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Abstract. This paper introduces the design of SymGrid, a new Grid
framework that will, for the first time, allow multiple invocations of sym-
bolic computing applications to interact via the Grid. SymGrid is de-
signed to support the specific needs of symbolic computation, including
computational steering (greater interactivity), complex data structures,
and domain-specific computational patterns (for irregular parallelism).
A key issue is heterogeneity: SymGrid is designed to orchestrate com-
ponents from different symbolic systems into a single coherent (possibly
parallel) Grid application, building on the OpenMath standard for data
exchange between mathematically-oriented applications. The work is be-
ing developed as part of a major EU infrastructure project.

1 Introduction

Symbolic Computation is often distinguished from Numerical Analysis by the
observation that symbolic computation deals with exact computations, while
numerical analysis deals with approximate quantities, including issues of float-
ing point error. Examples of problems that motivated the original development
of symbolic computation include symbolic differentiation, indefinite integration,
polynomial factorization, simplification of algebraic expressions, and power se-
ries expansions. Because of the focus on exactness, symbolic computation has
followed a very different evolutionary path from that taken by numerical analy-
sis. In contrast to notations for numerical computations, which have emphasised
floating point arithmetic, monolithic arrays, and programmer-controlled memory
allocation, symbolic computing has emphasized functional notations, greater in-
teractivity, very high level programming abstractions, complex data structures,
automatic memory management etc. With this different direction, it is not sur-
prising that symbolic computation has different requirements from the Grid than
traditional numerical computations. For example, the emphasis on interactivity
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for symbolic computation leads to a greater stress on steering of computations,
and the emphasis on functional programming has led to the identification of so-
phisticated higher-order computational patterns. Similar patterns have recently
found commercial use in, for example, Google’s MapReduce system [1,2].

In order to support the specific needs of symbolic computation on the Grid,
as part of the EU Framework VI SCIEnce project (Symbolic Computation In-
frastructure in Europe, RII3-CT-2005-026133), we have designed a new Grid
framework, SymGrid, which builds on and extends standard Globus middle-
ware capabilities, providing support for Grid Services and for orchestration of
symbolic components into high-performance Grid-enabled applications forming
a computational Grid. The project will initially integrate four major computa-
tional algebra systems into SymGrid: Maple [3], GAP [4], Kant [5] and Mu-
Pad [6]. In this way, heterogenous symbolic components can be composed into
a single large-scale (possibly parallel) application. Our work builds on earlier,
long-standing work on adaptive parallel systems [7], parallel symbolic computa-
tions [8,9] and distributed/Grid-enabled symbolic computations [10].

The key novelties of the SymGrid approach are:

1. we integrate several represenatative symbolic computation systems (GAP [4],
Maple [3], Kant [5] and MuPad [6]) into a single, generic and non-exclusive
middleware framework;

2. we provide a sophisticated interactive computational steering interface in-
tegrating seamlessly into the interactive front-ends provided by each of our
target symbolic computation systems, and providing simple, transparent and
high-level access to Grid services;

3. by defining common data and task interfaces for all systems, we allow com-
plex computations to be constructed by orchestrating heterogeneous dis-
tributed components into a single symbolic application;

4. by exploiting well-established adaptive middleware that we have developed
to manage complex irregular parallel computations on clusters and shared-
memory parallel machines, and that has recently been ported to the Grid, we
allow a number of advanced autonomic features that are important to sym-
bolic computations including automatic control of task granularity, dynamic
task creation, implicit asynchronous communication, automatic sharing-
preserving data-marshalling and unmarshalling, ultra-lightweight work steal-
ing and task migration, virtual shared memory, and distributed garbage col-
lection;

5. we identify new domain-specific patterns of symbolic computation that may
be exploited to yield platform-specific implementations for a wide range of
classical symbolic computations, and which may be combined dynamically
to yield complex and irregular parallel computation structures; and

6. we target a new user community which may have massive computational
demands yet where exposure to parallelism/Grids is not common; this may
serve as a template for extending Grid technologies to similar user bases.

