set-up and tear-down,
this library does not affect the ability to perform transparent
checkpoint-restart.

We assume the reliable connection model (end-to-end con-
text), which is by far the most commonly used model for
InfiniBand. There are two models for the communication:

• Send-receive model

• RDMA (remote DMA) model (often employed for effi-
ciency, and serving as the inspiration for the one-sided
communication of the MPI-2 standard)

Our InfiniBand plugin supports both models, and a typical
MPI implementation can be configured to use either model.

2.1.1 Send-Receive Model

We first describe the steps in processing the send-receive
model for InfiniBand connection. It may be useful to exam-
ine Figure 1 while reading the steps below.

1. Initialize a hardware context, which causes a buffer in
RAM to be allocated. All further operations are with
respect to this hardware context.

2. Create a protection domain that sets the permissions
to determine which computers may connect to it.

3. Register a memory region, which causes the virtual
memory to be pinned to a physical address (so that
the operating system will not page that memory out).

4. Create a completion queue for each of the sender and
the receiver. This completion queue will be used later.

5. Create a queue pair (a send queue and a receive queue)
associated with the completion queue.

6. An end-to-end connection is created between two queue
pairs, with each queue pair associated with a port on
an HCA adapter. The sender and receiver queue pair
information (several ids) is exchanged, typically using
either TCP (through a non-InfiniBand side channel),
or by using an rdmacm library whose API is transport-
neutral.

7. The receiver creates a work request and posts it to the
receive queue. (One can post multiple receive buffers
in advance.)

8. The sender creates one or more work requests and
posts them to the send queue.

9. The application must ensure that a receive buffer has
been posted before it posts a work request to the send
queue. It is an application error if this is not the case.

10. The transfer of data now takes place between a posted
buffer on the send queue and a posted buffer on the
receive queue. The posted send and receive buffers
have now been used up, and further posts are required
for further messages.

11. Upon completion, work completions are generated by
the hardware and appended to each of the completion
queues, one queue on the sender’s node and one queue
on the receiver’s node.

12. The sender and receiver each poll the completion queue
until a work completion is encountered. (A blocking
request for work completion also exists as an alter-
native. A blocking request must be acknowledged on
success.)

13. Polling causes the work completion to be removed from
the completion queue. Hence, further polling will even-
tually see further completion events. Both blocking
and non-blocking versions of the polling calls exist.

We also remark that a work request (a WQE or Work
Queue Entry) points to a list of scatter/gather elements, so
that the data of the message need not be contiguous.

2.1.2 RDMA Model

The RDMA model is similar to the send-receive model.
However, in this case, one does not post receive buffers. The
data is received directly in a memory region. An efficient
implementation of MPI’s one-sided communication (MPI -
Put, MPI Get, MPI Accumulate), when implemented over
InfiniBand, will typically employ the RDMA model [18].
As a consequence, Step 9 of Section 2.1.1 does not appear

in the RDMAmodel. Similarly, Steps 11 and 12 are modified
in the RDMAmodel to refer to completion and polling solely
for the send end of the end-to-end connection.
Other variations exist, which are supported in our work,

but not explicitly discussed here. In one example, an Infini-
Band application may choose to send several messages with-
out requesting a work completion in the completion queue.
In these cases, an application-specific algorithm will follow
this sequence with a message that includes a work comple-
tion. In a second example, an RDMA-based work request
may request an immediate mode, in which the work comple-
tion is placed only in the remote completion queue and not
in the local completion queue.

2.2 DMTCP and Plugins
DMTCP is a transparent, checkpoint-restart package that

supports third-party plugins. The current work on Infini-
Band support was implemented as a DMTCP plugin [8].
The plugin is used here to virtualize the InfiniBand resources
exposed to the end user, such as the queue pair struct (ibv -
qp) (see Figure 1). This is needed since upon restart from a
checkpoint image, the plugin will need to create a new queue
pair for communication. As a result, the InfiniBand driver
will create a new queue pair struct at a new address in user
space, with new ids.
Plugins provide three core features to support virtualization:

1. wrapper functions around functions of the InfiniBand
library: these wrappers translate between virtual re-
sources (seen by the target application) and real re-
sources (seen within the InfiniBand library, driver and
hardware). The wrapper function also records changes
to the queue pair and other resources for later replay
during restart.

2. event hooks: these hooks are functions within the plu-
gin that DMTCP will call at the time of checkpoint
and restart. Hence, the plugin is notified at the time
of checkpoint and restart, so as to update the virtual-
to-real translations, to recreate the network connection
upon restarting from a checkpoint image, and to replay
some information from the logs.

3. a publish/subscribe facility: to exchange ids among
plugins running on the different computer nodes when-
ever new device connections are created. Examples of
such ids are local and remote queue pair numbers and
remote keys of memory regions.

3. DESIGN PRINCIPLES
The InfiniBand completion queue is the most complex of

the subsystems being checkpointed. The key difficulty here
is that at the time of checkpoint, the plugin needs to “drain”
the notifications in the InfiniBand completion queue, and
then re-insert those notifications at the time of resume or
restart.

In this section, we will describe two orthogonal issues.
First, Section 3.1 describes some important principles needed
for draining the completion queue. Understanding of those
underlying principles will be more enlightening than pseudo-
code for a detailed implementation of an algorithm for drain-
ing the queue.

Second, Section 3.2 describes how the DMTCP plugin vir-
tualizes the InfiniBand ids (e.g., rkey, qp num, lid, pd). This
is a key issue since the ids are shared among distributed
processes. InfiniBand will typically assign new ids, when
DMTCP restarts from a checkpoint image. Since the Infini-
Band library and application code may have already cached
the pre-checkpoint ids, the plugin uses its wrapper functions
to interpose and pass on only virtual ids to the application
and libraries. The plugin maintains an internal table of vir-
tual and real ids. This table must be consistently updated
across all processes on restart.

Figure 2 presents an overview of the virtualization of a
queue pair. Observe that the DMTCP plugin library inter-
poses between most calls from the target application to the
InfiniBand ibverbs library. This allows the DMTCP Infini-
Band plugin to intercept the creation of a queue pair by the

Plugin Internal Resources

Virtual queue pair

(ptr to real queue pair)

Shadow queue pair of plugin

Post Send Log

Post Recv Log

Modify Queue Pair Log

DMTCP libraryInfiniBand ibverbs library

DMTCP InfiniBand Plugin

Kernel driver

HCA Adapter (hardware)

Device−dependent driver in user space

Queue pair created by kernel

Fnc call to library:

Target App (user code)

Figure 2: Queue pair resources and their virtualiza-
tion. (The plugin keeps a log of calls to post to or
to modify the queue pair.)

