
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 19xx

Constructive Recognition of a Black Box Group Isomorphic

to GL(n, 2)

Gene Cooperman, Larry Finkelstein, and Steve Linton

Abstract. A Monte Carlo algorithm is presented for constructing the natu-
ral representation of a group G that is known to be isomorphic to GL(n, 2).

The complexity parameters are the natural dimension n and the storage space
required to represent an element of G. What is surprising about this result is
that both the data structure used to compute the isomorphism and each invo-
cation of the isomorphism require polynomial time complexity. The ultimate

goal is to eventually extend this result to the larger question of construct-
ing the natural representation of classical groups. Extensions of the methods
developed in this paper are discussed as well as open questions.

1. Introduction

The principal objective of this paper is a demonstration of the feasibility of
obtaining the natural (projective) matrix representation for a classical group ini-
tially presented as a black box group. In this model, group elements are encoded
by binary strings of uniform length N , and group operations are performed by an
oracle (the black box). The oracle can compute the product of elements, the inverse
and recognize the identity element in time polynomial in N . The most important
examples of black box groups are matrix groups and permutation groups. This
effort was initially motivated by recent efforts to identify the structure of matrix
groups defined over finite fields (see [3] [7] and [9] in this volume). However, an
important advantage of working in a black box setting is that the techniques rely
only on the structure of the group and not on the representation.

Our major result is the following.

Theorem 1.1. Let G be a black box group specified by a generating set G which
is known to be isomorphic to GL(n, 2) for some n. Let M be a known upper bound
on n, let µ be the time required to perform a group operation in G, let ρ be the time
required to compute a (nearly) uniform random element of G, and let ǫ be the time
for a field operation in GF (2). Then a Monte Carlo algorithm exists which in time
O((M log2 M + n2)µ + Mρ + n3ǫ) can determine the value of n and produce a data

1991 Mathematics Subject Classification. Primary 20G40, 20-04; Secondary 20C40.

The first two authors were partially supported by NSF Grant CCR-9509783.

c©0000 American Mathematical Society
1052-1798/00 $1.00 + $.25 per page

1

2 GENE COOPERMAN, LARRY FINKELSTEIN, AND STEVE LINTON

structure which can then be used to compute an isomorphism Θ : G −→ GL(n, 2).
Each invocation Θ(x), x ∈ G, takes time O(n2µ).

In the case where elements of G are given by binary strings of length N ,

2(n−1)2 ≤ 2n(n−1)/2
∏i

i=1(2
n − 1) = |GL(n, 2)| ≤ 2N . Hence we can choose

M = 1 +
√

N . If G is specified as a subgroup of GL(m, q), then M = m + 1
suffices by Lemma 4.5.

In this paper, we will need to make use of a function Rand(G) which has as input
the generating set G for G and returns a randomly chosen element of G. Ideally, one
would like to have an efficient implementation of Rand() which produces elements
which are uniformly distributed. In the case where G is black box group, Babai [1]
achieves this goal. Simply put, he shows how to construct from G, a set of O(log |G|)
elements, at a cost of O(log5 |G|) group multiplications, from which nearly uniform
distributed random elements of G can be obtained at a cost of O(log4 |G|) group
multiplications per random element. Although this result is of significant theoretical
interest, it does not appear suitable for practical implementations at this point. In
this situation, heuristic methods for generating nearly uniformly distributed group
random elements are used. A novel heuristic for such random elements is described
in [4] and has been used by several authors (see [9] in this volume).

It is also required that we know the prime factorization for each divisor of |G|
of the form 2i−1, 1 ≤ i ≤ n. This allows us to use the Bounded Order Algorithm of
Celler and Leedham-Green [5] for computing the order of an element x of G when
it is known in advance that |x| divides 2i − 1, 1 ≤ i ≤ n.

Our approach is to determine elements of G which can easily be found in a black
box setting and which relate naturally to the action of G on an n-dimensional vector
space V defined over GF (2). An obvious choice is the set of transvections of G and
an associated block system of imprimitivity formed from the action of G on the set
of transvections.

The conjugation action of G on this block system (there actually are two of
them, but they are conjugate in Aut(GL(n, 2))) is permutation equivalent to the
action of G on the non-zero vectors of V . The difficulty lies in describing this
action explicitly. What is surprising about our result is not the initial approach,
which in its own right has been used extensively by other authors, but that the
data structures for computing Θ can be determined without having to enumerate
the elements of the block system which would then require time exponential in n.

Theorem 1.1 is a preliminary result. The choice of GL(n, 2) was made to remove
certain technical issues which occur with arbitrary finite fields but of sufficient
complexity to reveal the difficulties in obtaining a more general result. The only
component procedure of our algorithm which is Monte Carlo and not Las Vegas
is the determination of n. Removing this obstruction within the required time
bound is of considerable interest. This issue along with possible generalizations are
discussed in the the last section.

2. Overview of the Algorithm

Transvections play a key role both in determining the value of n and in creating
the data structures required to compute the isomorphism Θ : G −→ GL(n, 2). Each
transvection τv,f of GL(n, 2) can be identified with a unique vector v ∈ V and a
linear functional f ∈ V ∗ such that f(v) = 0 and τv,f acts on V according to the

CONSTRUCTIVE RECOGNITION OF A BLACK BOX GROUP 3

following rule:

wτv,f = w + f(w)v, w ∈ V.

We refer to v as the center of the transvection τv,f .
The construction of Θ depends on three critical properties of transvections.

(1): Given two transvections τv,f and τu,g of GL(n, 2), one can determine
certain relations between u, v, f , and g from computing the order of their
product. For example, if |τv,fτu,g| = 4, then (τv,fτu,g)

2 is a transvection and
either f(u) = 0, g(v) = 1 and (τv,fτu,g)

2 = τu,f or f(v) = 1, g(v) = 0 and
(τv,fτu,g)

2 = τv,g (Lemma 5.2).
(2): The permutation representation of GL(n, 2) on the set of all transvections

is imprimitive with precisely two maximal systems of imprimitivity. The
representatives of these block systems which contain τv,f can be described
as the sets Γ(f) = {τx,f : x ∈ V, f(x) = 0, v 6= 0} and β(v) = {τv,h : x ∈
V, h(v) = 0, h 6= 0}.

(3): If τv,f is a transvection and α is an arbitrary element of GL(n, 2), then

τα
v,f = τvα,fα∗

where α∗ ∈ GL(V ∗) is defined by (fα∗)(w) = f(wα−1), for w ∈ V .

