
DIMACS Series in Discrete Mathematics
and Theoretical Computer Science
Volume 00, 19xx

GAP/MPI: Facilitating Parallelism

Gene Cooperman

Abstract. The goal of this work is to overcome the learning barriers faced
when first using parallelism. Currently, in order to parallelize a system such

as GAP, one must embed a message passing library such as MPI, with many
routines and many parameters. GAP/MPI provides a simple, task-oriented in-
terface sitting above the MPI library. The system presents the end-user with a
single SPMD (single program, multiple data) environment in GAP: an existing,

familiar interactive language. In GAP/MPI one describes the end application
in terms of high level tasks, which are invoked by a single procedure call in
GAP/MPI. This eliminates the complexities of a message passing library, such

as encoding a message in a suitable data structure, message synchronization,
communication topologies and deadlock avoidance.

1. Introduction

GAP/MPI is a package that allows one to do parallel programming on any
distributed memory architecture supported by GAP [9] and MPI [5, 8]. The soft-
ware package allows one to use a network of UNIX workstations. It functions also
over heterogeneous workstation architectures, and over wide area networks. Such
networks are particularly attractive in a university environment, where student
laboratories with many workstations on a single Ethernet can be used effectively
during off-peak periods.

One begins to parallelize a problem by breaking it down into tasks. Task
descriptions are generated on the master, and assigned to a slave. The slave executes
the task and returns the result to the master. As a result of the value returned by
the slave, the master may optionally choose to invoke a user-defined routine that
updates some user-defined global data structures, the environment. The system
arranges to call the routine on the master and all slaves, so as to maintain a common
environment. The user should modify this environment only in the context of this
update routine, so that all processors have a common environment.

It may happen that several slaves may return results to the master at approxi-
mately the same time. If at most one of the slaves has a result requiring an update
to the environment, then the master need call the routine updating the environ-
ment only based on the one result. If more than one slave result requires updating
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the environment, then there is a collision. In the case of a collision, the master can
either sequentialize the tasks (accept one result for update, while asking the other
slaves to re-do their tasks in light of the updated environment), or else the master
may invoke an application-specific mechanism for combining the multiple results.

A set of tasks are called weakly inter-dependent, if there is some number less
than one, such that the fraction of tasks experiencing collisions is less than that
number. As more slaves are added, if the fraction of tasks experiencing collisions
remains bounded above by a number less than one, then it is easy to show that the
parallel program experiences asymptotically linear speedup.

The system is based on MPI (Message Passing Interface) [5, 8] and GAP (a
general purpose system for “Groups, Algorithms and Programming”) [9]. MPI is a
standard for implementation of parallelism via a message passing architecture. It
has bindings to both C and FORTRAN. There are several implementations of MPI.
The package described here has been implemented using the MPICH implementa-
tion [4]. Since the MPICH implementation is given as a C library, it was necessary
to extend the GAP kernel to include an interface to MPI in the GAP language, along
with some GAP code that implements the end-user interface. Since GAP/MPI is
implemented primarily using the point-to-point layer of MPI, it should be easy to
port GAP/MPI to a different message-passing library.

A general description of GAP/MPI is given first (section 2). The concepts are
illustrated using coset enumeration, Gröbner bases and strong generating sets for
group membership in permutation groups, in the hope that the reader is famil-
iar with one or more of these cases. The concepts in GAP/MPI are language-
independent, and variations of it are described for LISP [1] (LISP/MPI) and
for C [2, 3] (TOP-C). The term STAR/MPI has been used to include LISP/MPI,
GAP/MPI and other implementations that bind MPI to an interpreted language us-
ing the master-slave architecture described here. Strong generating sets have been
implemented in GAP/MPI, while Gröbner bases were implemented in LISP/MPI
and coset enumeration was implemented in TOP-C.

The later sections then provide a running example based on a naive integer
factorization using the sieve of Eratosthenes. The familiarity and simplicity of
this algorithm ensure that the algorithmic details do not obscure the issues of
parallelization in the master-slave architecture.

This is followed by some detailed examples in sections 3 and 4 and a general
template for programming with GAP/MPI in section 5. Section 6 describes some
advanced features, including an alternative interface to the master-slave architec-
ture. That alternative is often attractive when one is parallelizing code consisting
of many nested loops. Efficiency considerations are discussed in section 7 and the
paper is completed by section 8 on debugging techniques. That section is of in-
dependent interest for its simulator of GAP/MPI, that can be run in a standard,
sequential GAP.