InfiniBand kernel driver, and to create a shadow queue pair.
The target application is passed a pointer only to the virtual
queue pair created by the plugin. Thus, any further ibverbs
calls to manipulate the queue pair will be intercepted by the
plugin, and appropriate fields in the queue pair structure can
be appropriately virtualized before the real ibverbs call.
Similarly, any ibverbs calls to post to the send or receive

queue, or to modify the queue pair, are intercepted and
saved in a log. This log is used for internal bookkeeping
by the plugin, to appropriately model work requests as they
evolve into the completion queue.
Note also a subtle corner case: a call to ibv post send

may request that no work completion entry be entered for
that one call. The log must account for this through later
calls that provide a completion entry, similarly to typical
application code that works with InfiniBand.
In this work, we always use the three terms checkpoint,

resume and restart as follows. Checkpoint refers to saving
the state, resume refers to the original process resuming the
computation, and restart refers to launching a new process
that will restart from stable storage.

3.1 Draining the Completion Queue
As the user base code makes calls to the verbs library,

we will use DMTCP plugin wrapper functions around these
library functions to interpose. Hence the user call is first
received by our DMTCP plugin library. We then extract
parameters describing how the resources were created, be-
fore passing on the call to the verbs library, and later passing
back the return value. This allows us to recreate semanti-
cally equivalent copies of those same resources on restart
even if we restart on a new computer. In particular, we
record any calls to modify_qp and to modify_srq. On restart,
those calls are replayed in order to place the corresponding
data structures in a semantically equivalent state to pre-
checkpoint.
While the description above appears simple, several sub-

tleties arise, encapsulated in the following principles.

Principle 1: Never let the user see a pointer to the ac-
tual InfiniBand resource.
A verbs call that creates a new InfiniBand resource will

typically create a struct, and return a pointer to that struct.
We will call this struct created by the verbs library a real

struct. If the end user code creates an InfiniBand resource,
we interpose to copy that struct to a a new shadow struct,
and then pass back to the end user the pointer to this shadow
struct. Some examples of InfiniBand resources for which
this is done are: a context, a protection domain, a memory
region, and a queue pair.

The reason for this is that many implementations of In-
finiBand libraries contain additional undocumented fields in
these structs, in addition to those documented by the corre-
sponding “man page”. When we restart after checkpoint, we
cannot pass the original pre-checkpoint struct to the verbs
library. The undocumented (hidden) fields would not match
the current state of the InfiniBand hardware on restart.
(New device-dependent ids will be in use after restart.)

So, on restart, we create an entirely new InfiniBand re-
source (using the same parameters as the original). This
new struct should be semantically equivalent to the pre-
checkpoint original, and the hidden fields will correspond
to the post-restart state of the hardware.

This is a form of virtualization. The user is passed a
pointer to a virtual struct, the shadow struct. The verbs
library knows only about the real struct. So, we will guar-
antee that the verbs library only sees real structs, and that
the end user code only sees virtual structs.

To do this, we interpose our DMTCP plugin library func-
tion if a verbs library function refers to one of these structs
representing InfiniBand resources. If the end user calls a
verbs library function that returns a pointer to a real struct,
then our interposition will replace this and return a pointer
to a corresponding virtual struct. If the user code passes
an argument pointing to a virtual struct, we will replace it
by a pointer to a real struct before calling the verbs library
function.
Remark: In the OFED ibverbs implementation, some of
the apparent library calls to the verbs library are in fact
inline functions. A DMTCP plugin cannot easily interpose
on inline functions. Luckily, these inline functions are often
associated with possibly device-dependent functions. How-
ever, each of the important OFED inline functions expands
to a dispatch through a global function pointer. So, the plu-
gin resets the global function pointer to a plugin function,
which wraps a call to the original function pointer.

Principle 2: Carry out bookkeeping on posts of work
queue entries to the send and receive queue.

As work requests are entered onto a send queue or re-
ceive queue, the wrapper functions of the DMTCP plugin
record those work requests (which have now become work
queue entries). When the completion queue is polled, if a
completion event corresponding to that work queue entry is
found, then the DMTCP plugin records that the entry has
been destroyed. At the time of checkpoint, there is a log
of those work queue entries that have been posted and not
yet destroyed. At the time of restart, the send and receive
queues will initially be empty. So, those work queue entries
are re-posted to their respective queues. (In the case of re-
sume, the send and receive queues continue to hold their
work queue entries, and so no special action is necessary.)

Principle 3: At the time of checkpoint, “drain” the
completion queue of its completion events.

At the time of checkpoint, and after all user threads have
been quiesced, the checkpoint thread polls the completion

queue for remaining completion events not yet seen by the
end user code. A copy of each completion event seen is saved
by the DMTCP plugin. Note that we must drain the com-
pletion queue for each of the sender and the receiver. Recall
also that the verbs library function for polling the comple-
tion queue will also remove the polled completion event from
the completion queue as it passes that event to the caller.

Principle 4: At the time of restart or resume, “refill” a
virtual completion queue.
At the time of restart or resume and before any user

threads have been re-activated, we must somehow refill the
completion queue, since the end user has not yet seen the
completion events that were drained (see previous princi-
ple). To do this, the DMTCP plugin stores the completion
events of the previous principle in its own private queue.
The DMTCP plugin library then interposes between any
end user calls to a completion queue and the corresponding
verbs library function. If the end user polls the completion
queue, the DMTCP wrapper function passes back to the end
user the plugin’s private copy of the completion events, and
the verbs library function for polling is never called. Only
after the private completion queue becomes empty are fur-
ther polling calls passed on to the verbs library function.
Hence, the plugin’s private queue becomes part of a virtual
completion queue.

Principle 5: Any InfiniBand messages still “in flight”
can be ignored.
If data from an InfiniBand message is still in flight (has

not yet arrived in the receive buffer), then InfiniBand will
not generate a completion event. Note that the InfiniBand
hardware may continue to transport the data of a message,
and even generate a completion event after all user threads
have been quiesced for checkpoint. Nevertheless, a simple
rule operates.
If our checkpoint thread has not seen a completion event

that arrived late, then we will not have polled for that com-
pletion event. Therefore, our bookkeeping in Principle 2 will
not have removed the send or receive post from our log. Fur-
ther, this implies that the memory buffers will continue to
have the complete data, since it was saved on checkpoint and
restored on restart. Therefore, upon restart (which implies a
fresh, empty completion queue), the checkpoint thread will
issue another send or receive post (again following the logic
of Principle 2).
Remark: Blocking requests for a completion event
(ibv_get_cq_event) and for shared receive queues create
further issues. While those details add some complication,
their solution is straightforward and is not covered here.

3.2 Virtualization of InfiniBand Ids
A number of InfiniBand objects and associated ids will

change on restart. All of these must be virtualized. Among
these objects and ids are ibv contexts, protection domains,
memory regions (the local and remote keys (lkey/rkey) of
the memory regions), completion queues, queue pairs (the
queue pair number, qp num), and the local id (lid) of the
HCA port being used. Note that the lid of an HCA port
will not change if restarting on the same host, but it may
change when restarting on a new host, which may have been
configured to use a different port.

In all of the above cases, the plugin assigns a virtual id
and maintains a translation table between virtual and real
id. The application sees only the virtual id. Any InfiniBand
calls are processed through the plugin, where virtual ids are
translated back to real ids.