The first step in the algorithm is to determine the value of n and identify an
element t ∈ G that will map under Θ to a transvection of GL(n, 2). This is rather
straightforward and is discussed in section 4. Under the assumption that Θ is an
isomorphism, we may set Θ(t) = τv,f for some v ∈ V and f ∈ V ∗ with f(v) = 0.
Note that since transvections form a single conjugacy class in GL(n, 2), the choice
of v and f is arbitrary subject only to f(v) = 0.

It will be convenient to denote the preimage of a transvection τu,g under Θ
by tu,g and refer to elements of this conjugacy class of G as transvections as well.
Furthermore, we will often denote an arbitrary element of this conjugacy class of
G in the form tw,h. This is legitimate as long as we don’t make any assumptions
on the values of w and h that can’t be properly inferred from Θ. For example, if
tw,h = tu1,gtu2,g and we have already extended Θ to tu1,g and tu2,g, then Θ(tw,h) =
Θ(tu1,g)Θ(tu2,g) = τ(u1, g)τ(u2, g) = τ(u1 + u2, g). Thus w = u1 + u2 and h = g.

Given a transvection tv,f of G, we may successively use properties (1) and (2)
to construct subsets BΓ and Bβ of G which we will refer to as a dual block pair and
which satisfies the following properties:

• Θ(BΓ) = {τv1,f , τv2,f , . . . , τvn−1,f} where {v1, . . . , vn−1} is a basis for Γ(f).
• Θ(Bβ) = {τvn,g1

, . . . , τvn,gn−1
} where f(vn) = 1 and {g1, . . . , gn−1} is a

basis for β(vn).
• gi(vj) = δij , 1 ≤ i, j ≤ n − 1, where δij is interpreted as an element of

GF (2).

The construction of BΓ and Bβ is presented in section 6. Here tv,f = tv1,f . We set
BΓ = {tv1,f , . . . , tvn−1,f} and Bβ = {tvn,g1

, . . . , tvn,gn−1
}.

Since f(vn) = 1, the set {v1, v2, . . . , vn} is a basis of V . Assuming we know
the restriction of Θ to BΓ ∪ Bβ , the image Θ(x), for an arbitrary x ∈ G, is then
determined by computing the coefficients of viΘ(x) relative to {v1, v2, . . . , vn} for
1 ≤ i ≤ n. To do this, we make use of (3) above. Thus, for 1 ≤ i ≤ n− 1,

τ
Θ(x)
vi,f

= τviΘ(x),fΘ(x)∗ = τwi,hi
,

4 GENE COOPERMAN, LARRY FINKELSTEIN, AND STEVE LINTON

and
τΘ(x)
vn,gn−1

= τvnΘ(x),gn−1Θ(x)∗ = τwn,hn
.

Thus the problem of expressing viΘ(x) as a linear combination of {v1, v2, . . . , vn}
reduces to the following problem. Given the transvection τwi,hi

, express wi as a
linear combination of {v1, v2, . . . , vn}, 1 ≤ i ≤ n. Since we do not have any explicit
way of constructing wi, this does not appear to be all that useful. However, for
1 ≤ i ≤ n− 1, τwi,hi

= Θ(txvi,f
) and so the preimage of τwi,hi

under Θ is precisely
txvi,f

= twi,hi
which can be computed in G.

More generally, assume we are given a transvection tw,h of G and we want to
express w =

∑n
i=1 aivi. Initially, we have no information on the values of w and h.

The solution of this problem occurs in two stages and is presented in section 7. In
the first stage, we reduce to the case where h = f and simultaneously determine the
coefficient an. This reduction is fairly straightforward and makes use of properties of
transvections developed in section 5. In the second stage, we know that tw,f ∈ 〈BΓ〉
and want to express tw,f in terms of the basis BΓ for 〈BΓ〉. This means, finding
coefficients {a1, . . . , an−1} such that

tw,f = ta1

v1,f · · · t
an−1

vn−1,f .

In the black box setting, we do not have an explicit value for w and so the usual
linear algebra methods do not work. Instead, we use the existence of our dual block
pair (BΓ, Bβ) which allows us to easily find explicit values for {a1, . . . , an−1}. The
details are presented in section 7.

3. The Top Level Procedures

The procedure Construct-Data-Structures is used to set up the data struc-
tures required for each call to Θ. The input is the generating set G. We will not be
concerned with precise probability estimates. Rather, each of the procedures that
is called will be responsible for returning the correct answer with constant proba-
bility, i.e. with probability at least c for some fixed c, 0 < c < 1. Each procedure
will return false if it can detect that the returned value is incorrect. In general,
each procedure can achieve higher reliability in the standard way by sampling more
random chosen elements. We initialize M to be an upper bound on the dimension
n of G. As noted in the introduction, if G is a black box group specified by binary
strings of length N , then M may be set to 1 +

√
N .

Procedure Construct-Data-Structures(G)
Input: A generating set G for G.
Output: The dimension n of G, a transvection t = tv,f ∈ G, an element σ ∈ G

which commutes with t and whose order contains a primitive prime divisor
of 2n−2 − 1 and a dual block pair (BΓ, Bβ). (If n − 2 = 6, then we require
that |σ| = 63.)

Reliability: 1/128
Complexity: O((M log2 M + n2)µ + Mρ + n3ǫ) where µ, ρ, ǫ are as defined in

Theorem 1.1.

If G ⊆ GL(m, q)
Set M ← m + 1

[See Lemma 4.5.]
Else If G is a Black Box group

Let N be the binary string length for specifying elements of G

CONSTRUCTIVE RECOGNITION OF A BLACK BOX GROUP 5

Set M ← ⌊1 +
√

N⌋
Set (ℓ, t, σ)← Find-Element-in-C2(G,M)

[See section 4]
If ℓ = 0

Return(false)

Set n = ℓ + 2
Set BΓ ← Construct-Block-Basis(n, t, σ,G)

[See section 6]
If BΓ = false

Return(false)

Set Bβ ← Construct-Dual-Block-Pair (n, t, σ,BΓ,G)
[See section 6]

If Bβ = false

Return(false)

Construct-Data-Structures is Monte Carlo with constant reliability. The
procedure Find-Element-in-C2 has constant reliability that the returned values
(ℓ, t, σ) are correct, hence may return the wrong answer without it being detected.
It should be noted, that if n = ℓ + 2 is correct, then it is certain that t is a
transvection of G and σ is a ppd(n, 2, n−2) element of G. The two other procedures
Construct-Block-Basis and Construct-Dual-Block-Pair are both Las Vegas
given that n has been correctly determined.