Debugging parallel programs in a MIMD (multiple instruction, multiple data)
architecture has always been a stumbling block in making the transition from se-
quential to parallel programs. This stumbling block is substantially eased in a
master-slave architecture because all messages must go through a single master.
So, the master acts to sequentialize all communication, and this can be observed
by user.

The software is freely distributed by the author, and will also be available as
a share library in GAP. The motivated reader is encouraged to obtain the software
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package and to try some of the examples from this paper. GAP/MPI is part of a
family of languages, all following the same parallel design principles laid out here.
Currently, there also exist implementations in LISP [1] and C [2]. GAP is close
enough to a general pseudo-code that the interested reader should have no trouble
constructing the same examples in these other languages.

2. Basic Concepts

A master-slave architecture consists of a unique processor, designated the mas-

ter, and arbitrarily many other processors, designated slaves. Communication is
constrained to pass only between master and slaves, and not among slaves. As
we shall see, communication concerning a particular task is further constrained,
in that the first communication concerning a new task must be initiated by the
master. Hence, the master generates new tasks to be done, and the slave executes
them. Graphically, one has the following picture.
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The primary interface to GAP/MPI is an invocation of the form:

MasterSlave( GetTask, DoTask, GetTaskResult, UpdateEnvironment )

where the four variables, GetTask, DoTask, GetTaskResult and
UpdateEnvironment, are bound to functions defined by the user. This invoca-
tion causes a parallel program to execute. The life cycle of a single task has been
displayed graphically above. In the special case of a single slave, this is equivalent
to the sequential pseudo-code, below.

while ( NOTASK <> (task = GetTask()) ) do [on master]

redo:

result := DoTask( task ); [on slave]

action := GetTaskResult( result, task ); [on master]

switch ( action )

case NO_ACTION: /* do nothing */;

case UPDATE: UpdateEnvironment(result, task);[on master & slave]

case REDO: goto redo;

case CONTINUATION: ; [action defined in section 6]

The values of the variables task and result can be arbitrary, and are defined
only by the return values of the user functions GetTask() and DoTask(). In ele-
mentary applications of MasterSlave(), the action will always be NO_ACTION. The
reader may wish to consider only this special case on a first reading (in which case
the function UpdateEnvironment() is not used).

Of the four user-defined functions, the routine GetTask() executes on the mas-
ter, the routine DoTask() on a slave, the routine GetTaskResult() on the master,
and the routine UpdateEnvironment() on master and each slave. The system ar-
ranges to execute multiple tasks (one on each slave) at the same time.

In addition to the four user-defined functions, the fundamental concepts of
GAP/MPI are the task, the result, the action, and the environment.

A task description is a user-defined data structure, that is the input to a routine,
DoTask(). The routine, DoTask(), is called with a single argument, the current
task description. The routine may also read values from the environment. If a
program in GAP/MPI is to be efficient, then the large majority of the CPU time of
the algorithm should be spent in calls to DoTask(). This implies, in particular, that
most calls to DoTask() should not require significant updates to the environment.

The return value of DoTask() is the result. This and the original task descrip-
tion are the input parameters for GetTaskResult(). This latter routine returns
an action that controls further options for processing of the task as depicted in the
figure. These options are described in further detail in the later sections.

The environment is a set of variables, along with their values, shared among
all processes. The set of such variables is chosen by the user according to the
following operational definition. The environment is initialized before the first
call to MasterSlave(), and after that it may be modified only by the routine,
UpdateEnvironment(). The functions GetTask(), DoTask() and GetTaskResult()

may read values from the environment, but only the routine UpdateEnvironment()
should be allowed to set values in the environment.

In addition to global variables, the environment may include variables that are
in the lexical scope of each of the routines GetTask(), DoTask(), GetTaskResult()
and UpdateEnvironment(). As we shall see in our factorization example, this
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feature can make the code more modular by making the environment local to the
fifth function.