On restart, the InfiniBand hardware/driver may assign
new real ids for a given InfiniBand object. In this case, the
real ids are updated within the translation tables maintained
by the plugin.

3.2.1 Virtualization of remote ids: rkey, qp_num and
lid

A more difficult issue occurs in the case of remote memory
keys (rkey), queue pair numbers (qp num) and local ids (lid).
In all three cases, an InfiniBand application must pass these
ids to a remote node for communication with the local node.
The remote need will need the qp num and lid when calling
ibv_modify_qp to initialize a queue pair that connects to
the local node. The remote node will need the rkey when
calling ibv_post_send to send a message to the local node.

Since the plugin allows the application to see only virtual
ids, the application will employ a virtual id when calling
ibv_modify_qp and ibv_post_send. The plugin will first
replace the virtual id by the real id, which is known to the
InfiniBand hardware. To do this, the plugin within each
remote node must contain a virtualization table to translate
all virtual ids by real ids.

Next, we recall how a remote node received a virtual id
in the first place. The InfiniBand specification solves this
bootstrapping problem by requiring the application to pass
these three ids to the remote node through some out-of-band
mechanism. When the application employs this out-of-band
mechanism, the remote node will “see” the virtual ids that
the plugin passed back to the application upon completion
of an InfiniBand call.

The solution chosen for the InfiniBand plugin is that it as-
signs a virtual id, which is the same as the real id at the time
of the initial creation of the InfiniBand object. After restart,
the InfiniBand hardware may assign a new real id. At the
time of restart, the plugin uses the DMTCP coordinator and
the publish-subscribe feature to exchange the new real ids,
associated with a given virtual id. Since the application con-
tinues to see only the virtual ids, the plugin can continue to
translate between virtual and real ids through any wrapper
by which the application communicates to the InfiniBand
hardware (see Figure 2). (A subtle issue can arise if a queue
pair or memory region is created after restart. This is a rare
case. Although we have not seen this in the current work,
Section 5 discusses two possible solutions.)

3.2.2 Virtualization of rkeys

Next, the case of rkeys (remote memory region keys) poses
a particular problem that does not occur for queue pair num-
bers or local ids. This is because an rkey is guaranteed
unique by InfiniBand only with respect to the protection
domain within which it was created. Thus, if a single In-
finiBand node has received rkeys from many remote nodes,
then the rkeys for two different remote nodes may conflict.

Normally, InfiniBand can resolve this conflict because a
queue pair must be specified in order to send or receive a
message. The local queue pair number determines a unique
queue pair number on the remote node. The remote queue
pair number then uniquely determines an associated protec-

tion domain pd. With the remote pd, all rkeys are unique.
Hence, the InfiniBand driver on the remote node uses the
(pd, rkey) pair, to determine a unique memory address on
the remote node.
In the case of the InfiniBand plugin, the vrkey (virtual

rkey) and rkey are identical if no restart has taken place. (It
is only after restart that the rkey may change, for a given
vrkey). Hence, prior to the first checkpoint, translation from
vrkey to rkey is trivial.
After a restart, the InfiniBand plugin must employ a strat-

egy motivated by that of the InfiniBand driver. In a call to
ibv_post_send, the target application will pass the required
parameters, including both a virtual queue pair number and
a virtual rkey (vrkey). Unlike InfiniBand, the plugin must
translate the vrkey into the real rkey on the local node.
However, during a restart, each node has published its lo-
cally generated rkey, the corresponding pd (as a globally
unique id; see above), and the corresponding vrkey. Simi-
larly, each node has published the virtual queue pair number
and corresponding pd for any queue pair generated on that
node. Each node has also subscribed to the above informa-
tion published by all other nodes.
Hence, the local node is aware of the following through

publish-subscribe during restart:

(virtualqp num,pd)

(vrkey, pd, realrkey)

The call to ibv_post_send provides the (local) virtual
qp num, and the vrkey. The previous InfiniBand calls build-
ing the connection had provided the corresponding remote
virtual qp num. The first of the publish-subscribe tuples
above yields the globally unique pd. The pd and vrkey to-
gether are then enough to use the second tuple to derive the
necessary rkey, which is used when calling the InfiniBand
hardware.

4. EXPERIMENTAL EVALUATION
The experiments are divided into four parts: scalability

with more nodes in the case of Open MPI (Section 4.1); com-
parison between BLCR and DMTCP for MPI-based com-
putations (Section 4.2); tests on Unified Parallel C (UPC)
(Section 4.3); and demonstration of migration from Infini-
Band to TCP (Section 4.4).

Experimental Configuration.
Two clusters were employed for the experiments described

here. For scalability tests with up to 2048 cores, a large
cluster was reserved for our sole use (Section 4.1). This
was the Massachusetts Green High-Performance Computing
Center (MGHPCC), with Intel Xeon E5-2650 CPUs running
at 2 GHz. Each node is dual-CPU, for a total of 16 cores
per node. It employs Mellanox HCA adapters. In addition
to the front-end InfiniBand network, there is a Lustre back-
end network. The operating system is RedHat Enterprise
Linux 6.4 with Linux kernel version 2.6.32. (Section 4.4 also
used this cluster in small tests, not as the sole user.)
Sections 4.2 and 4.3 refer to a cluster at the Center for

Computational Research at the University of Buffalo. It
uses SLURM as its resource manager, and a common NFS-
mounted filesystem. Each node is equipped with either a
Mellanox or QLogic (now Intel) HCA, although a given par-
tition under which an experiment was run was always homo-

geneous (either all Mellanox or all QLogic). The operating
system is RedHat Enterprise Linux 6.1 with Linux kernel
version 2.6.32.

In Section 4.2, experiments were run using one core per
computer. Hence, the MPI rank was equal to the number
of computers, and each MPI process was on a separate com-
puter node. Not all computer nodes were identical. For
reproducibility, a uniform memory limit per CPU was set at
3 GB. The CPUs had clock rates ranging from 2.13 GHz to
2.40 GHz.

In all cases, we used Open MPI 1.6, DMTCP 2.1 (or a pre-
release version in some cases), and BLCR 0.8.3, respectively.
Open MPI was run in its default mode, which used the
RDMA model for InfiniBand, rather than the send-receive
model. Although DMTCP version 2.1 was used, the plu-
gin included some additional bug fixes appearing after that
DMTCP release. For the applications, we used Berkeley
UPC (Unified Parallel C) version 2.16.2 and NAS Parallel
Benchmark version 3.1.

Tests of BLCR under Open MPI were run by using the
Open MPI checkpoint-restart service [15]. Tests of DMTCP
for Open MPI did not use the checkpoint-restart service. For
DMTCP, all checkpoints are saved to a local disk (local to
the given computer node), except as noted. Open MPI/BLCR
uses the same strategy, except that it copies each local check-
point image to a central coordinator process. Unfortunately,
this serializes part of the parallel checkpoint. Hence, check-
point times for BLCR are not directly comparable to those
for DMTCP.