We can now specify the isomorphism Θ: G −→ GL(n, 2). Elements of G will be
represented as n×n matrices over GF (2) relative to the basis for V = {v1, . . . , vn}
determined by the dual block pair (BΓ, Bβ), where BΓ = {tv1,f , . . . , tvn−1,f}, with
tv,f = tv1,f , and Bβ = {tvn,g1

, . . . , tvn,gn−1
}.

Procedure Θ

Input: An arbitrary matrix x ∈ G, BΓ and Bβ .
Output: A matrix (ai,j) for 1 ≤ i ≤ n, 1 ≤ j ≤ n.
Complexity:: O(n2µ), where µ is as defined in Theorem 1.1.

For i← 1 to n− 1
Set (ai,1, . . . , ai,n−1)← Compute-Transvection-Center(txvi,f

, BΓ, Bβ)

Set (an,1, . . . , an,n−1)← Compute-Transvection-Center(txvn,g1
, BΓ, Bβ))

[See section 7]
Return((ai,j))

4. Finding a Transvection

In this section, we derive a method for finding transvections of GL(n, 2) that
does not depend on having the natural representation of GL(n, 2) in hand. This can
then be used as the conceptual basis for the procedure Find-Element-in-C2. This
procedure is Monte Carlo with constant reliability and may return an incorrect
answer without it being detected. However, if we are willing to spend sufficient
time, then the probability of error can be reduced below any given threshold.

An element of G = GL(n, 2) is irreducible if its characteristic polynomial is
irreducible over GF (2), or equivalently if it acts irreducibly on V . A Singer cycle
is a cyclic subgroup of order 2n − 1 which acts transitively on the non-zero vectors

6 GENE COOPERMAN, LARRY FINKELSTEIN, AND STEVE LINTON

of V . It is well known that all Singer cycles are conjugate and that each irreducible
element of GL(n, 2) is conjugate to an element of a Singer cycle. A Singer cycle can
be constructed through the embedding of GL(1, 2n) = GF (2n)∗ into GL(n, 2). Fur-
thermore, one can also embed GF (2n)∗ extended by Aut(GF (2n)) into GL(n, 2),
where Aut(GF (2n)) is a cyclic group of order n induced by the Frobenius automor-
phism. It then follows that each irreducible element contained in a Singer Cycle is
conjugate to n of its powers.

Definition 4.1. A prime p is said to be a primitive prime divisor of 2n − 1
if p | (2n − 1) but p 6 |(2j − 1), j < n. An element σ of GL(n, 2) is said to be a
ppd(n, 2, e) element, n/2 < e ≤ n, if σ satisfies two conditions. First, it should
fix an n− e dimensional subspace of the underlying vector space. Second, |σ| = 63
when e = 6 and |σ| contains a primitive prime divisor of 2e − 1 when e 6= 6. A
ppd(n, 2, n) element is said to be primitive.

Remark 4.2. It follows from a result of Zsigmondy that for e 6= 6, 2e − 1
always has a primitive prime divisor. Thus a ppd(n, 2, e) element exists for all
values of n and e. We employ a slightly more restrictive definition than that given
by Niemeyer and Praeger in these proceedings.

We now define a class of elements of GL(n, 2) that occur with high frequency
and which allow us to identify transvections in a black box setting.

Definition 4.3. Let τ be a fixed transvection and ν a ppd(n, 2, n− 2) element
of order 2n−2 − 1. Denote by I2, the set of all elements of the form τσ, where

σ ∈ 〈ν〉, and σ is a ppd(n, 2, n− 2) element. Set C2 = IGL(n,2)
2 .

Lemma 4.4. |C2|/|GL(n, 2)| ≥ 1/(4(n− 1)).

Proof. Let V = U1 ⊕ U2 where U1 = CV (ν) and U2 = [V, ν]. Then τ central-
izes U2 and stabilizes U1. Hence, C = CGL(n,2)(τν) = CGL(U1)(τ |U1)× 〈ν〉 ∼= Z2 ×
Z2n−2

−1. Furthermore, C = CGL(n,2)(τσ) for each τσ ∈ I2. If N = NGL(n,2)(〈τν〉),
then N/ 〈τν〉 is cyclic of order n − 2. Also, two elements of I are conjugate in
G if and only if they are conjugate in N . This follows from the structure of
CGL(n,2)(τ) = 22n−3GL(n − 2, 2). In particular, each conjugacy class contained
in C2 contains precisely n− 2 elements of I2. Thus

|C2| = {|G|/(2(2n−2 − 1))}|I2|/(n− 2)

= {|G|/(2)}|I2|/((2n−2 − 1)(n− 2)).

If n 6= 8, then |I2|/(2n−2 − 1) is the proportion of primitive elements in a
Singer cycle of GL(n−2, 2), and if n−2 = 6, then it is the proportion of generating
elements. However, it is shown in [8, Lemmas 2.3 and 2.4] that this number is at
least n−2/(n−1), except when n−2 = 6 in which case it is at least n−2/(2(n−1)).
Thus

|C2|/|GL(n, 2)| ≥ 1/4(n− 1)

as required.
The next result will be useful in the case where the generating matrices S for

G are given as m×m matrices over GF (q).

Lemma 4.5. If GL(n, 2) is a subgroup of GL(m, q), then n ≤ m + 1.

CONSTRUCTIVE RECOGNITION OF A BLACK BOX GROUP 7

Proof. Let ζ be a Singer cycle of GL(n, 2). If (q, 2n − 1) = 1, then in some
extension field GF (qr), ζ is diagonalizable and has n distinct conjugates. This
implies that ζ has at least n distinct eigenvalues as an element of GL(m, qr). Hence
n ≤ m. If (q, 2n − 1) 6= 1, then q is a power of a prime distinct from 2 and so
(q, 2n−1 − 1) = 1 (since (2n − 1) − (2n−1 − 1) = 2n−1). The same argument using
an element of order 2n−1 − 1 which generates a Singer cycle of GL(n − 1, 2) then
yields n− 1 ≤ m.

In our context, G is a black box group isomorphic to GL(n, 2) for some unknown
value of n. We need a method for characterizing elements of C2 of G which does
not depend on any of the usual linear algebra properties.