2.1. Examples of Concepts. In the case of implementations of coset enu-
meration, the environment for coset enumeration might be the coset table (and
possibly the subgroup table and relator table). A task description would consist
of a coset and a generator. The routine, DoTask(), would then process the deduc-
tion determined by the coset and generator. The consequences of the deduction,
if any, would be returned by DoTask(), so that appropriate tables could later be
updated. As necessary, one would call UpdateEnvironment() to process a resulting
coincidence or makes a new deduction.

In the case of construction of Gröbner bases, an environment might be the
intermediate base. A task description might consist of a new S-polynomial to test.
The work of DoTask() would be to reduce the S-polynomial. If the residue were
non-trivial, DoTask() would return the reduced S-polynomial without modifying
the intermediate Gröbner base. The reduced S-polynomial would then be added to
the intermediate Gröbner base by UpdateEnvironment().

In the case of construction of strong generating sets for group membership for
permutation groups, the environment might be the current intermediate strong gen-
erating set along with a set of fundamental orbits and the corresponding Schreier
trees. A task description might consist of a Schreier generator. The work of
DoTask() would be to sift (strip) the Schreier generator through the Schreier trees
and return the residue. If the residue were non-trivial, it would be added to the
strong generating set by UpdateEnvironment().

In each of the algorithms above, many task instances don’t require a call to
UpdateEnvironment(). Hence, depending on the input, many instances of these
algorithms satisfy weak task inter-dependence. It should be intuitively clear that
there is a large family of such algorithms that satisfying weak task inter-dependence.
Determination of the AG generating sequence of an AG-group (determination of an
AG-System) for a power commutator presentation is still another example. Indeed
many of these algorithms can be viewed in the general framework of Knuth-Bendix
techniques. While the Knuth-Bendix framework provides a rich family of examples
for this software, there are still other examples outside of that family, as will be
seen in the following examples.

3. A Simple Example

When GAP/MPI begins executing, the user is presented with a “master” GAP
process and several slave processes. The number of slave processes and their binding
to particular processors is specified in a manner dependent on the particular MPI
implementation.

In our package, we base this on MPICH’s procgroup file. A typical file appears
below. This file sets up two slaves on a single processor, highpoint, and one slave
on k2. Because GAP/MPI is designed only for distributed memory applications,
the second parameter for each slave entry is always 1. MPICH uses numbers other
than 1 for more specialized parallel machines, including shared memory machines.

# Modify this for the machines at your site

local 0

highpoint.ccs.neu.edu 1 /proj/gal2/gap-mpi/gapmpi

highpoint.ccs.neu.edu 1 /proj/gal2/gap-mpi/gapmpi
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k2.ccs.neu.edu 1 /proj/gal2/gap-mpi/gapmpi

By default, user commands are executed only on the master. The ParEval

command takes any string and executes it as a user command on the master and
all slaves, and returns the value returned by the invocation of the master. The
string argument is required to be terminated by ";\n".

ParEval("x:=3;\n");

One typically defines the desired functions and initial data structures in a file
visible to all processes (e.g.: on workstations using NFS). It is then loaded into the
master and all slaves using the ParEval command. Using Read() alone (without
ParEval()) would load the file into the master only.

ParEval("Read(\"myfile.g\");\n");

If there are n processes, one will see GAP’s confirmation of the load printed n times.
Within the user file, "myfile.g", one will have defined the routine to be ex-

ecuted in parallel. This routine calls MasterSlave(), and MasterSlave() then
invokes three user-written functions, GetTask(), DoTask(), and GetTaskResult().

Let us now consider ParList, a parallel version of the two-argument form of
the GAP function, List. It takes arguments list and Fnc and applies Fnc to each
element of list and returns a list of the results. A natural decomposition leads
to defining a task as the application of the Fnc argument to a single element of
the list argument. The result should then be saved and a list of all the results
returned. The environment, here, is simply Fnc.