In case of DMTCP, the experimental timings reported
here did not employ any particular tuning techniques and
were run using the default DMTCP parameters. Thus, there
are opportunities to reduce the run-time overhead by reduc-
ing the copying of buffers.

DMTCP also supports a faster forked checkpointing mode
(taking advantage of checkpointing a forked child process un-
der copy-on-write), and a fast restart using mmap to over-
lap running and reading in the remaining pages. Checkpoint
times can also be sped up by omitting the DMTCP default
on-the-fly gzip compression. See [12] for experiments explor-
ing these extra options.

4.1 Scalability of InfiniBand Plugin
Table 1, and its graphical representation in Figure 3, present

a study of scalability for the InfiniBand plugin. The NAS
MPI test for LU is employed. For a given number of pro-
cesses, each of classes C, D, and E are tested provided that
the running time for the test is of reasonable length. The
overhead for DMTCP is analyzed further in Table 2.

64 128 256 512 1024 2048

Number of MPI processes

5

10

20

50

100

200

500

1000

R
u
n
ti
m
e
(s
)

LU.C

LU.D

LU.E

Scalability of DMTCP

DMTCP (LU.C)

Native (LU.C)

Figure 3: Plot based on Table 1.

NAS Num. of Runtime (s) Runtime (s)
benchmark processes (natively) (w/ DMTCP)

LU.C 64 18.5 21.7
LU.C 128 11.5 16.1
LU.C 256 7.7 12.8
LU.C 512 6.6 11.9
LU.C 1024 6.2 13.0

LU.D 64 292.6 298.0
LU.D 128 154.9 161.6
LU.D 256 89.0 94.8
LU.D 512 53.2 61.3
LU.D 1024 30.5 39.6
LU.D 2048 26.9 40.3

LU.E 512 677.2 691.6
LU.E 1024 351.6 364.9
LU.E 2048 239.3 256.4

Table 1: Demonstration of scalability: run-
ning times without DMTCP (natively) and with
DMTCP; The corresponding plot is in Figure 3.

Table 1 and Figure 3 show runtimes decreasing with more
MPI processes. This is because NAS experiments are based
on strong scalability : each benchmark consists of a fixed
amount of work. Hence, the runtime decreases with an in-
creasing number of MPI nodes. The DMTCP plugin shows
small overhead compared to native runs, except for cases
where the runtime is below about 50 s. In these cases,
startup overhead becomes a significant percentage of the to-
tal runtime (see Table 2).

processes NAS Startup Slope (runtime
(running LU) classes overhead (s) overhead in %)

64 C, D 3.1 0.8
128 C, D 4.4 1.5
256 C, D 5.0 0.9
512 D, E 7.6 1.0

1024 D, E 8.7 1.3
2048 D, E 12.9 1.7

Table 2: Analysis of Table 1 showing derived break-
down of DMTCP overhead into startup overhead
and runtime overhead. (See analysis in text.)

In Table 2, the overhead derived from Table 1 is decom-
posed into two components: startup overhead and runtime
overhead. Given a NAS parallel benchmark, the total over-
head is the difference of the runtime with DMTCP and the
native runtime (without DMTCP). Consider a fixed num-
ber of processes on which two different classes of the same
benchmark are run. For example, given the native runtimes
for two different classes of the LU benchmark (e.g., t1 for
LU.C and t2 for LU.D), and the total overhead in each case
(o1 and o2), one can derive an assumed startup overhead s

in seconds and runtime overhead ratio r, based on the for-
mulas:

o1 = s+ rn1

o2 = s+ rn2.

Table 2 reports the derived startup overhead and runtime
overhead using the formula above. In cases where three

NAS Number of Ckpt time Ckpt size
benchmark processes (s) (MB)

LU.E 128×4 70.8 350
LU.E 64×8 136.6 356
LU.E 32×16 222.6 355

LU.E 128×16 70.2 117

Table 3: Checkpoint times and image sizes for the
same NAS benchmark, under different configura-
tions. The checkpoint image size is for a single MPI
process.

classes of the NAS LU benchmark were run for the same
number of nodes, the largest two classes were chosen for
analysis. This decision was made to ensure that any timing
perturbations in the experiment would be a small percentage
of the native runtimes.

The runtime overhead shown in Table 2 remains in a nar-
row range of 0.8% to 1.7%. The startup overhead grows as
the cube root of the number of MPI processes.

Table 3 shows the effects on checkpoint time and check-
point image size under several configurations. Note that the
first three tests hold constant the number of MPI processes
at 512. In this situation, the checkpoint size remains con-
stant (to within the natural variability of repeated runs).
Further, in all cases, the checkpoint time is roughly propor-
tional to the total size of the checkpoint images on a single
node. A checkpoint time of between 20 MB/s and 27 MB/s
was achieved in writing to local disk, with the faster times
occurring for 16 processes per node (on 16 core nodes).

Next, a test was run to compare checkpoint times when
using the Lustre back-end storage versus the default check-
point to a local disk. As expected, Lustre was faster. Specif-
ically, Table 4 shows that checkpoint times were 6.5 times
faster with Lustre, although restart times were essentially
unchanged. Small differences in checkpoint image sizes and
checkpoint times are part of normal variation between runs,
and was always limited to less than 5%.

Disk type Ckpt size Ckpt time Restart time
(MB) (s) (s)

local disk 356 232.3 11.1
Lustre 365 35.7 10.9

Table 4: Comparison with checkpoints to local disk
or Lustre back-end. Each case was run for NAS LU
(class E), with 512 processes (32 nodes × 16 cores
per node).

Finally, a test was run in which DMTCP was configured
not to use its default gzip compression. Table 5 shows that
this makes little difference both for the checkpoint image
size and the checkpoint time. The checkpoint time is about
5% faster when gzip is not invoked.

Program and Ckpt size Ckpt time Restart time
processes (MB) (s) (s)
with gzip 117 70.2 23.5
w/o gzip 116 67.3 23.2

Table 5: Comparison of checkpointing with and
without the use of gzip for on-the-fly compression
by DMTCP.

8 16 32 64

Number of MPI processes

30

40

50

60

100

200

300

400

500

600

1000
R
u
n
ti
m
e
(s
)

LU.C

EP.D

BT.C

SP.C

Runtime Overhead Comparison

DMTCP (LU.C)

Native (LU.C)

BLCR (LU.C)

Figure 4: Comparison of running natively or with
DMTCP or BLCR

4.2 Comparison between DMTCP and BLCR
The NAS Parallel Benchmarks using Open MPI provide a

test of performance across a broad test suite. For the sake of
comparability with previous tests on the checkpoint-restart
service of Open MPI [15], we emphasize the previously used
NAS tests: LU.C, EP.D, BT.C and SP.C. An analysis of
the performance must consider both runtime overhead and
times for checkpoint and restart.

