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Abstract. ILU(k) is a commonly used preconditioner for iterative lin-
ear solvers for sparse, non-symmetric systems. It is often preferred for
the sake of its stability. We present TPILU(k), the first efficiently par-
allelized ILU(k) preconditioner that maintains this important stability
property. Even better, TPILU(k) preconditioning produces an answer
that is bit-compatible with the sequential ILU(k) preconditioning. In
terms of performance, the TPILU(k) preconditioning is shown to run
faster whenever more cores are made available to it — while continu-
ing to be as stable as sequential ILU(k). This is in contrast to some
competing methods that may become unstable if the degree of thread
parallelism is raised too far. Where Block Jacobi ILU(k) fails in an ap-
plication, it can be replaced by TPILU(k) in order to maintain good
performance, while also achieving full stability. As a further optimiza-
tion, TPILU(k) offers an optional level-based incomplete inverse method
as a fast approximation for the original ILU(k) preconditioned matrix.
Although this enhancement is not bit-compatible with classical ILU(k),
it is bit-compatible with the output from the single-threaded version of
the same algorithm. In experiments on a 16-core computer, the enhanced
TPILU(k)-based iterative linear solver performed up to 9 times faster.
As we approach an era of many-core computing, the ability to efficiently
take advantage of many cores will become ever more important.

1 Introduction

This work introduces a parallel preconditioner, TPILU(k), with good stability
and performance across a range of sparse, non-symmetric linear systems. For a
large sparse linear system Ax = b, parallel iterative solvers based on ILU(k) [1, 2]
often suffer from instability or performance degradation. In particular, most of
today’s commonly used algorithms are domain decomposition preconditioners,
which become slow or unstable with greater parallelism. This happens as they
attempt to approximate a linear system by more and smaller subdomains to
provide the parallel work for an increasing number of threads. The restriction to
subdomains of ever smaller dimension must either ignore more of the off-diagonal
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matrix elements, or must raise the complexity by including off-diagonals into the
computation for an optimal decomposition. The former tends to create instability
for large numbers of threads (i.e., for small subdomains), and the latter is slow.

Consider the parallel preconditioner PILU [3, 4] as an example. PILU would
experience performance degradation unless the matrix A is well-partitionable
into subdomains. This condition is violated by linear systems generating many
fill-ins (as occurs with higher initial density or higher level k) or by linear solvers
employing many threads. Another parallel preconditioner BJILU [5] (Block Ja-
cobi ILU(k)), would fail to converge as the number of threads w grows. This is
especially true for linear systems that are not diagonally dominant, in which the
solver might become invalid by ignoring significant off-diagonal entries. This kind
of performance degradation or instability is inconsistent with the widespread ac-
ceptance of parallel ILU(k) for varying k to provide efficient preconditioners.

In contrast, TPILU(k) is as stable as sequential ILU(k) and its performance
increases with the number of cores. TPILU(k) can capture both properties si-
multaneously — precisely because it is not based on domain decomposition. In
the rest of this paper, we will simply write that TPILU(k) is stable as a short-
ened version of the statement that TPILU(k) is stable for any number of threads
whenever sequential ILU(k) is stable.

TPILU(k) uses a task-oriented parallel ILU(k) preconditioner for the base
algorithm. However, it optionally first tries a different, level-based incomplete
inverse submethod (TPIILU(k)). The term level-based incomplete inverse is used
to distinguish it from previous methods such as “threshold-based” incomplete
inverses [6]. The level-based submethod either succeeds or else it fails to converge.
If it doesn’t converge fast, TPILU(k) quickly reverts to the stable, base task-
oriented parallel ILU(k) algorithm.