# ParList defined in "myfile.g" and loaded as described above.

ParList := function ( list, Fnc )

local counter, result_list, GetTask, DoTask, GetTaskResult;

counter := 0;

result_list := [];

GetTask := function ()

counter := counter + 1;

if counter > Length(list) then return NOTASK; fi;

return counter; end;

DoTask := function (task) # task is last value of counter

return Fnc( list[task] ); end;

GetTaskResult := function ( result, task )

result_list[task] := result;

return NO_ACTION; end;

MasterSlave( GetTask, DoTask, GetTaskResult );

return result_list;

end;

ParEval( "ParList( [1..100], x->x^2 );\n" ); # returns [1,4,...,10000]

Note that we have taken advantage of GAP’s ability to define a function within
another function. We did this so that the local variable counter can be shared by
the functions ParList() and GetTask(), the local variable result can be shared by
the functions ParList() and GetTaskResult(), and the arguments to ParList(),
list and Fnc, are shared with DoTask() on each slave. If one prefers to define
all functions globally, then one would have to rewrite the above code to make all
variables global, and to introduce new global variables to share values of list and
Fnc between the functions ParList() and GetTaskResult().
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4. An Extended Example

The typical development of a parallel program is illustrated by an extended
example for parallel integer factorization, using the sieve of Eratosthenes. For
clarity of exposition, we ignore many possible optimizations, such as stopping the
sieve after testing the square root, and we especially ignore the existence of more
sophisticated factorization algorithms. The reader who has absorbed the lessons of
this section will have no trouble applying them in a more sophisticated manner.

4.1. A naive, parallel primality test. The following code employs a varia-
tion of the sieve of Eratosthenes. The environment is the variable, num_to_factor.
The routine UpdateEnvironment() is introduced here and used as described in
section 2.

MasSlaveIsPrime := function ( num_to_factor )

local GetTask, DoTask, GetTaskResult, UpdateEnvironment, last_num;

last_num := 1;

GetTask := function ()

last_num := last_num + 1;

if last_num > num_to_factor then return NOTASK; fi;

return last_num; end;

DoTask := function ( num ) # Test if num (= last_num) is a factor

return num_to_factor mod num = 0; end;

GetTaskResult := function ( result, num )

if result = true then return UPDATE;

else return NO_ACTION; fi; end;

UpdateEnvironment := function( result, num )

num_to_factor := 1; end;

MasterSlave( GetTask, DoTask, GetTaskResult, UpdateEnvironment );

return num_to_factor <> 1; # true means num_to_factor is prime

end;

ParFactor := function( num_to_factor )

return ParCall( "MasSlaveIsPrime", num_to_factor ); end;

As before, MasSlaveIsPrime would be defined in a file such as "myfile.g".
The function ParFactor() could also be defined there, or defined only on the
master. Now, the user need only type ParFactor(num_to_factor) instead of
ParEval(...). To accomplish this, we invoked a new utility, ParCall(). The
function ParCall() first distributes its arguments to master and all slaves, it then
applies the first argument (a string giving the name of a function) to the remain-
ing arguments in each process, and it finally returns the value returned by the
invocation on the master.

4.2. Parallel integer factorization. This section generalizes the routine
MasSlaveIsPrime of the previous section to now tackle factorization, while also
introducing several additional features of GAP/MPI. Finding all the factors re-
quires updating an environment in a non-trivial manner. Otherwise, two slaves
would separately note that 2 and 4 both divide 12, and there is a danger of storing
both factors. Hence, the environment now includes both num_to_factor and a list,
factors.

The code below does not guarantee a prime factorization, but only a factor-
ization into possibly composite numbers. This “bug” arises because one slave may
receive its task after another slave, but still return first. The analysis of this bug
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and its fix are deferred to the following section, in order to emphasize this pitfall
of parallel programming.

MasSlaveFactors := function ( num_to_factor )

local GetTask, DoTask, GetTaskResult, UpdateEnvironment,

last_num, factors;

factors := [];

last_num := 1;

GetTask := function ()

last_num := last_num + 1;

if last_num > num_to_factor then return NOTASK; fi;

return last_num; end;

DoTask := function ( num ) # Test if num (= last_num) is a factor.

return num_to_factor mod num = 0; end;

GetTaskResult := function ( result, num )

if result = false then return NO_ACTION; fi;

# reset task counter, to re-evaluate later tasks

last_num := Minimum( num, last_num ); # (*)

return UPDATE; end; # update num_to_factor

UpdateEnvironment := function ( result, num )

while ( num_to_factor mod num = 0 ) do

factors[ Length(factors) + 1 ] := num;

num_to_factor := num_to_factor / num;

od; end;

MasterSlave( GetTask, DoTask, GetTaskResult, UpdateEnvironment );

return factors; end;

ParFactor := function( num_to_factor )

return ParCall( "MasSlaveFactors", num_to_factor ); end;

Just before calling UpdateEnvironment(), we reset the counter, last_num,
back to the task just after the one generating the new factor. In the example,
ParFactor(12), this insures that upon discovering 2 as a factor, we will not report
both 2 and 4 as factors. Instead, we reset num_to_factor to 6 and begin testing
factors after 2 again.