4.2.1 High-Level overview of DMTCP vs. BLCR

Runtime overhead.
The runtime overhead is the overhead for running a pro-

gram under a checkpoint-restart package as compared to
running natively. No checkpoints are taken when measur-
ing runtime overhead. Figure 4 shows that the overhead of
running DMTCP or BLCR is typically only a few per cent,
and the runtime performance of the two systems is compa-
rable. (Curves are based on strong scalability: work is held
constant as the number of MPI processes varies.) For longer
program runs, the total runtime overhead is in the range of
1% to 2%, or 1 to 5 seconds, with 3 seconds being common.
Since these overhead times do not correlate with the length
of time for which the program was run, we posit that they
reflect the constant overhead incurred primarily at the time
of program startup (see, for example, Table 2).

Checkpoint/Restart times.
Figure 5 shows checkpoint times. These times are as re-

ported by a central DMTCP coordinator, or by an Open MPI
coordinator in the case of BLCR. Open MPI/BLCR does not
report restart times. For DMTCP, restart times are approx-
imately between 2 and 3 seconds for LU.C and EP.D, and
between 2 and 4 seconds for BT.C and SP.C. Consistent
with strong scalability, both checkpoint and restart times
were longer when there were fewer MPI processes.
Checkpoint times are particularly important for issues of

fault tolerance, since checkpoints are by far the more com-
mon operation. In the case of DMTCP, For the BT, SP,
and LU benchmarks, the memory footprint decreases with
an increasing number of MPI processes, thus accounting for
decreasing checkpoint times. The EP Embarrassingly Par-
allel benchmark is an exception, in which the memory foot-

8 10 20 30 40 50 60 70

Number of MPI processes

0.5

5

10

15

20

25

30
35
40

T
im

e
(s

)

LU.C

EP.D

BT.C

SP.C

LU.C

EP.D

BT.C

SP.C

Comparison of checkpoint times

DMTCP CKPT (LU.C)

BLCR CKPT (LU.C)

Figure 5: Comparison of checkpoint times

print remains approximately 150 MB, independently of the
number of processes.

In contrast, the times for checkpointing with Open MPI/
BLCR are often roughly constant. We estimate this time is
dominated by the last phase, in which Open MPI copies the
local checkpoint images to a single, central node.

Note that the restart time for DMTCP was typically under
4 seconds, even for larger computations using 64 computer
nodes. The Open MPI/BLCR package did not report restart
times.

8 16 32 64

Number of MPI processes

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

R
u
n
ti
m
e
(s
)

Overhead in Manipulating Network
(BLCR=hollow icons; DMTCP=solid icons)

LU.C

EP.D

BT.C

SP.C

Figure 6: Overhead due to network for DMTCP and
for BLCR. For BLCR, three times were measured
for each case, and the middle time is reported.

4.2.2 Overhead of Network Management:
DMTCP vs. BLCR

Figure 6 has the goal of analyzing the network-only por-
tion of the checkpoint/restart time for both DMTCP and
BLCR. For DMTCP, this includes the time of draining all
completion queues, as well as the time of saving all Infini-

Band states. For BLCR, this includes all times for BLCR
to tear down and rebuild the InfiniBand network. These
times are not a bottleneck for the current experiments, when
checkpointing to disk. But future technologies promise faster
stable storage, which can expose the network-related time as
a major cost.
Since Open MPI/BLCR must tear down the InfiniBand

network, and re-build it at the time of checkpoint, it in-
curs a significantly higher network cost, as expected. Two
advantages of the current approach are exposed in Figure 6:

1. The DMTCP plugin approach is shown to be over
100 times faster (two orders of magnitude), as com-
pared to BLCR.

2. For any particular NAS benchmark, the DMTCP ap-
proach presents a clear and predictable trend, while
the times for BLCR vary by an order of magnitude
even within the same NAS benchmark and for the same
number of MPI processes, under repeated runs.

In the case of BLCR, we speculate that the lack of repro-
ducibility of times is due to some additional component of
the Open MPI checkpoint-restart service, which cannot be
interrupted by a network tear-down. The seemingly random
random delays would be explained by whether a checkpoint
is requested near the beginning or end of such a pending
operation.
Note also that the times for DMTCP represent the total

time spent by DMTCP in the InfiniBand plugin. No other
part of the DMTCP code deals with any aspect of Infini-
Band.

Number of Runtime Runtime w/ Ckpt Restart
processes natively (s) DMTCP (s) (s) (s)

4 123.5 124.2 27.6 9.7
8 64.2 65.1 21.9 8.9

16 34.2 35.5 16.3 7.0

Table 6: Runtime overhead and Checkpoint-restart
times for UPC FT B running under DMTCP

4.3 Checkpointing under UPC:
A non-MPI Case Study

The study of checkpointing of Berkeley UPC is based on a
port of the NAS parallel benchmarks at George Washington
University [13]. Since that did not include a port of the
LU benchmark, we switch to considering FT in this section.
The Berkeley UPC package was compiled to run natively

over InfiniBand for this experiment, and it did not use MPI
at all. The FT B NAS benchmark, as ported to run on
UPC, was chosen because the port of NAS to UPC does not
support the more communication-intensive LU benchmark.
Table 6 shows that the native runtimes for FT B under UPC
are comparable to the time for MPI in Figure 4. DMTCP
total run-time overhead ranges from 4% down to less than
1%. We posit that the higher overhead of 4% is due to the
extremely short running time in the case of 16 processes,
and is explained by significant startup overhead, consistent
with Table 2.
Note that BLCR could not be tested in this regime, since

BLCR depends on the Open MPI checkpoint-restart service
for its use in distributed computations.

4.4 Migrating InfiniBand to TCP sockets
Some traditional checkpoint-restart services, such as that

that of Open MPI [15], offer the ability to checkpoint over
one network, and restart on a second network. This section
represents an early proof of principle that a similar tech-
nology could be implemented as a DMTCP plugin. This
capability has the potential to support interactive debug-
ging in a production environment, by copying checkpoint
images from an InfiniBand-based production cluster to an
Ethernet/TCP-based debug cluster. Note that since DMTCP
is a user-space package, it does not require that the Linux
kernels on the two clusters be the same.

4.4.1 Ping-pong

The IB2TCP plugin was tested with a communication-
intensive ping-pong example InfiniBand program from the
OFED distribution. In this case, a smaller development clus-
ter was used, with 6-core Xeon X5650 CPUs and a Mellanox
HCA for InfiniBand. Gigabit Ethernet was used for the
Ethernet portion. Parameters were set to run over 100,000
iterations.

Environment Transfer Transfer rate
time (s) (Gigabits/s)

IB (w/o DMTCP) 0.9 7.2
DMTCP/IB (w/o IB2TCP) 1.2 5.7
DMTCP/IB2TCP/IB 1.4 4.6
DMTCP/IB2TCP/Ethernet 65.7 0.1

Table 7: Transfer time variations using two nodes
on InfiniBand versus Gigabit Ethernet hardware,
with the DMTCP InfiniBand and IB2TCP plugin;
100,000 iterations of ping-pong, for a total transfer
size of 819 MB

Table 7 presents the results. This is a worst case, since a
typical MPI program is not as communication-intensive as
the ping-ping test program. We hypothesize that the full
transfer rate for Gigabit Ethernet was not achieved by this
hardware/Linux combination.