This paper introduces the design of the SymGrid framework (Section 2),
describes middleware components that support both Grid services (Section 2.1)
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and the composition of heterogeneous symbolic components into large-scale Grid-
enabled applications (Section 2.2), identifies new and important computational
patterns that are specific to symbolic computation (Section 3), and places our
work in the context of previous work on parallel and Grid-enabled symbolic
computations (Section 4).

2 The SymGrid Design

SymGrid comprises two main middleware components (Figure 1): SymGrid-
Services provides a generic interface to Grid services, which may be engines of
computational algebra (CA) packages; SymGrid-Par links multiple instances of
these engines into a coherent parallel application that may be distributed across
a geographically-distributed computational Grid. SymGrid-Par may itself be
registered as a Grid service. The engines are linked by well-defined interfaces that
use the standard OpenMath protocol for describing mathematical objects [11],
developed as part of EU Framework V project MONET (IST-2001-34145). We
have constructed prototype implementations of both components and are in the
process of robustifying these for general use.

2.1 SymGrid-Services

Modern Grid and Web technologies allow simple access to remote applications
and other services. Services are exposed through standard ports, which provide
mechanisms to allow the discovery of new services and to support interaction
with those services. SymGrid-Services provides a set of WSRF-compliant in-
terfaces from symbolic computations to both Grid and Web services, and allows
straightforward encapsulation of symbolic computations as Grid service compo-
nents, including automatic client generation. Mathematical objects are commu-
nicated between users and services using OpenMath protocols.

Fig. 1. The SymGrid Design
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While Grid services have different goals from pure Web services (sharing com-
puting power and resources such as disk storage databases and software applica-
tions, compared with simply sharing information), a Grid service is essentially
a Web service with a few new additions: stateful services, service instantiation,
named service instances, two-level naming scheme, a base set of service capabil-
ities, and lifetime management. These new capabilities improve user interaction
with remote symbolic computing services: prior computations can be stored in
the service state, using instantiation, personalized services can be created, the
naming schemes allow services to be easily modified, standard service data ele-
ments allow standard search facilities to be implemented, and, due to the tran-
sient character of the services, resource management can easily be performed.
All of these features are supported through SymGrid-Services.

2.2 SymGrid-Par

SymGrid-Par orchestrates symbolic components into a (possibly parallel)
Grid-enabled application. Each component executes within an instance of a
Grid-enabled engine, which can be geographically distributed to form a wide-
area computational Grid, built as a loosely-coupled collection of Grid-enabled
clusters. Components communicate using the same OpenMath data-exchange
protocol that is also used by SymGrid-Services. In this way, a high degree of
integration is achieved between services and high-performance computations.

SymGrid-Par is built around GRID-GUM [7], a system designed to sup-
port parallel computations on the Grid, and which has been adapted to interface
with symbolic engines. GRID-GUM builds on the basic MPICH-G2 transport
protocols and task management capabilities to provide a range of very high-level
facilities aimed at supporting large-scale, complex parallel systems. It includes
support for ultra-lightweight thread creation, distributed virtual shared-memory
management, multi-level scheduling support, automatic thread placement, au-
tomatic datatype-specific marshalling/unmarshalling, implicit communication,
load-based thread throttling, and thread migration. It thus provides a flexible,
adaptive, autonomic environment for managing parallelism/distribution at var-
ious degrees of granularity.

SymGrid-Par comprises two interfaces: CAG links the computational alge-
bra systems (CASs) of interest to GRID-GUM; and GCA (Figure 2) conversely
links GRID-GUM to these CASs. The CAG interface is used by the CAS to
interact with GRID-GUM. GRID-GUM then uses the GCA interface to in-
voke remote CAS functions and communicate with the CASs etc. In this way,
we achieve a clear separation of concerns: GRID-GUM deals with issues of
thread creation/coordination and orchestrates the CAS engines to work on the
application as a whole; while the CAS engine deals solely with execution of in-
dividual algebraic computations. Together, the systems provide a powerful, but
easy-to-use, framework for executing heterogeneous symbolic computations on
a computational Grid. We exploit this framework to provide support for com-
monly found patterns of computation that may be used directly from within
symbolic programs.
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Fig. 2. GCA Design