Lemma 4.6. Let G be a black box group which is isomorphic to GL(n, 2). A
necessary condition for g ∈ G to be a ppd(n, 2, e) element for some value of e, is
that

• |g| | 2e − 1, and
• |g| contains a primitive prime divisor of 2e − 1.

Lemma 4.6 leads to the following method for identifying elements of C2 of G.

Lemma 4.7. Let S be a sequence of elements of G and suppose it is known that
S contains an element of C2. Let S ′ be the subset of S consisting of those elements
g with the property that |g| = 2kg with kg odd. For each g ∈ S ′ define tg = gkg and
σg = g2. (Thus, 〈g〉 = 〈tg〉 × 〈σg〉.) For g ∈ S ′, let ℓg be a non-negative integer
set according to the following rule. If kg = 63, set ℓg = 6. If kg divides 2e − 1 and
contains a primitive prime divisor of 2e − 1, set ℓg = e. Otherwise, set ℓg = 0. Let
ℓ = max{ℓg : g ∈ S ′}. Then ℓ = n− 2. Further, for those g ∈ S ′ satisfying ℓg = ℓ,
tg is a transvection and σg is a ppd(n, 2, n− 2) element.

Proof. Recall from Definition 4.3 that if g ∈ S is an element of C2, then tg is
a transvection and σg is a ppd(n, 2, n− 2) element. Hence ℓ = ℓg = n− 2.

We claim that any element h with ℓh = ℓ will be an element of C2. To see
this, let V be an n dimensional GF (2)–module for G. Since σh commutes with
the involution th, σh stabilizes CV (th). Furthermore, since dim(CV (th)) ≥ n/2,
it follows that either dim(CV (th)) = n − 2 or dim(CV (th)) = n − 1. The case
dim(CV (th)) = n − 2 is impossible since in this case, CG(th) is isomorphic to
an extension of a 2-group of order 24n−12 by GL(2, 2) × GL(n − 4, 2) and this is
incompatible with the conditions on kh. Thus th is a transvection.

The following procedure Find-Element-Of-C2-In-Set is based on Lemma 4.7.
The input is a set S of elements of G and an upper bound M on the dimension
of G. For example, if G is specified by m ×m matrices over GF (q), then we can
choose M = m + 1 by Lemma 4.5. If it is known in advance that S contains an
element g ∈ C2, then Find-Element-Of-C2-In-Set returns (ℓg, tg, σg). If it is not
known for certain that S contains an element of C2, then the procedure will find
an element g ∈ S which appears most likely to be an element of C2 and returns
(ℓg, tg, σg). Otherwise, the procedure concludes that S does not contain an element
of C2 and returns a triple (ℓ, t, s) with ℓ = 0.

The procedure makes use of the functions Order-Test and Bounded-Order.
Order-Test has input an element x ∈ G and the bound M on the dimension of G. It
returns either the smallest positive integer i ≤M such that |x| | 2i−1 or else 0 if no
such i exists. Using the standard doubling algorithm together with the observation

that |x| | 2i − 1 if and only if x2i

= x, it is easy to see that Order-Test requires

8 GENE COOPERMAN, LARRY FINKELSTEIN, AND STEVE LINTON

at most O(log M) multiplications. The function Bounded-Order has as input an
element x, an integer i such that |x| | 2i−1 and returns |x|. An implementation can
be based on the algorithm described in [5] and requires O(log2 M) multiplications.
We assume that this function has access to the prime factorization of 2i−1, i ≤M ,
and do not consider this in the complexity. Similarly, for each i ≤ M , we assume
that we can test if a divisor of 2i − 1 is primitive.

Procedure Find-Element-Of-C2-In-Set
Input: (S,M) where S is a set of elements of G and M is an upper bound on

the dimension of G.
Output: A triple (ℓ, t, σ). If the procedure can verify that S does not contain

an element of C2, then ℓ is set to 0. Otherwise, ℓ is assigned a value believed
to be n− 2, an involution t and an element σ which commutes with t such
that g = tσ ∈ S, and g is believed to be an element of C2.

Complexity: O(|S| log2 Mµ) where µ is as defined in Theorem 1.1

Set (ℓ, t, σ)← (0, nil, nil)
For non-trivial g ∈ S do

Set σg = g2

Set ℓg ← Order-Test(σg,M)
[ℓg ← min{i : i ≤M, |σg| | 2i − 1} or ℓg ← 0]

If ℓg > 0

If g2ℓg 6= g
[In this case, |g| = 2|σg|. Otherwise, 〈g〉 = 〈σg〉.]
Set kg ← Bounded-Order(σg, ℓg)

[kg ← |σg|]
If (ℓg = 6 and kg = 63)

Or kg contains a primitive prime divisor of 2ℓg − 1
If ℓg > ℓ

Set (ℓ, t, σ)← (ℓg, g
kg , σg)

Return(ℓ, t, σ)

The value of ℓ is a lower bound on n−2 because it arises through the existence
of an element whose order divides |GL(ℓ, 2)| but not |GL(i, 2)| for 1 ≤ i < ℓ. If S
does contain an element of C2, then Find-Element-Of-C2-In-Set will find it.

We are now able to describe the procedure Find-Element-in-C2. The input
to Find-Element-in-C2 is a generating set G of G and an upper bound M on
the dimension n of G. A single call is made to Find-Element-Of-C2-In-Set with
argument a set S of 4M randomly chosen element of G. This will ensure that S
contains an element of C2 with constant probability.

Procedure Find-Element-in-C2
Input: A generating set G and a bound M on the dimension of G.
Output: A triple (ℓ, t, σ), where ℓ = n− 2, t is a transvection and s commutes

with t such that ts ∈ C2.
Reliability: 1− 1/e.
Complexity: O(M log2 Mµ + Mρ), where µ, ρ are as defined in Theorem 1.1.

Let S be a set of 4M randomly chosen elements of G
Set (ℓ, t, σ)← Find-Element-in-C2(S,M)

CONSTRUCTIVE RECOGNITION OF A BLACK BOX GROUP 9

If ℓ 6= 0
Return(ℓ, t, σ)

5. Preliminary Results on Transvections

There is a transvection τv,f of GL(n, 2) for any non-zero vector v ∈ V and
linear form f ∈ V ∗, such that f(v) = 0. The action of τv,f on V is given by the
formula

wτv,f = w + f(w)v.

When the field is not GF (2) there is a scale question. Replacing v by λv and f by
λ−1f does not change τv,f .