Environment Runtime (s)
IB (w/o DMTCP) 26.61
DMTCP/IB (w/o IB2TCP) 27.81
DMTCP/IB2TCP/IB 27.38
DMTCP/IB2TCP/Ethernet 45.75
(restart on two nodes)
DMTCP/IB2TCP/Ethernet 66.34
(restart on a single node)

Table 8: Runtime variations (no checkpoint-restart)
for LU.A.2 using two nodes on InfiniBand versus
Gigabit Ethernet hardware, with the InfiniBand and
IB2TCP plugin.

4.4.2 NAS LU.A.2 Benchmark

The NAS LU.A benchmark was conducted on the the
same MGHPCC cluster that was described in Section 4.1.
Table 8 shows times for NAS LU.A.2 (2 MPI nodes) for mi-
grating from InfiniBand to TCP using the IB2TCP plugin.
The test is limited to two nodes due to a missing feature
in DMTCP, the support for a function wrapper around the
“poll” system call, used by Open MPI.

The combined InfiniBand and IB2TCP plugins do not add
considerable overhead to the run time of the application at
runtime. However, when the process is migrated from Infini-
Band to TCP, the runtime increases drastically. A runtime
overhead of 67% is seen for the restarted computation on on
two TCP nodes. The runtime overhead further increases to
142% when the entire computation is restarted on a single
node.

5. LIMITATIONS AND FUTURE WORK
In this section, we discuss some other limitations in the

current implementation and our plans to overcome them in
future.

5.1 Heterogeneous InfiniBand Architectures
Recall that DMTCP copies and restores all of user-space

memory. In reviewing Figure 2, one notes that the user-
space memory includes a low-level device-dependent driver
in user space. If, for example, one checkpoints on a cluster
partition using Intel/QLogic, and if one restarts on a Mel-
lanox partition, then the Mellanox low-level driver will be
missing. This presents a restriction for heterogeneous com-
puting centers in the current implementation.
There are two possible alternative implementations as de-

scribed next. First, it is possible to implement a generic
“stub” driver library, which can then dispatch to the ap-
propriate device-dependent library. Second, it is possible to
force the InfiniBand library to re-initialize itself by restoring
the pre-initialization version of the InfiniBand library data
segment, instead of the data segment as it existed just prior
to checkpoint. This will cause the InfiniBand library to ap-
pear to be uninitialized, and it will re-load the appropriate
device-dependent library.

5.2 Out-of-Sync Send/Recv Completions
The InfiniBand hardware may post completions to the

sender and receiver at slightly different times. Thus, after
draining the completion queue, the plugin waits for a frac-
tion of a second, and then drains the completion queue one
more time. This is repeated until no completions are seen
in the latest period. Thus, correctness is affected only if the
InfiniBand hardware posts corresponding completions rela-
tively far apart in time, which is highly unlikely. (Note that
this situation occurs in two cases: InfiniBand send-receive
mode; and InfiniBand RDMA mode for the special case of
ibv post send while setting the immediate data flag.)
In a related issue, when using the immediate data flag or

the inline flag in the RDMA model, a completion is posted
only on the receiving node. These flags are intended pri-
marily for applications that send small messages. Hence,
the current implementation sleeps for a small amount of
time to ensure that such messages complete. A future im-
plementation will use the DMTCP coordinator to complete
the bookkeeping concerning messages sent and received, and
will continue to wait if needed.

5.3 Unreliable Connections
The current implementation does not support unreliable

connections (the analog of UDP for TCP/IP). Most target
applications do not use this mode, and so this is not con-
sidered a priority. For a potential solution, one could add
wrappers for InfiniBand functions that provide unreliable
connections and adjust the draining logic.

5.4 Virtual Id Conflicts After Restart
In typical MPI implementations, memory region keys

(rkey), queue pair numbers (qp num), and local ids (lid) are
all exchanged out-of-band. Since virtualized ids are passed
to the target application, it is the virtualized ids that are
passed out-of-band. The remote plugin is then responsible
for translating the virtual ids to the real ids known to the
InfiniBand hardware, on later InfiniBand calls.

The current implementation ensures that this is possible,
and that there are no conflicts prior to the first checkpoint,
as described in Section 3.2. In typical InfiniBand applica-
tions, queue pairs are created only during startup, and so
all rkeys, qp nums and lids will be assigned prior to the first
checkpoint. However, it is theoretically possible for an ap-
plication to create a new queue pair, memory region, or to
query its local id after the first restart.

The current implementation assigns the virtual id to be
the same as the real id at the time of the initial creation of
the InfiniBand object. (After restart, the InfiniBand hard-
ware may assign a different real id, but the virtual id for that
object will remain the same.) If an object is created after
restart, the real id assigned by InfiniBand may be the same
as for an object created prior to checkpoint. This would
create a conflict of the corresponding virtual ids.

Two solutions to this problem are possible. The simplest
is to use DMTCP’s publish-subscribe feature to generate
globally unique virtual rkeys, and update a global table of
virtual-to-real rkeys. In particular, one could use the ex-
isting implementation before the first checkpoint, and then
switch to a publish-subscribe implementation after restart.
A second solution is to choose the virtual rkeys in a globally
unique manner, similarly to the globally unique protection
domain ids of the current plugin.

6. RELATED WORK
In the case of distributed computations over TCP (e.g.,

over Ethernet), several distributed checkpointing approaches
have been proposed [7, 17, 22, 21, 27]. Unfortunately, those
solutions do not extend to supporting the InfiniBand net-
work. Other solutions for distributed checkpointing are spe-
cific to a particular MPI implementation [4, 11, 15, 16, 20,
23, 25, 26]. These MPI-based checkpoint-restart services
“tear down” the InfiniBand connection, after which a single-
process checkpoint-restart package can be applied.

The implementation described here can be viewed as in-
terposing a shadow device driver between the end user’s code
and the true device driver. This provides an opportunity to
virtualize the fields of the queue pair struct seen by the end
user code. Thus, the InfiniBand driver is modelled without
the need to understand its internals. This is analogous to
the idea of using a shadow kernel device by Swift et al. [28,
29]. In that work, after a catastrophic failure by the kernel
device driver, the shadow device driver was able to take over
and place the true device driver back in a sane state. In a
similar manner, restarting on a new host with a new HCA
Adapter can be viewed as a catastrophic failure of the Infini-
Band user-space library. Our virtual queue pair along with
the log of pending posts and modifications to the queue pair
serves as a type of shadow device driver. This allows us to
place back into a sane state the HCA hardware, the kernel
driver and the device-dependent user-space driver.