A central point of novelty of this work concerns bit-compatibility. The base
task-oriented parallel component of TPILU(k) is bit-compatible with classical
sequential ILU(k), and the level-based optimization produces a new algorithm
that is also bit-compatible with the single-threaded version of that same al-
gorithm. Few numerical parallel implementations can guarantee this stringent
standard. The order of operations is precisely maintained so that the low order
bits due to round-off do not change under parallelization. Further, the output
remains bit-compatible as the number of threads increases — thus eliminating
worries whether scaling a computation will bring increased round-off error.

In practice, bit-compatible algorithms are well-received in the workplace. A
new bit-compatible version of code may be substituted with little discussion. In
contrast, new versions of code that result in output with modified low-order bits
must be validated by a numerical analyst. New versions of code that claim to
produce more accurate output must be validated by a domain expert.

A prerequisite for an efficient implementation in this work was the use of
thread-private memory allocation arenas. The implementation derives from [7],
where we first noted the issue. The essence of the issue is that any implementa-
tion of POSIX-standard “malloc” libraries must be prepared for the case that a
second thread frees memory originally allocated by a first thread. This requires



a centralized data structure, which is slow in many-core architectures. Where it
is known that memory allocated by a thread will be freed by that same thread,
one can use a thread-private (per-thread) memory allocation arena. The issue
arises in the memory allocations for “fill-ins” for symbolic factorization. In LU-
factorization based algorithms, the issue is still more serious than incomplete LU,
since symbolic factorization is a relatively larger part of the overall algorithm.

The rest of this paper is organized as follows. Section 2 reviews LU factor-
ization and sequential ILU(k) algorithm. Section 3 presents task-oriented paral-
lel TPILU(k), including the base algorithm (Sections 3.1 through 3.2) and the
level-based incomplete inverse submethod (Section 3.3). Section 4 analyzes the
experimental results. We review related work in Section 5.

2 Review of the Sequential ILU(k) Algorithm

A brief sketch is provided. See [8] for a detailed review of ILU(k). LU factorization
decomposes a matrix A into the product of a lower triangular matrix L and an
upper triangular matrix U . From L and U , one efficiently computes A−1 as
U−1L−1. While computation of L and U requires O(n3) steps, once done, the
computation of the inverse of the triangular matrices proceeds in O(n2) steps.

For sparse matrices, one contents oneself with solving x in Ax = b for vectors
x and b, since A−1, L and U would all be hopelessly dense. Iterative solvers are
often used for this purpose. An ILU(k) algorithm finds sparse approximations,
L̃ ≈ L and Ũ ≈ U . The preconditioned iterative solver then implicitly solves
AŨ−1L̃−1, which is close to the identity. For this purpose, triangular solve op-
erations are integrated into each iteration to obtain solution y such that

L̃Ũy = p (1)

where p varies for each iteration. This has faster convergence and better nu-
merical stability. Here, the level limit k controls how many elements should be
computed in the process of incomplete LU factorization. A level limit of k =∞
yields full LU-factorization.

Similarly to LU factorization, ILU(k) factorization can be implemented by
the same procedure as Gaussian elimination. Moreover, it also records the ele-
ments of a lower triangular matrix L̃. Because the diagonal elements of L̃ are
defined to be 1, we do not need to store them. Therefore, a single filled matrix F
is sufficient to store both L̃ and Ũ .

2.1 Terminology for ILU(k)

For a huge sparse matrix, a standard dense format would be wasteful. Instead,
we just store the position and the value of non-zero elements. Similarly, incom-
plete LU factorization does not insert all elements that are generated in the
process of factorization. Instead, it employs some mechanisms to control how
many elements are stored. ILU(k) [1, 2] uses the level limit k as the parameter
to implement a more flexible mechanism. We next review some definition.