3 Patterns of Symbolic Computation

We have identified a number of common patterns used in symbolic computation
applications. Each of these patterns is potentially amenable to specific kinds of
parallel execution. SymGrid will support these patterns as dynamic algorith-
mic skeletons [12], which may be called directly from within the computational
steering interface. In general (and unlike most previous skeletons approaches),
these patterns may be nested or composed dynamically as required to form the
Grid computation. They may also mix computations taken from different com-
putational algebra systems (in which case the computations are steered to an
appropriate engine using SymGrid-Par).

The standard patterns that we have identified are listed below. These patterns
are a subset of those identified by Gorlatch and Cole as appropriate algorithmic
skeletons for the Grid [13,14], and are also similar to those previously identified
for the ParGap parallel implementation of GAP [15].

parMap:: (a->b) -> [a] -> [b]
parZipWith:: (a->b->c) -> [a] -> [b] -> [c]
parReduce:: (a->b->b) -> b -> [a] -> b
parMapReduce:: (a->b->b) -> (c->[(d,a)]) -> c -> [(d,b)]

Here each argument to the pattern is separated by an arrow (->), and may op-
erate over lists of values ([..]), or pairs of values ((..,..)). All of the patterns
are polymorphic: a, b etc. stand for (possibly different) concrete types. The first
argument in each case is a function of either one or two arguments that is to be
applied in parallel. For example, parMap applies its function argument to each
element of its second argument (a list) in parallel, and parReduce will reduce
its third argument (a list) by applying the function between pairs of elements,
ending with the value supplied as its second argument. The parallel semantics
and implementations of these standard patterns are well established [15,13,14]
and we will therefore not describe these in detail here.

3.1 Domain-Specific Patterns for Symbolic Computation

Parallel symbolic computation often requires irregular parallelism, which in turn
leads to non-traditional patterns of parallel behaviour. Based on our experience
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with parallel symbolic computations, we can identify a number of new domain-
specific patterns that may arise in a variety of applications. These include:

1. orbit calculation: given an open queue of new states, generate neighbors and
place them in the open queue if they are not already present (related to
breadth-first search).

2. duplicate elimination: given two lists, merge them while eliminating dupli-
cates. Typical implementations include: (i) sort and merge; (ii) hash one list
and check if the other list contains a duplicate

3. completion algorithm: given a set of objects, new objects can be generated
from any pair of objects. Each new object is reduced against existing objects
according to some rules, and if an object is thereby reduced to the trivial
object, it is discarded. The newly reduced object is then used to reduce other
existing objects.

4. chain reduction: given a chain of objects, (for example, the rows of a matrix
during a Gaussian elimination), any later object in the chain must be reduced
against each of the earlier objects in the chain. The algorithm terminates
when no further reductions are possible.

5. partition backtracking: given a set of objects such as permutations acting on
a set of points the algorithm searches for some basis objects. Any known basis
objects allow additional pruning during the algorithm. As an optimization
to backtracking search, the set of points may be partitioned into a disjoint
union of two subsets, and the algorithm then finds all basis objects that
respect this partition. The latter objects allow the remaining search to be
more aggressively pruned.

Each of these patterns gives rise to highly-parallel computations with a high
degree of inter-task interactions, and complex patterns of parallelism that may
involve a mixture of task- and data-parallel computations.