This work is based on DMTCP (Distributed
MultiThreaded CheckPointing) [1]. The DMTCP project
began in 2004 [6, 7]. With the development of DMTCP ver-
sions 2.x, it has emphasized the use of plugins [8] for more
modular maintainable code.
Currently, BLCR [14] is widely used as one component of

an MPI dialect-specific checkpoint-restart service. This de-
sign is fundamentally different, since an MPI-specific check-
point-restart service calls BLCR, whereas DMTCP trans-
parently invokes an arbitrary MPI implementation. Since
BLCR is kernel-based, it provides direct support only on
one computer node. Most MPI dialects overcome this in
their checkpoint-restart service by disconnecting any net-
work connections, delegating to BLCR the task of a single-
node checkpoint, and then reconnect the network connec-
tion. Among the MPI implementations using BLCR are
Open MPI [16] (CRCP coordination protocol),
LAM/MPI [25], MPICH-V [4], and MVAPICH2 [11]. Other
MPI implementations provide their own analogs [11, 23, 25,
26]. In some cases, an MPI implementation may support
an application-initiated protocol in combination with BLCR
(such as SELF [16, 25]). For application-initiated check-
pointing, the application writer guarantees that there are
no active messages at the time of calling for a checkpoint.
Some recommended technical reports for further reading

on the design of InfiniBand are [2, 19], along with the earlier
introduction to the C API [30]. The report [19] was a direct
result of the original search for a clean design in checkpoint-
ing over InfiniBand, and [20] represents a talk on interim
progress.
In addition to DMTCP, there have been several packages

for transparent, distributed checkpoint-restart of applica-
tions running over TCP sockets [17, 21, 22, 27]. The first
two packages ([17] and [22, 21]) are based on the Zap pack-
age [24].
The Berkeley language Unified Parallel C (UPC) [10] is an

example of a PGAS language (Partitioned Global Address
Space). It runs over GASNet [3] and evolved from expe-
rience with earlier languages for DSM (Distributed Shared
Memory).

7. CONCLUSION
A new approach to distributed transparent checkpoint-

restart over InfiniBand has been demonstrated. This direct
approach accommodates computations both for MPI and for
UPC (Unified Parallel C). The approach uses a mechanism
similar to that of a shadow device driver [28, 29]. In tests
on the NAS LU parallel benchmark, a run-time overhead of
between 0.8% and 1.7% is found on a computation with up to
2,048 MPI processes. Startup overhead is up to 13 seconds,
and grows as the cube root of the number of MPI processes.
Checkpoint times are roughly proportional to the total size
of all checkpoint images on a single computer node. In one
example with 512 MPI processes, checkpoint times varied by
a factor of 6.5 (from 232 seconds to 36 seconds), depending
on whether checkpoint images were written to a local disk or
to a faster, Lustre-based back-end. In both cases, there were
16 MPI processes per node, and a total of approximately
5.8 GB per node was written.
The new approach also provides a viable checkpoint-restart

mechanism for running UPC natively over InfiniBand —
something that previously did not exist. Finally, an IB2TCP

plugin was shown for migrating from InfiniBand to TCP,
demonstrating that the plugin design is compatible with a
an interconnection-agnostic feature, similar to that of the
Open MPI checkpoint restart service [15]. Since the DMTCP
plugin approach is purely user-space, it has the added bene-
fit of supporting a destination cluster with a different Linux
kernel image.

Acknowledgment

We are grateful to facilities provided at several institutions
with which to test over a variety of configurations. We would
like to thank: L. Shawn Matott (U. of Buffalo, develop-
ment and benchmarking facilities); Henry Neeman (Okla-
homa University, development facilities); Larry Owen and
Anthony Skjellum (the University of Alabama at Birming-
ham, facilities based on NSF grant CNS-1337747); and the
Massachusetts Green High Performance Computing Center
(facilities for scalability testing). Dotan Barak provided
helpful advice on the implementation of OpenFabrics Infini-
Band. Jeffrey M. Squyres and Joshua Hursey provided help-
ful advice on the interaction of Open MPI and InfiniBand.
Artem Polyakov provided advice on using the DMTCP batch-
queue (resource manager) plugin. We also benefited from
valuable comments and feedback from the reviewers. We
are also grateful for help from Bogdan Nicolae in shepherd-
ing the paper.

8. REFERENCES

[1] J. Ansel, G. Cooperman, and K. Arya. DMTCP:
Scalable user-level transparent checkpointing for
cluster computations and the desktop. In Proc. of
IEEE International Parallel and Distributed
Processing Symposium (IPDPS-09, systems track).
IEEE Press, 2009. published on CD; version also
available at http://arxiv.org/abs/cs.DC/0701037;
software available at http://dmtcp.sourceforge.net.

[2] T. Bedeir. Building an RDMA-capable application
with IB Verbs. Technical report, http://www.
hpcadvisorycouncil.com/, August 2010. http://
www.hpcadvisorycouncil.com/pdf/

building-an-rdma-capable-

application-with-ib-verbs.pdf.

[3] D. Bonachea. GASNet specification, v1.1. Technical
report UCB/CSD-02-1207, U. of California, Berkeley,
October 2002. http://digitalassets.lib.berkeley.
edu/techreports/ucb/text/CSD-02-1207.pdf.

[4] A. Bouteiler, T. Herault, G. Krawezik, P. Lemarinier,
and F. Cappello. MPICH-V project: a multiprotocol
automatic fault tolerant MPI. International Journal of
High Performance Computing Applications,
20:319–333, 2006.

[5] W. W. Carlson, J. M. Draper, D. E. Culler, K. Yelick,
E. Brooks, and K. Warren. Introduction to UPC and
language specification. Technical report
CCS-tr-99-157, IDA Center for Computing Sciences,
1999. http://upc.lbl.gov/publications/upctr.pdf.

[6] G. Cooperman, J. Ansel, and X. Ma. Adaptive
checkpointing for master-worker style parallelism
(extended abstract). In Proc. of 2005 IEEE Computer
Society International Conference on Cluster
Computing. IEEE Press, 2005. conf. proc. on CD.

http://arxiv.org/abs/cs.DC/0701037
http://dmtcp.sourceforge.net
http://www.hpcadvisorycouncil.com/
http://www.hpcadvisorycouncil.com/
http://www.hpcadvisorycouncil.com/pdf/building-an-rdma-capable-
http://www.hpcadvisorycouncil.com/pdf/building-an-rdma-capable-
http://www.hpcadvisorycouncil.com/pdf/building-an-rdma-capable-
application-with-ib-verbs.pdf
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-02-1207.pdf
http://digitalassets.lib.berkeley.edu/techreports/ucb/text/CSD-02-1207.pdf
http://upc.lbl.gov/publications/upctr.pdf

[7] G. Cooperman, J. Ansel, and X. Ma. Transparent
adaptive library-based checkpointing for
master-worker style parallelism. In Proceedings of the
6th IEEE International Symposium on Cluster
Computing and the Grid (CCGrid06), pages 283–291,
Singapore, 2006. IEEE Press.

[8] DMTCP team. Tutorial for DMTCP plugins, accessed
Apr., 2014. http://dmtcp.sourceforge.net/api.
html.

[9] J. Duell, P. Hargrove, and E. Roman. The design and
implementation of Berkeley Lab’s Linux
checkpoint/restart (BLCR). Technical Report
LBNL-54941, Lawrence Berkeley National Laboratory,
2003.