Definition 3.1: A fill entry, or entry for short, is an element stored in memory.
(Elements that are not stored are called zero elements.)
Definition 3.2: Fill-in: Consider Figure 1a. If there exists h such that i, j > h
and both fih and fhj are fill entries, then the ILU(k) factorization algorithm may
fill in a non-zero value when considering rows i and j. Hence, this element fij

is called a fill-in; i.e., an entry candidate. We say the fill-in fij is caused by the
existence of the two entries fih and fhj. The entries fih and fhj are the causative
entries of fij. The causality will be made clearer in the next subsection.
Definition 3.3: Level: Each entry fij is associated with a level, denoted as
level (i, j) and defined recursively by

level (i, j) =

{
0, if aij 6= 0
min1≤h<min (i,j) level (i, h) + level (h, j) + 1, otherwise

The level limit k is used to control how many fill-ins should be inserted into
the filled matrix during ILU(k) factorization. Those fill-ins with a level smaller
than or equal to k are inserted into the filled matrix F . Other fill-ins are ignored.
By limiting fill-ins to level k or less, ILU(k) maintains a sparse filled matrix.

2.2 ILU(k) Algorithm and its Parallelization

For LU factorization, the defining equation A = LU is expanded into aij =∑min(i,j)
h=1 lihuhj , since lih = 0 for i > j and uhj = 0 for i < j. When i > j,

fij = lij and we can write aij =
∑j−1

h=1 lihuhj + fijujj . When i ≤ j, fij = uij

and we can write aij =
(∑i−1

h=1 lihuhj

)
+ liifij =

(∑i−1
h=1 lihuhj

)
+fij . Rewriting

them yields the equations for LU factorization.

fij =

{(
aij −

∑j−1
h=1 lihuhj

)
/ujj , i > j

aij −
∑i−1

h=1 lihuhj , i ≤ j
(2)

The equations for ILU(k) factorization are similar except that an entry fij

is computed only if level(i, j) ≤ k. Hence, ILU(k) factorization is separated
into two passes: symbolic factorization and numeric factorization. Symbolic fac-
torization computes the levels of all entries less than or equal to k. Numeric
factorization computes the numerical values in the filled matrix of all fill entries
with level less than or equal to k. While the remaining description considers
numeric factorization, the algorithm applies equally to symbolic factorization.

The ILU(k) algorithm reorganizes the above Equations (2) for efficient use
of memory. The filled matrix F is initialized to A. As the algorithm proceeds,
additional terms of the form −lihuhj are added to fij . Figure 1a illustrates fij

accumulating an incremental value based on the previously computed values of
fih (i.e., lih) and fhj (i.e., uhj).

The algorithmic flow of control is to factor the rows in order from first to last.
In the factorization of row i, h varies from 1 to i in an outer loop, while j varies



ijf

f hj

f ih

f ihf hjijf andFill−in with its causative entries 

ijf

Row i

In the incomplete case,  is a candidate entry.

jColumn g h

Row h

Row g

(a) Causative Relationship

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

Band 3

Band 2

Band 1

Band 0

Column 0 3 6 9

Four bands of 3 rows. After band 0 is reduced,

first block of 3 further bands is reduced in parallel.

(b) View of Matrix as Bands

Fig. 1: Parallel Incomplete LU Factorization

from h to n in an inner loop. In the example of Figure 1a, fhj has clearly already
been fully completed. Before the inner loop, fih is divided by uhh following the
case i > j of Equations (2) since i > h. This is valid because fih depends on
terms of the form ligugh only for the case g < h, and those terms have already
been accumulated into fih by previous inner loops. Inside the inner loop, we just
subtract lihuhj from fij as indicated by Equations (2).

The algorithm has some of the same spirit as Gaussian elimination if one
thinks of ILU(k) as using the earlier row h to reduce the later row i. This is the
crucial insight in the parallel ILU(k) algorithm of this paper. One splits the rows
of F into bands, and reduces the rows of a later band by the rows of an earlier
band. Distinct threads can reduce distinct bands simultaneously, as illustrated
in Figure 1b.