Note that the code above causes excessive recomputation. In the computation
of ParFactor(12), when a slave discovers that 3 is a factor, then new tasks are
generated for testing all factors above 3. But, there are other slaves waiting to report
that 5, 7 and 8 are not factors. The current code throws away this information,
only to re-compute it later.

To fix this, the routine for GetTaskResult() is modified to:

GetTaskResult := function ( result, num )

if result = false then return NO_ACTION; fi;

if not IsUpToDate() then return REDO; fi; # (*)

return UPDATE; end; # update num_to_factor

The combination of IsUpToDate() and the REDO action above is a standard
idiom in programming MasterSlave(). Roughly, IsUpToDate() tests whether
UpdateEnvironment() has been called since the original call to GetTask() that
resulted in the current invocation of GetTaskResult() (see below for more detail).
If there was an intervening call to UpdateEnvironment(), then IsUpToDate() re-
turns false, and the REDO action causes the original task (represented by the variable
num here) to be re-sent to the original slave process. That slave will then re-compute
the result, based on the newly modified value of the environment.
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The function IsUpToDate() may be called by the end user from within his rou-
tine, GetTaskResult(result, task). The value of the parameter task was origi-
nally generated by a call to GetTask(), which had resulted in a call to DoTask(task)
on a slave, and finally the current call to GetTaskResult(result, task) (recall
the life cycle of a task in section 2. The function IsUpToDate() returns false if and
only if UpdateEnvironment() has been called since the original call to GetTask()

corresponding to the current, or most recent, invocation of GetTaskResult().

4.3. A Subtle bug. There is still one bug in the above code. One of the
factors returned might be a composite number and not a prime. If ParFactor(12)
is invoked, causing three slaves to examine in parallel the three factors, 2, 3,
and 4, then the slave examining the factor 4 might return first. In this case,
ParFactor(12) would return [ 4, 3 ]. The following modifications fix this bug.

# Change line of GetTaskResult commented by "# (*)":

if not IsUpToDate() and num > Maximum(factors) then return REDO; fi;

# Add to beginning of UpdateEnvironment():

if num < Maximum(factors) then RemoveMultiples( num );

An efficient version would, of course, add at the end of UpdateEnvironment()
code to save the current value of Maximum(factors) in a variable of the enclosing
routine MasSlaveFactors(). The function RemoveMultiples(num) is defined to
remove all elements, x, of the array factors that are multiples of num. It also
updates num_to_factor by multiplying it by each x. Thus, composite factors are
eventually caught and corrected.

Note an interesting phenomenon. Consider again the example, ParFactor(12).
In the modified code, if the slave examining the factor 2 were slow to return, then
num_to_factor might take on values, 12, 4, 1, 2. For this reason, the system will
always call GetTask() one last time after all slaves have returned, to determine if
the last slave has altered the interim determination that the job is done.

5. A General Template for GAP/MPI

With the experience of the previous section, we now attempt to write a gen-
eral template, that parallelizes many algebraic algorithms, while requiring only
that one fill in code fragments from pre-existing sequential code. While a gen-
eral template seems ambitious, it is a useful exercise for the reader to apply it to
his/her own favorite algorithms. This template has already been used to parallelize
coset enumeration using the Felsch strategy [3] (jointly with G. Havas), the Sims
group membership algorithm for permutation groups (jointly with A. Hulpke), and
Gröbner bases based on the sequential implementation of G. Zacharias [11]. The
names of functions and variables in the code below have hopefully been chosen to
be suggestive of a wide variety of such algorithms.