Lemma 5.1. Two transvections τv,f and τu,g:

(i) are the same,
(ii) commute and their product is τu+v,f when f = g, u 6= v,
(iii) commute and their product, τv,f+g when f 6= g, u = v,
(iv) commute and their product is not a transvection, when f(u) = g(v) = 0,

f 6= g, u 6= v,
(v) have product of order 3 when f(u) = g(v) = 1; note that here, τ

τu,g

v,f =
τu+v,f+g,

(vi) have product of order 4 with square τv,g when f(u) = 1 and g(v) = 0, or
(vii) have product of order 4 with square τu,f when f(u) = 0 and g(v) = 1.

Given a fixed transvection τv,f , we are interested in finding a transvection τu,g

such that τv,fτu,g has a specified property.

Lemma 5.2. Let τu,g be randomly chosen. Then for sufficiently large n, each
of the following events has probability approaching 1/4 for large n.

(i) τv,f commutes with τu,g but τv,fτu,g is not a transvection.
(ii) |τv,fτu,g| = 3.
(iii) |τv,fτu,g| = 4, with (τv,fτu,g)

2 = τv,g.
(iv) |τv,fτu,g| = 4, with (τv,fτu,g)

2 = τu,f .

Proof. The structure of CGL(n,2)(τv,f) is a split extension of an extra-special

2-group of order 22n−3 by GL(n − 2, 2). Thus the number of transvections is
[GL(n, 2) : CGL(n,2)(τv,f)] = (2n − 1)(2n−1 − 1). Given a fixed transvection τv,f ,
it follows from Lemma 5.1(iv), that the number of transvections τu,g which satisfy
(i) is (2n−1 − 2)(2n−2 − 2). Hence, the proportion of transvections which have
this property is then (2n−1 − 2)(2n−2 − 2)/(2n − 1)(2n−1 − 1). This approaches
1/4 asymptotically and establishes (i). The proofs of (ii), (iii) and (iv) follow in a
similar manner.

Remark 5.3. It follows from Lemma 5.2(iii),(iv), that for a given transvection
τv,f with probability 1/2, a randomly chosen transvection τu,g has the property that
τ = (τv,fτu,g)

2 is a transvection. In fact, τ = τv,g or τu,f and so both ττv,f and
ττu,g are both transvections. Note that it would be difficult to find a transvection
such as τ directly.

Remark 5.4. In the course of constructing Θ, we will often use Lemma 5.1
in the following way. Suppose that t is a transvection of G and Θ(t) = τv,f so that
t is labeled by t = tv,f . Let t′ be an arbitrary transvection of G which we label by

10 GENE COOPERMAN, LARRY FINKELSTEIN, AND STEVE LINTON

t′ = tu,g to indicate that Θ(t) = τu,g, and suppose there is no a priori relationship
between v, f and u, g. If |tv,f tu,g| = 4, then Θ((tv,f tu,g)

2) = (τv,fτu,g)
2, and so by

Lemma 5.1(v),(vi), either (τv,fτu,g)
2 = τu,f or (τv,fτu,g)

2 = τv,g . Hence, the same
holds in G, namely (tv,f tu,g)

2 = tu,f or (tv,f tu,g)
2 = tv,g.

6. Building a Dual Block Pair

In this section, we construct the dual block pair (BΓ, Bβ) required for the
construction of the isomorphism Θ. The input to Construct-Block-Basis is the
dimension n of G, a transvection t of G, which we denote by tv,f to indicate that
Θ(tv,f) = τv,f ∈ GL(n, 2), an element σ which commutes with tv,f such that Θ(σ)
is a ppd(n, 2, n− 2) element of GL(n, 2), and a generating set G for G.

This construction is Las Vegas, in that if the inputs are correct (if G ≃ GL(n, 2),
t is a transvection, etc.), then either the answer false is returned or else the correct
answer is returned. Thus, one does not need to verify correctness of the answer.
Further, there is some constant such that the correct answer is returned with at
least that probability. Thus, repeated application of the procedure can assure that
if the inputs are correct, then the probability of returning false on all iterations
can be made arbitrarily small.

There are two maximal block systems of GL(n, 2) in the conjugation action on
the conjugacy class of transvections. The two blocks which contain τv,f are Γ(f) =
{τx,f : x ∈ V, f(x) = 0, v 6= 0} and β(v) = {τv,h : x ∈ V, h(v) = 0, h 6= 0}. It is clear
from Lemma 5.1 that Γ(f) ∪ β(v) contains all transvections which commute with
τv,f and whose product with τv,f is also a transvection. In our construction, Θ(BΓ)
is a basis for 〈Γ(f)〉. Note that Γ(f) and β(v) are conjugate in Aut(GL(n, 2)), so
the choice that our block maps onto Γ(f) is purely arbitrary.

The first step in applying these ideas to the black box group G is to find
another transvection in the same block as tv,f . By Lemma 5.2, the probability
is approximately 1/2 that a random transvection tu,g satisfies |tv,f tu,g| = 4. But
then (tv,f tu,g)

2 = tv,g or tu,f as in Remark 5.4. Without loss of generality, we may
assume that (tv,f tu,g)

2 = tu,f , for some u 6= v, and hence tv,f and tu,f belong to
〈BΓ〉.

Since σ centralizes tv,f , σ normalizes 〈BΓ〉. From the structure of CG(tv,f) ∼=
22n−3GL(n − 2, 2), σ acts irreducibly on a hyperplane of 〈BΓ〉. In particular,
〈BΓ〉 = 〈tv,f 〉 ⊕ [〈BΓ〉 , 〈σ〉] where 〈tv,f 〉 and [〈BΓ〉 , 〈σ〉] are, of necessity, the only
proper σ invariant subspaces of 〈BΓ〉. Since σ does not centralize tu,f , tv2,f =

[tu,f , σ] ∈ [〈BΓ〉 , 〈σ〉]. Hence tv2,f , tσv2,f , . . . , tσ
n−2

v2,f is a basis for [〈Γ(f)〉 , 〈σ〉] and

adding tv,f yields a basis for 〈BΓ〉. This leads to:

Procedure Construct-Block-Basis

Input: (n, t, σ,G) where n is the dimension of G, t = tv,f is a transvection of
G, σ is an element which commutes with t such that σ is a ppd(n, 2, n− 2)
element, and G is a generating set for G.