3 TPILU(k): Task-oriented Parallel ILU(k) Algorithm

3.1 Parallel Tasks and Static Load Balancing

To describe a general parallel model valid for Gaussian elimination as well as
ILU(k) and ILUT, we introduce the definition frontier: the maximum number
of rows that are currently factored completely. The frontier i is the limit up to
which the remaining rows can be partially factored except for the (i+ 1)th row.
The (i+ 1)th row can be factored completely. That changes the frontier to i+ 1.

Threads synchronize on the frontier. To balance and overlap computation and
synchronization, the matrix is organized as bands to make the granularity of the
computation adjustable, as demonstrated in Figure 1b. A task is associated to
a band and is defined as the computation to partially factor the band to the
current frontier.



For each band, the program must remember up to what column this band has
been partially factored. We call this column the current position, which is the
start point of factorization for the next task attached to this band. In addition,
it is important to use a variable to remember the first band that has not been
factored completely. After the first unfinished band is completely factored, the
frontier global value is increased by the number of rows in the band.

The smaller the band size, the larger the number of synchronization points.
However, TPILU(k) prefers a smaller band size, that leads to more parallel
tasks. Moreover, the lower bound of the factorization time is the time to factor
the last band, which should not be very large. Luckily, shared memory allows
for a smaller band size because the synchronization here is to read/write the
frontier, which has a small cost.

While the strategy of bands is well known to be efficient for dense matrices
(e.g., see [9]), researchers hesitate to use this strategy for sparse matrices be-
cause they may find only a small number of relatively dense bands, while all
other bands are close to trivial. The TPILU(k) algorithm works well on sparse
matrices because successive factoring of bands produces many somewhat dense
bands (with more fill-ins) near the end of the matrix. TPILU(k) uses static load
balancing whereby each worker is assigned a fixed group of bands chosen round
robin so that each thread will also be responsible for some of the denser bands.

3.2 Optimized Symbolic Factorization

Static Load Balancing and TPMalloc. Simultaneous memory allocation
for fill-ins is a performance bottleneck for shared-memory parallel computing.
TPILU(k) takes advantage of a thread-private malloc library to solve this issue
as discussed in [7]. TPMalloc is a non-standard extension to a standard allocator
implementation, which associates a thread-private memory allocation arena to
each thread. A thread-local global variable is also provided, so that the modified
behavior can be turned on or off on a per-thread basis. By default, threads
use thread-private memory allocation arenas. The static load balancing strategy
guarantees that if a thread allocates memory, then the same thread will free it,
which is consistent with the use of a thread-private allocation arena.
Optimization for the Case k = 1. When k = 1, it is possible to symbolically
factor the bands and the rows within each band in any desired order. This is
because if either fih or fhj is an entry of level 1, the resulting fill-in fij must be
an element of level 2 or level 3. So fij is not inserted into the filled matrix F . As
a first observation, the symbolic factorization now becomes pleasingly parallel
since the processing of each band is independent of that of any other.

Second, since the order can be arbitrary, even the purely sequential processing
within one band by a single thread can be made more efficient. Processing rows
in reverse order from last to first is the most efficient, while the more natural
first-to-last order is the least efficient. First-to-last is inefficient, because we add
level 1 fill-ins to the sparse representation of earlier rows, and we must then
skip over those earlier level 1 fill-ins in determining level 1 fill-ins of later rows.
Processing from last to first avoids this inefficiency.



3.3 Optional Level-Based Incomplete Inverse Method

The goal of this section is to describe the level-based incomplete inverse method

for solving L̃x = p by matrix-vector multiplication: x = ˜̃
L−1p. This avoids the

sequential bottleneck of using forward substitution on L̃x = p. We produce

incomplete inverses ˜̃L−1 and ˜̃
U−1 so that the triangular solve stage of the linear

solver (i.e., solving for y in L̃Ũy = p as described in Equation (1) of Section 2) can

be trivially parallelized (y = ˜̃
U−1˜̃L−1p) while also enforcing bit compatibility.