4 Related Work

Work on parallel symbolic computation dates back to at least the early 1990s.
Roch and Villard [16] provide a good general survey as of 1997. Significant
research has been undertaken for specific parallel computational algebra algo-
rithms, notably term re-writing and Gröbner basis completion (e.g. [17,18]). A
number of one-off parallel programs have also been developed for specific alge-
braic computations, mainly in representation theory [19]. While several symbolic
computation systems include some form of operator to introduce parallelism
(e.g. parallel GCL, which supports Maxima [8], parallel Maple [20], or parallel
GAP [9]), there does not exist a large corpus of production parallel algorithms.
This is at least partly due to the complexities involved in programming such
algorithms using explicit parallelism, and the lack of generalised support for
communication, distribution etc. By abstracting over such issues, and, espe-
cially, through the identification of the domain-specific patterns noted above,
we anticipate that SymGrid will considerably simplify the construction of such
computations.
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Fig. 3. Existing Grid-enabled Symbolic Computing Systems

4.1 Symbolic Computation for Computational Grids

While, as outlined above, parallel symbolic systems exist that are suitable for either
shared-memory or distributed memory parallel systems (e.g. [21,22,15,23,24]),
there is relatively little work on Grid-based symbolic computation. Figure 3 shows
the relationship between the main existing systems (including Maple2G, devel-
oped by one of the authors [10]). The axes represent the degree in which a tool or a
package satisfies the following requirements: deployment of symbolic Grid services
(x-axis); composition of different grid symbolic services (y-axis); and accessing ex-
ternal grid services (z-axis). While the vision of Grid computing is that of simple
and low-cost access to computing resources without artificial barriers of physical
location or ownership, none of these Grid-enabled systems conforms entirely to the
basic requirements of this vision.SymGrid is therefore highly novel in aimingboth
to allow the construction of heterogeneous symbolic computations and in allowing
seamless access to the Grid from within symbolic systems. In order to achieve such
a vision, we must be able to:

1. deploy symbolic Grid services;
2. allow access to available Grid services from the symbolic computation; and,
3. combine different symbolic Grid services into a coherent whole.

This is the challenge that we have attempted to meet in the design of the Sym-
Grid system.

4.2 Symbolic Computations as Grid Services

Even less work has so far been carried out to interface CASs to the Grid. A
number of projects have considered the provision of CASs as Grid services,
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e.g. GENSS [25], GEMLCA [26], Netsolve/GridSolve [27], Geodise [28],
Maple2G [10], MathGridLink [29], GridMathematica [30]. More details are given
in [31]. Using the above mentioned software prototypes or tools, Grid services
can be called from within CASs. Still there has been very little work on adapting
CASs so that they can cooperate as part of a general Grid resource. None of these
systems is, however, capable of linking heterogeneous CASs as in SymGrid.

5 Conclusions and Further Work

We have introduced SymGrid, a new middleware framework supporting generic
symbolic computations on computational/collaborative Grids. Prototype imple-
mentations of the two main SymGrid middleware components, SymGrid-
Services and SymGrid-Par, have been based on earlier successful but system-
specific work. We have successfully tested these on a number of computations
running on the Grid, including a parallel orbit calculation, which has delivered
promising speedup results on a test Grid linking the UK, Germany and Romania.
We are in the process of enhancing these implementations to provide improved
robustness, full heterogeneity and good support for the patterns of computation
that we have identified above. In collaboration with our research partners, we are
also identifying good and realistic symbolic computation exemplars, including
ones with novel heterogeneous aspects.

While we have focused in this paper on the four computational algebra sys-
tems that form the immediate target of the SCIEnce project (Maple, Gap, Kant
and MuPad), the majority of our work is highly generic, and we intend in due
course to explore the inclusion of other symbolic systems. In the longer term, we
also intend to work on providing highly autonomic scheduling and work man-
agement resource managers that will take account of information about future
execution behaviours of the parallel computation. Unlike many traditional (often
numeric) Grid computations, which have a regular (and therefore relatively easily
predicted behaviour), the dynamic and highly irregular nature of the workload
means that we must explore new and previously untried approaches based, for
example, on statistical prediction or static analysis. We will also explore a new
lightweight mechanism for supporting automatic task recovery to improve fault
tolerance for long running computations [32], which has not yet been applied in a
Grid setting. This will provide us with increased robustness in (potentially) unre-
liable settings, such as widely-distributed computational Grids built on standard
network communication protocols.
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