Output: A basis BΓ = {tv1,f , . . . , tvn−1,f} for 〈BΓ〉
Complexity: O(nµ + ρ), where µ, ρ are as defined in Theorem 1.1.
Reliability: 1/2

Set tv1,f ← tv,f

Set x← Rand(G) and tu,g ← txv,f

If |tu,gtv,f | 6= 4

CONSTRUCTIVE RECOGNITION OF A BLACK BOX GROUP 11

Return (false)
Set tu,f ← (tv,f tu,g)

2

Set tv2,f ← [tu,f , σ]
For i← 3 to n− 1

Set tvi,f ← tσvi−1,f

Set BΓ ← {tv1,f , . . . , tvn−1,f}
Return(BΓ)

We now focus on finding a suitable vector vn such that {v1, . . . , vn} is a ba-
sis for V and then computing a set Bβ such that Θ(Bβ) is basis for 〈β(vn)〉. We
begin by observing from Lemma 5.1 that the probability is 1/4 that a randomly
chosen transvection tvn,g′

n−1
satisfies |tv,f tvn,g′

n−1
| = 3, and for such a transvec-

tion, f(vn) = 1. Assuming that tvn,g′

n−1
satisfies this property, it follows that

v1, . . . , vn−1 together with vn forms a basis for V . We will first construct a basis
B′

β = {tvn,g′

1
, . . . , tvn,g′

n−1
} such that Θ(B′

β) is a basis for β(vn) and then trans-

form this to a basis Bβ = {tvn,g1
, . . . , tvn,gn−1

} with the desired property that
gi(vj) = δij , 1 ≤ i, j ≤ n− 1.

If tvn,g′

n−1
= txv,f , then conjugating BΓ by x will give a basis for Θ−1(

〈

Γ(g′n−1)
〉

).

A randomly chosen transvection tu,g′ has probability 1/2 of satisfying the equation
|tu,g′tvn,g′

n−1
| = 4. In this case, either (i) g′n−1(u) = 0, g′(vn) = 1 or (ii) g′n−1(u) =

1, g′(vn) = 0. In case (i), |tu,g′t′| | 4 for all tw,g′

n−1
∈ Θ−1(

〈

Γ(g′n−1)
〉

). Note that

tu,g′ has equal likelihood of being in case (i) or case (ii). Assuming we can confirm
that tu,g′ is in case (ii), it then follows that (tu,g′tvn,g′

n−1
)2 = tvn,g′ ∈ Θ−1(β(vn)).

We may then construct the basis B′

β = {tvn,g′

1
, . . . , tvn,g′

n−1
} for Θ−1(β(vn)) by

setting tvn,g′

1
= tvn,g′ and tvn,g′

i+1
= tvn,g′

i

σx

, 1 ≤ i ≤ n− 2.

It remains for us to verify that tu,g′ is in case (ii). We first observe that case (ii)
can be distinguished from case (i) since |tu,g′tw′,g′

n−1
| = 3 for approximately 1/2 of

the elements tw′,g′

n−1
∈ Θ−1(Γ(g′n−1)). To see that this happens in case (ii), note

that g′n−1(u) = 1 implies that |tu,g′tw,g′

n−1
| = 4 if g′(w) = 0 and |tu,g′tw,g′

n−1
| = 3

if g′(w) = 1. Since, g′(vn) = 1 and vn ∈ ker(gn−1), g′ is not trivial on ker(g′n−1).
Hence, g′(w) = 1 on 1/2 of the vectors w ∈ ker(g′n−1) which proves the assertion.

Thus our test for finding a transvection tu,g′ in case (ii) consists of the following.
First generate a random transvection tu,g′ and test if |tu,g′tvn,gn−1

| = 4. If so, then
generate a random element tw,g′

n−1
∈ Θ−1(Γ(g′n−1)) and check if |tw,g′

n−1
tu,g′ | = 3.

Thus the overall probability of generating a random transvection which can then
be confirmed to be in case (ii) is at least 1/8.

We now describe how to transform B′

β to Bβ . We want to find an (n−1)×(n−1)

matrix X = (xij) such that if

tvn,gi
=

n−1
∏

j=1

t
xij

vn,g′

j

then gi(vj) = δij , 1 ≤ i, j ≤ n− 1. Note that this is equivalent to finding (xij) such
that

gi =
n−1
∑

j=1

xijg
′

j

12 GENE COOPERMAN, LARRY FINKELSTEIN, AND STEVE LINTON

subject to gi(vj) = δij , 1 ≤ i, j ≤ n − 1. Let Y = (yij) be the (n − 1) × (n − 1)
matrix with yij = g′i(vj), 1 ≤ i, j ≤ n − 1. It is easy to see that Y is non-
singular since {g′1, . . . , g′n−1} is a basis for the annihilator of 〈vn〉 in V ∗ and hence

remains independent when viewed as a subset of 〈v1, . . . , vn−1〉∗. It then follows
by direct computation that X = Y −1. This reduces the problem of determining
X to computing Y . Now although we don’t have an explicit representation of
the functionals {g′1, . . . , g′n−1} or the vectors {v1, . . . , vn−1}, we can still compute
yij = g′i(vj). Since f(vn) = 1, it follows from Lemma 5.1 that g′i(vj) = 0 if
|tvn,g′

i
tvj ,f | = 4 and g′i(vj) = 1 if |tvn,g′

i
tvj ,f | = 3.

Procedure Construct-Dual-Block-Pair

Input: (n, t, σ,BΓ,G) where n, t, σ, G are as before and BΓ is the basis for
Θ−1(〈Γ(f)〉) constructed in Construct-Block-Basis.

Output: A basis Bβ = {tvn,g1
, . . . , tvn,gn−1

} for Θ−1(〈β(vn)〉) where f(vn) = 1
and gi(vj) = δij , 1 ≤ i, j ≤ n− 1.

Complexity: O(n2µ + ρ + n3ǫ), where µ, ρ, ǫ are as defined in Theorem 1.1.
Reliability: 1/32

Set x← Rand(G)
Set tvn,g′

n−1
← txv,f

If |tvn,g′

n−1
tv,f | 6= 3

Return(false)
[Thus f(vn) = 1, g′n−1 6= f , and {v1, . . . , vn} is a basis for V .]