Although details are omitted here, the same ideas are then used in a second
stage: using the solution x to solve for y in Ũy = x.

Below, denote the matrix (−βit)t≤i to be the lower triangular matrix L̃−1.
Recall that βii = 1, just as for L̃. First, we have Equation (3a), i.e., x = L̃−1p.
Second, we have Equation (3b), i.e., the equation for solving L̃x = p by forward
substitution. Obviously, Equation (3a) and Equation (3b) define the same x.

xi =
∑
t<i

(−βit)pt + pi (3a) xi = pi −
∑
h<i

fihxh (3b)

Substituting Equation (3a) into Equation (3b), one has Equation (4).

xi = pi −
∑
h<i

fih

(∑
t<h

(−βht)pt + ph

)
=
∑
t<i

(
−

(
fit −

∑
t<h<i

fihβht

))
pt + pi

(4)

Combining the right hand sides of equations (3a) and (4) yields Equation (5),
the defining equation for βit.

βit = fit −
∑

t<h<i

fihβht (5)

Equation (5) is the basis for computing L̃−1 (a.k.a. (−βit)t≤i). Recall that fij

was initialized to the matrix A. In algorithm steps (6a) and (6b) below, row i is
factored using ILU(k) factorization, which computes L̃ and Ũ as part of a sin-
gle matrix. These steps are reminiscent of Gaussian elimination using pivoting
element fhh. Steps (6a) and (6b) are used in steps (6c) and (6d) to compute L̃−1.

fih ← fihf
−1
hh (6a) ∀j > h, fij ← fij − fihfhj (6b)

∀t < h, fit ← fit − fihfht (6c) ∀t < i, fit ← −fit (6d)
The matrix L̃−1 is in danger of becoming dense. To maintain the sparsity,

we compute the level-based incomplete inverse matrix ˜̃
L−1 following the same

non-zero pattern as L̃−1. The computation for ˜̃L−1 can be combined with the
original numeric factorization phase. A further factorization phase is added to

compute ˜̃U−1 by computing matrix entries in reverse order from last row to first
and from right to left within a given row.

Given the above algorithm for ˜̃L−1 and a similar algorithm for ˜̃
U−1, the

triangular solve stage is reduced to matrix-vector multiplication, which can be



trivially parallelized. Inner product operations are not parallelized for two rea-
sons: first, even when sequential, they are fast; second, parallelization of inner
products would violate bit-compatibility by changing the order of operations.

4 Experimental Results

We evaluate the performance of the bit-compatible parallel ILU(k) algorithm,
TPILU(k), by comparing with two commonly used parallel preconditioners,
PILU [3] and BJILU [5] (Block Jacobi ILU(k)). Both PILU and BJILU are based
on domain decomposition. Under the framework of Euclid [10, Section 6.12], both
preconditioners appear in Hypre [10], a popular linear solver package under de-
velopment at Lawrence Livermore National Laboratory since 2001.

The primary test platform is a computer with four Intel Xeon E5520 quad-
core CPUs (16 cores total). Figure 3 demonstrates the scalability of TPILU(k)
both on this primary platform and a cluster including two nodes connected by
Infiniband. Each node has a single Quad-Core AMD Opteron 2378 CPU. The
operating system is CentOS 5.3 (Linux 2.6.18) and the compiler is gcc-4.1.2 with
the “-O2” option. The MPI library is OpenMPI 1.4. Within Hypre, the same
choice of iterative solver is used to test both Euclid (PILU and BJILU) and
TPILU(k). The chosen iterative solver is preconditioned stabilized bi-conjugate
gradients with the default tolerance rtol = 10−8. Note that the Euclid frame-
work employs multiple MPI processes communicating via MPI’s shared-memory
architecture, instead of directly implementing a single multi-threaded process.
Driven Cavity Problem. This set of test cases [11] consists of some diffi-
cult problems from the modeling of the incompressible Navier-Stokes equations.
These test cases are considered here for the sake of comparability. They had pre-
viously been chosen to demonstrate the features of PILU by [4]. Here, we test
on three representatives: e20r3000, e30r3000 and e40r3000. Figure 2 shows that
both Euclid PILU and Euclid BJILU are influenced by the number of processes
and the level k when solving driven cavity problems. With more processes or
larger k, both the PILU and BJILU preconditioners tend to slow down, break
down or diverge.