[10] T. El-Ghazawi and F. Cantonnet. UPC performance
and potential: A NPB experimental study. In Proc. of
the 2002 ACM/IEEE Conference on Supercomputing,
Supercomputing ’02, pages 1–26, Los Alamitos, CA,
USA, 2002. IEEE Computer Society Press.

[11] Q. Gao, W. Yu, W. Huang, and D. K. Panda.
Application-transparent checkpoint/restart for MPI
programs over InfiniBand. In ICPP ’06: Proceedings
of the 2006 International Conference on Parallel
Processing, pages 471–478, Washington, DC, USA,
2006. IEEE Computer Society.

[12] R. Garg, K. Sodha, Z. Jin, and G. Cooperman.
Checkpoint-restart for a network of virtual machines.
In Proc. of 2013 IEEE Computer Society International
Conference on Cluster Computing. IEEE Press, 2013.

[13] GWU High-Performance Computing Laboratory. UPC
NAS parallel benchmarks. http://threads.hpcl.
gwu.edu/sites/npb-upc, accessed Jan., 2014, 2014.

[14] P. Hargrove and J. Duell. Berkeley Lab
Checkpoint/Restart (BLCR) for Linux clusters.
Journal of Physics Conference Series, 46:494–499,
Sept. 2006.

[15] J. Hursey, T. I. Mattox, and A. Lumsdaine.
Interconnect agnostic checkpoint/restart in Open
MPI. In HPDC ’09: Proceedings of the 18th ACM
international symposium on High performance
distributed computing, pages 49–58, New York, NY,
USA, 2009. ACM.

[16] J. Hursey, J. M. Squyres, T. I. Mattox, and
A. Lumsdaine. The design and implementation of
checkpoint/restart process fault tolerance for Open
MPI. In Proceedings of the 21st IEEE International
Parallel and Distributed Processing Symposium
(IPDPS) / 12th IEEE Workshop on Dependable
Parallel, Distributed and Network-Centric Systems.
IEEE Computer Society, March 2007.

[17] G. Janakiraman, J. Santos, D. Subhraveti, and
Y. Turner. Cruz: Application-transparent distributed
checkpoint-restart on standard operating systems. In
Dependable Systems and Networks (DSN-05), pages
260–269, 2005.

[18] W. Jiang, J. Liu, H.-W. Jin, D. K. Panda, W. Gropp,
and R. Thakur. High performance MPI-2 one-sided
communication over InfiniBand. In CCGRID, pages
531–538, 2004.

[19] G. Kerr. Dissecting a small InfiniBand application
using the Verbs API. arxiv:1105.1827v2 [cs.dc]
technical report, arXiv.org, May 2011.

[20] G. Kerr, A. Brick, G. Cooperman, and S. Bratus.
Checkpoint-restart: Proprietary hardware and the
‘spiderweb API’, July 8–10 2011. talk: abstract at
http://recon.cx/2011/schedule/events/112.en.

html; video at https://archive.org/details/Recon_
2011_Checkpoint_Restart.

[21] O. Laadan and J. Nieh. Transparent
checkpoint-restart of multiple processes for commodity
clusters. In 2007 USENIX Annual Technical
Conference, pages 323–336, 2007.

[22] O. Laadan, D. Phung, and J. Nieh. Transparent
networked checkpoint-restart for commodity clusters.
In 2005 IEEE International Conference on Cluster
Computing. IEEE Press, 2005.

[23] P. Lemarinier, A. Bouteillerand, T. Herault,
G. Krawezik, and F. Cappello. Improved message
logging versus improved coordinated checkpointing for
fault tolerant MPI. In CLUSTER ’04: Proceedings of
the 2004 IEEE International Conference on Cluster
Computing, pages 115–124, Washington, DC, USA,
2004. IEEE Computer Society.

[24] S. Osman, D. Subhraveti, G. Su, and J. Nieh. The
design and implementation of Zap: A system for
migrating computing environments. In Prof. of 5th

Symposium on Operating Systems Design and
Implementation (OSDI-2002), 2002.

[25] S. Sankaran, J. M. Squyres, B. Barrett, V. Sahay,
A. Lumsdaine, J. Duell, P. Hargrove, and E. Roman.
The LAM/MPI checkpoint/restart framework:
System-initiated checkpointing. International Journal
of High Performance Computing Applications,
19(4):479–493, 2005.

[26] S. Sankaran, J. M. Squyres, B. Barrett, V. Sahay,
A. Lumsdaine, J. Duell, P. Hargrove, and E. Roman.
The LAM/MPI checkpoint/restart framework:
System-initiated checkpointing. International Journal
of High Performance Computing Applications,
19(4):479–493, 2005.

[27] O. O. Sudakov, I. S. Meshcheriakov, and Y. V. Boyko.
CHPOX: Transparent checkpointing system for Linux
clusters. In IEEE Int. Workshop on Intelligent Data
Acquisition and Advanced Computing Systems:
Technology and Applications, pages 159–164, 2007.

[28] M. M. Swift, M. Annamalai, B. N. Bershad, and
H. M. Levy. Recovering device drivers. In Proceedings
of the 6th conference on Symposium on Operating
Systems Design and Implementation, OSDI’04,
Berkeley, CA, USA, 2004. USENIX Association.

[29] M. M. Swift, M. Annamalai, B. N. Bershad, and
H. M. Levy. Recovering device drivers. ACM Trans.
Comput. Syst., 24(4):333–360, Nov. 2006.

[30] B. Woodruff, S. Hefty, R. Dreier, and H. Rosenstock.
Introduction to the InfiniBand core software. In
Proceedings of the Linux Symposium (Volume Two),
pages 271–282, July 2005.

http://dmtcp.sourceforge.net/api.html
http://dmtcp.sourceforge.net/api.html
http://threads.hpcl.gwu.edu/sites/npb-upc
http://threads.hpcl.gwu.edu/sites/npb-upc
http://recon.cx/2011/schedule/events/112.en.html
http://recon.cx/2011/schedule/events/112.en.html
https://archive.org/details/Recon_2011_Checkpoint_Restart
https://archive.org/details/Recon_2011_Checkpoint_Restart

	Introduction
	Background
	InfiniBand Verbs API
	Send-Receive Model
	RDMA Model

	DMTCP and Plugins

	Design Principles
	Draining the Completion Queue
	Virtualization of InfiniBand Ids
	Virtualization of remote ids: rkey, qp_num and lid
	Virtualization of rkeys

	Experimental Evaluation
	Scalability of InfiniBand Plugin
	Comparison between DMTCP and BLCR
	High-Level overview of DMTCP vs. BLCR
	Overhead of Network Management: DMTCP vs. BLCR

	Checkpointing under UPC: A non-MPI Case Study
	Migrating InfiniBand to TCP sockets
	Ping-pong
	NAS LU.A.2 Benchmark

	Limitations and Future Work
	Heterogeneous InfiniBand Architectures
	Out-of-Sync Send/Recv Completions
	Unreliable Connections
	Virtual Id Conflicts After Restart

	Related Work
	Conclusion
	References