Set tw,g′

n−1
← tv2,f

x

[v2 6= v implies that w 6= u]

Set x′ ← Rand(G) and tu,g′ ← tx
′

v,f

If (|tu,g′tvn,g′

n−1
| 6= 4 or |tw,g′

n−1
tu,g′ | 6= 3)

Return(false)
[This ensures that tu,g′ satisfies case (ii) in the previous discussion]

Set tvn,g′

1
← (tu,g′tvn,g′

n−1
)2

[tvn,g′

1
is an additional element of Θ−1(β(vn))]

For i← 1 to n− 2
Set tvn,g′

i+1
← tvn,g′

i

σx

Set B′

β ← {tvn,g′

1
, . . . , tvn,g′

n−1
}

[Construct Bβ]
For i← 1 to n− 1

For j ← 1 to n− 1
If |tvn,g′

i
tvj ,f | = 4

Set yij ← 0
Else Set yij ← 1

[In this case, |tvn,g′

i
tvi,f | = 3]

Set (xij)← (yij)
−1

[Viewing (xij) and (yij) as matrices]
For i← 1 to n− 1

Set tvn,gi
=

∏n−1
j=1 t

xij

vn,g′

j

Return(Bβ)

CONSTRUCTIVE RECOGNITION OF A BLACK BOX GROUP 13

7. Computing the Center of a Transvection

We will assume the existence of the dual block pair (BΓ, Bβ) constructed in
the previous section. Given an unknown transvection, tw,h ∈ G, we wish to express
the vector w ∈ V as a linear combination w =

∑n
i=1 aivi. This is accomplished by

the procedure Compute-Transvection-Center. Similarly, we can also write h as a
linear combination of the basis {f, g1, . . . , gn−1} for V ∗, but this is not required.

Compute-Transvection-Center has two component procedures. The first pro-
cedure, denoted by Reduce-Transvection-Center, has input tw,h, BΓ and Bβ , and
returns a pair (tw′,f , an) where w′ ∈ 〈v1, . . . , vn−1〉 and w = w′ +anvn. We include
the possibility that w′ = 0 in which case tw′,f = 1. The second procedure Sift

has as input tw′,f , BΓ and Bβ , and returns coefficients (a1, . . . , an−1) such that

w′ =
∑n−1

i=1 aivi.

Procedure Compute-Transvection-Center

Input: An unknown transvection tw,h, BΓ and Bβ .
Output: Coefficients (a1, . . . , an) such that w =

∑n
i=1 aivi.

Complexity: O(nµ), where µ is as defined in Theorem 1.1.

Set (tw′,f , an)← Reduce-Transvection-Center(tw,h, BΓ, Bβ)
If tw′,f = 1 Return (0, . . . , 0, an)
Else Set (a1, . . . , an−1)← Sift(tw′,f , BΓ, Bβ)
Return (a1, . . . , an)

7.1. The Procedure Reduce-Transvection-Center. We will first present
a conceptual development of the procedure, including a proof of correctness and
then present the pseudocode. Starting with an arbitrary transvection tw,h, the
goal is to find a transvection tw′,f where w′ = w + anvn ∈ 〈v1, . . . , vn−1〉. This is
accomplished through the following sequence of cases.

Case 1 w = vn, hence w′ = 0.

This case can be determined by testing if |tw,htvn,gi
| = 2 for all i, 1 ≤ n − 1.

If this happens, then gi(v) = 0, 1 ≤ i ≤ n− 1, in which case β(w) = β(vn). Hence
w = vn. The procedure will then return (t0,h, 1).

Case 2 f(w) = 0.

We first show that f(w) = 0 if and only if |tw,htvi,f | | 4 for all i, 1 ≤ i ≤ n− 1.
This provides a simple test for this case. First note that this condition is true if
and only if f(w) = 0. To see this, note that by Lemma 5.1, f(w) = 0 implies
|tw,h, tvi,f | ∈ {2, 4} for all i. Conversely, assume that |tw,htvi,f | ∈ {2, 4} for all i

and f(w) = 1. Then h(vi) = 0 for all i by Lemma 5.1 and so h ∈ ⋂n−1
i=1 v◦

i = 〈f〉.
But then h = f contradicting h(w) = 0. In this case, an = 0 and so w′ = w.
Further reduction of tw′,h to tw′,f is performed in case 4.

Case 3 f(w) = 1.

Since f(vn) = 1 by our choice of vn, and f(w) = 1 by assumption, w involves
vn and an = 1. Suppose first that |tw,h, tvn,gi

| = 3 for some i, 1 ≤ i ≤ n − 1.

Then tw′,h′ is set to t
tvn,gi

w,h = tw+vn,h+gi
. In the remaining case, |tw,h, tvn,gi

| | 4,

1 ≤ i ≤ n− 1. We claim that h(vn) = 0. Otherwise, h(vn) = 1 which implies that
gi(w) = 0, 1 ≤ i ≤ n − 1. But then, w = vn, which contradicts h(w) = 0. We

14 GENE COOPERMAN, LARRY FINKELSTEIN, AND STEVE LINTON

may further assume that since f(w) = 1, gi(w) = 1 for some i, 1 ≤ i ≤ n − 1 and
hence |tw,h, tvn,gi

| = 4. In this case, tw′,h′ is set to tw,h(tw,htvn,gi
)2 = tw+vn,h. This

reduces to the case where f(w′) = 0 and is addressed next.

Case 4 f(w′) = 0.

We have reduced to the case of analyzing tw′,h′ where f(w′) = 0. Note that
the case w′ = 0 has already been discussed in case 1. We know at this point that
w′ = w + anvn for our original transvection tw,h.

Recall from case 2 that |tw′,h′tvi,f | | 4 for all i, 1 ≤ i ≤ n − 1. If there is an i
such that |tw′,h′tvi,f | = 4, then (tw′,h′tvi,f)2 = tw′,f and we return (tw′,h′tvi,f)2, an).
Otherwise, |tw′,h′tvi,f | = 2 for all i, 1 ≤ i ≤ n − 1 which implies that h′ = f and
we return (tw′,h′ , an).

Procedure Reduce-Transvection-Center

Input: An unknown transvection tw,h, BΓ and Bβ .
Output: (tw′,f , an) where an = f(w) and w = w′ + anvn. (Recall that BΓ

uniquely determines f .) [Note that we also allow w′ = 0, in which case
tw′,f = 1.]

Complexity: O(n2µ), where µ is as defined in Theorem 1.1.