Euclid registers its best solution time for e20r3000 by using PILU(2) with
1 process, for e30r3000 by using BJILU with 2 processes, and for e40r3000 by
using PILU(1) with 2 processes. The reason that Euclid PILU obtains only a
small speedup for these problems is that PILU requires the matrix to be well-
partitionable, which is violated when using a larger level k or when employing
more processes. Similarly, Euclid BJILU must approximate the original matrix
by a number of subdomains equal to the number of processes. Therefore, higher
parallelism forces BJILU to ignore even more off-diagonal matrix entries with
more blocks of smaller block dimension, and eventually the BJILU computation
just breaks down.

In contrast, TPILU(k) is bit-compatible. Greater parallelization only acceler-
ates the computation, while also never introducing instabilities or other negative
side effects. Figure 3a illustrates that for the e20r3000 case, TPILU with level
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Fig. 2: Euclid PILU and BJILU for Driven Cavity Problem using a Single AMD Opteron
(4 Cores). “X” means fail, and the time is arbitrarily shown to be an interpolated value
or the same as for the preceding number of threads. Note that in Figure 2(a), PILU(k)
actually breaks down for 3 threads, while then succeeding for 4 threads.
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Fig. 3: TPILU(k) for the Driven Cavity Problem Using 2 AMD Opteron (2× 4 Cores).
The experimental runs for 1,2,3,4 threads are all for a 4-core shared memory CPU.
The experimental runs for 2,4,6 threads are all for two nodes with 4-cores per node,
while an additional thread per node is reserved for communication between nodes in
order to replicate bands.

k = 4 and 4 threads leads to a better performance (0.55 s) than Euclid’s 0.78 s
(Figure 2a). For the e30r3000 case, TPILU(k) finishes in 1.16 s (Figure 3b), as
compared to 1.47 s for BJILU and 1.64 s for PILU (Figure 2b). For the e40r3000
case, TPILU(k) with k = 3 finishes in 2.14 s (Figure 3c), as compared to 3.15 s
for PILU and 3.52 s for BJILU (Figure 2c). Figure 3c demonstrates the potential
of TPILU(k) for further performance improvements when a hybrid architecture
is used to provide additional cores: the hybrid architecture with 6 CPU cores
over two nodes connected by Infiniband is even better (2.14 s) than the shared-
memory model with a single quad-core CPU (2.20 s).



3D 27-point Central Differencing. As pointed out in [4], ILU(k) precondi-
tioning is amenable to performance analysis since the non-zero patterns of the
resulting ILU(k) preconditioned matrices are identical for any partial differen-
tial equation (PDE) that has been discretized on a grid with a given stencil.
However, a parallelization based on domain decomposition may eradicate this
feature since it generally relies on re-ordering to maximize the independence
among subdomains. The re-ordering is required for domain decomposition since
it would otherwise face a higher cost dominated by the resulting denser matrix.
As Figure 4a shows, Euclid PILU degrades with more processes when solving a
linear system generated by 3D 27-point central differencing for Poisson’s equa-
tion. The performance degradation also increases rapidly as the level k grows.
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Fig. 4: Solving Linear System from 3D 27-point Central Differencing on Grid using
a Single AMD Quad-Core Opteron. Focusing on the algorithm only, the comparison
ignores reusing the domain decomposition over multiple linear system solutions.