If |tw,htvn,gi
| = 2 for all i, 1 ≤ n− 1 [w = vn]

Return (t0,h, 1)
If |tw,htvi,f | | 4 for all i, 1 ≤ i ≤ n− 1 [f(w) = 0]

Set tw′,h′ ← tw,h

Set an ← 0
Else [f(w) = 1]

Set an ← 1
If |tw,htvn,gi

| = 3 for some i, 1 ≤ n− 1 [h(vn) = 1]

Set tw′,h′ ← t
tvn,gj

w,h [w′ = w + vn]

Else Choose j, 1 ≤ j ≤ n− 1 such that |tw,htvn,gj
| = 4

Set tvn,h = (tw,htvn,gj
)2

Set tw′,h′ ← tw,htvn,h

For i← 1 to n− 1 [Now, f(w′) = 0]
If |tw′,h′tvi,f | = 4

Return ((tw′,h′tvi,f)2, an) [(tw′,h′tvi,f)2 = tw′,f]
Return (tw′,h′ , an) [h′(vi) = 0 for all i, hence h′ = f .]

7.2. The Procedure Sift. The key to the procedure Sift is the choice of
basis Bβ = {tvn,g1

, . . . , tvn,gn−1
} for Θ−1(〈β(vn)〉) with the property that gi(vj) =

δij , 1 ≤ i, j ≤ n−1. In this case, if w =
∑n−1

j=1 ajvj , then gi(w) = ai. Since f(vn) =

1, |tw,f tvn,gi
| = 3 or 4 depending on whether ai = gi(w) = 1 or 0 respectively.

Procedure Sift

Input: A transvection tw,f ∈ Θ−1(Γ(f)), BΓ and Bβ .
Output: A sequence (a1, . . . , an−1) with each ai ∈ GF (2) such that w =

∑n−1
i=1 aivi (or equivalently, such that tw,f = ta1

v1,f · · · t
an−1

vn−1,f).

Complexity: O(nµ), where µ is as defined in Theorem 1.1.

For i← 1 to n− 1
If |tw,f tvn,gi

| = 3

CONSTRUCTIVE RECOGNITION OF A BLACK BOX GROUP 15

Set ai ← 1
Else Set ai ← 0

[In this case |tw,f tvn,gi
| = 4]

Return((a1, . . . , an−1))

8. Open Questions

We enumerate questions which emerge from this work and which will be the
subject of future research efforts on our part.

Question 8.1. The most interesting question concerns the extension of Theo-
rem 1.1 to groups defined over prime fields for odd primes p. There are two possible
such extensions.

• Construct the natural representation into GL(n, p) for a black box group G
satisfying SL(n, p) ⊆ G ⊆ GL(n, p).

• Construct the natural projective representation into GL(n, p) for a black box
group G satisfying PSL(n, p) ⊆ G ⊆ PGL(n, p) (for the case when SL(n, p)
is not simple).

It appears that the machinery set up in this paper should settle the two issues
raised in Question 8.1, at least for the special linear groups. Such an extension is
almost complete.

Question 8.2. Does Theorem 1.1 extend to the other classical groups?

Question 8.3. Can the algorithm used to prove Theorem 1.1 be made Las
Vegas?

As indicated in the introduction, proving the correctness of Θ relies solely
on verifying the value of n determined by the algorithm. We sketch a two-part
approach that verifies n together with the underlying hypothesis that G ≃ GL(n, 2).

(1): Construct a subgroup G0 of G with G0 ≃ GL(n, 2).
(2): Prove that G = G0

A standard approach to solving (1) is to first find a presentation P = 〈S|R〉 for
GL(n, 2) and a set S of elements satisfying the presentation P, i.e. there exists a
1-1 map φ : S −→ S so that each relation of R is satisfied in G if elements of S in
the relation are replaced by their respective images under φ. This approach works
as long as n > 2, since GL(n, 2) is then simple. Given the machinery that has
already been developed, it should be possible to construct a set S of transvections
in G satisfying P.

In order to answer (2), it suffices to show that each generator g ∈ G of G is
an element of G0. A recent result of Celler and Leedham-Green [6] seems to apply
directly to this problem. We first compute Θ(g) and then apply [6] to express Θ(g)
as word in Θ(S). By shadowing the computation in G, we can then produce an
element g0 ∈ G0 such that Θ(g0) = Θ(g). We then test if g0 = g to certify that
g ∈ G0.

References

[1] L. Babai, “Local expansion of vertex-transitive graphs and random generation in finite

groups”, Proc. 23rd ACM STOC, pp. 164–174.

16 GENE COOPERMAN, LARRY FINKELSTEIN, AND STEVE LINTON

[2] L. Babai, and R. Beals, (1993). “Las Vegas Algorithms for Matrix Groups,”, Proc. 24th IEEE

FOCS, pp. 427–436.
[3] R. Beals, “Towards polynomial time algorithms for matrix groups”, in: Groups and Computa-

tion II (L. Finkelstein, W. M. Kantor, eds.), DIMACS Workshop on Groups and Computation
(June 1995), A.M. S., to appear.

[4] F. Celler, C. R. Leedham-Green, S .H. Murray, A C. Niemeyer, and E. A. O’Brien, “ Gener-
ating random elements of a matrix group”, Comm. Algebra, 23, 1995, 4931–4948.

[5] F. Celler and C. R. Leedham-Green, “Calculating the Order of an Invertible Matrix”, in:
Groups and Computation II (L. Finkelstein, W. M. Kantor, eds.), DIMACS Workshop on
Groups and Computation (June 1995), A.M. S., to appear.

[6] F. Celler and C. R. Leedham-Green, “A Constructive Recognition Algorithm for the Special
Linear Group”, preprint.

[7] F. Celler and C. R. Leedham-Green, “A Non-Constructive Recognition Algorithm for the
Special Linear and Other Classical Groups”, in: Groups and Computation II (L. Finkelstein,

W. M. Kantor, eds.), DIMACS Workshop on Groups and Computation (June 1995), A.M. S.,
to appear.

[8] P.M. Neumann and C. Praeger, “A recognition algorithm for special linear groups”, Proc.

London Math, Soc. 65 (1992), 555-603.

[9] A.C. Niemeyer and Cheryl Praeger, “Implementing a Recognition Algorithm for Classical
Groups”, in: Groups and Computation II (L. Finkelstein, W. M. Kantor, eds.), DIMACS
Workshop on Groups and Computation (June 1995), A.M. S., to appear.

College of Computer Science, Northeastern University, Boston, MA 02115,

E-mail address: gene@ccs.neu.edu

College of Computer Science, Northeastern University, Boston, MA 02115,

E-mail address: laf@ccs.neu.edu

Department of Computer Science, St. Andrews University, St. Andrews, Scotland,

E-mail address: sal@cs.st-andrews.ac.uk