This performance degradation is not an accident. The domain-decomposition
computation dominates when the number of non-zeros per row is larger (about 27
in this case). Therefore, the sequential algorithm with the level k = 0 wins over
the parallelized PILU in the contest for the best solution time. This observation
holds true for all grid sizes tested: from 50× 50× 50 to 90× 90× 90. In contrast,
for all of these test cases, TPIILU (the level-based incomplete inverse submethod
of TPILU(k)) leads to improved performance using 4 cores, as seen in Figure 4b.
Model for DNA Electrophoresis: cage15. The cage model of DNA elec-
trophoresis [12] describes the drift, induced by a constant electric field, of ho-
mogeneously charged polymers through a gel. We test on the largest case in
this problem set: cage15. For cage15, TPIILU(0) obtains a speedup of 2.93 us-
ing 8 threads (Figure 5a). The ratio of the number of FLoating point arith-
metic OPerations (FLOPs) to the number of non-zero entries is less than 5.



This implies that ILU(k) preconditioning just passes through matrices with few
FLOPs. In other words, the computation is too “easy” to be further sped up.
Computational Fluid Dynamics Problem: ns3Da. The problem ns3Da [12]
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(b) TPIILU(1) for ns3Da

1 2 3 4 5 6 7 8
Number of Cores

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

S
o
lu

ti
o
n
 T

im
e 

(s
)

using a standard allocator
Symbolic factorization

Symbolic factorization
using the thread−private
malloc library

Numeric factorization.

factorization

TPILU(3) for e40r3000

Independent of symbolic

(c) TPMalloc Performance

Fig. 5: TPIILU(k)/TPILU(k) using 4 Intel Xeon E5520 (4× 4 Cores)

is used as a test case in FEMLAB, developed by Comsol, Inc. Because there are
zero diagonal elements in the matrix, we use TPIILU with level k = 1 as the
preconditioner. Figure 5b shows a speedup of 8.93 with 16 threads since the
preconditioning is floating-point intensive.
TPMalloc Performance. For a large level k, the symbolic factorization time
will dominate. To squeeze greater performance from this first phase, glibc’s stan-
dard malloc is replaced with a thread-private malloc (TPMalloc). Figure 5c
demonstrates that the improvement provided by TPMalloc is significant when-
ever the number of cores is greater than 2.

4.1 Experimental Analysis

Given a denser matrix, or a higher level k or more CPU cores, the time for
domain-decomposition based parallel preconditioning using Euclid’s PILU(k)
can dominate over the time for the iterative solving phase. This degrades the
overall performance, as seen both in Figure 4a and in Figures 2(a,b,c). A second
domain-decomposition based parallel preconditioner, Euclid’s BJILU, generally
produces a preconditioned matrix of lower quality than ILU(k) in Figure 2(a,b,c).
This happens because it ignores off-diagonal non-zero elements. Therefore, where
Euclid PILU(k) degrades the performance, it is not reasonable to resort to Euclid
BJILU. Figures 2a and 2c show that the lower quality of BJILU-based solvers of-
ten performed worse than PILU(k). Figure 3 shows TPILU(k) to perform better
than either while maintaining the good scalability expected of a bit-compatible
algorithm. TPILU(k) is also robust enough to perform reasonably even in a
configuration with two quad-core nodes. Additionally, Figures 4b and 5 demon-



strate very good scalability on a variety of applications when using the optional
level-based incomplete inverse optimization.

5 Related Work

ILU(k) [1] was formalized to solve the system of linear equations arising from
finite difference discretizations in 1978. In 1981, ILU(k) was extended to ap-
ply to more general problems [2]. Some previous parallel ILU(k) precondition-
ers include [3, 13, 14]. The latter two methods, whose parallelism comes from
level/backward scheduling, are stable and were studied in the 1980’s and achieved
a speedup of about 4 or 5 on an Alliant FX-8 [5, 1st edition, page 351] and a
speedup of 2 or 3 on a Cray Y-MP. The more recent work [3] is directly compared
with in the current work, and is not stable.
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