DataStruct := 0; # declare global variable

MasSlaveComplete := function (dataStruct)

local nextCritPair, GetNextCritPair, SiftCritPair,

GetResidue, UpdateDataStruct;

nextCritPairPtr = NULL;

InitDataStruct(DataStruct); # put input in canonical form

GetNextCritPair := function() ...; return nextCritPairPtr; end;

SiftCritPair := function(critPair)

return Sift(critPair, dataStruct); end;
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GetResidue := function ( result, task )

if IsTrivial( result ) then return NO_ACTION; fi;

if not IsUpToDate() then return REDO; fi;

return UPDATE; end;

UpdateDataStruct := function ( result, task ) ...; end;

MasterSlave( GetNextCritPair, ClashPair, GetResidue, UpdateDataStruct );

return DataStruct;

end;

ParComplete := function( dataStruct )

return ParCall( "MasSlaveComplete", dataStruct ); end;

Of necessity, this code leaves out several application-dependent portions. Nev-
ertheless, it is surprising how much can be written without knowing the specific
application. Further, the portions left out can usually be copied from a good se-
quential implementation of the same application.

The function InitDataStruct(dataStruct) assumes that dataStruct is ini-
tially a data structure representing the algorithmic input, such as generators or
presentations of a group, ideal, etc. The function modifies DataStruct into a con-
venient data structure for further processing and possibly defines auxiliary lookup
tables needed for efficiency.

The variable nextCritPairPtr keeps track of the current critical pair being
worked on. That variable is updated by GetNextCritPair(), which returns either
a new critical pair or the constant NOTASK. The new critical pair is tested by the
function Sift(critPair, dataStruct), which returns a residue. The function
IsTrivial() tests if the residue is trivial. If it is not trivial, the residue and
the original critPair become arguments to UpdateDataStruct(), which updates
dataStruct to reflect the new information.

A key point of this code is that for efficiency reasons the most frequent action
returned by this code should be NO_ACTION. This corresponds to the idea that the
residue should usually be trivial, and the slaves should act as a pre-processing filter
to eliminate the trivial critical pairs. Thus, updating the non-trivial critical pairs
is still a sequential activity, but the time for such updates should be dominated by
the time for sifting critical pairs.

6. Advanced Features

There are several features of GAP/MPI that have been included to handle
the full range of applications consistent with the target applications described in
section 5. First, one may wish that in the case of an UPDATE action, a particularly
time- or space-intensive computation should be done on the master only. The
routine IsMaster() is provided for just these purposes. Typically, it is called
inside UpdateEnvironment(). It returns “true” for the invocation on the master,
and “false” for each invocation on a slave.

Next, GetTaskResult() can choose to return a fourth action that is, in a sense,
a parametrized variation of the REDO action. This is the “continuation”. The user
returns continuation(task), where task is any user-defined object. This also
causes DoTask(task) to be called a second time on the same slave as before, but
this time with a new object, task.

The “continuation” action is a safety hatch for cases where it is difficult to
maintain the same environment on both master and slave. This may be the case,
for example, if a global variable has a value that requires a great deal of space. One
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may hesitate to use so much space on each slave either because the slaves do not
have as much memory as the master, or because the communication overhead in
updating such a large data structure would be prohibitive. In this case, the slave
routine, DoTask(), can request from the master information that is not kept on
the slave by sending to the master a “result” that is actually a request for more
information. The master routine, GetTaskResult(), should recognize this request
and return the desired information as the argument in a “continuation” action.

Next, there are cases when the “natural” algorithm requires frequent recursive
calls. This is the case with construction of strong generating sets for permuta-
tion groups [6, 10] and with construction of an AG generating sequence for AG
groups [7] (polycyclically presented groups). With care, one can also include a
recursive call to MasterSlave() inside GetTaskResult().

Finally, there are cases when one is parallelizing existing sequential code with
many levels of nested loops. In such circumstances, re-writing the code to extract
a proper GetTask() function can become a nightmare. For such instances, one has
the alternative interface:

RawMasterSlave(ParallelLoop, DoTask, GetTaskResult, UpdateEnvironment)

Instead of GetTask(), one now has a routine ParallelLoop(). The routine
ParallelLoop() has no arguments and returns no value. Instead it should encom-
pass enough of the nested loops so as to compute the next task description. At each
point inside the nested loops of the sequential code where one has generated an-
other task description, one should replace the user code to execute the task by a call
to the system-defined function SetTask(task) with task being a data structure
corresponding to the new task description. The user-defined routine DoTask(task)
then contains the code to execute the task. Consider the following brief example
for parallel matrix multiplication.

# code fragment for sequential matrix multiplication

for i in Length[mat_a[1]] do

for j in Length[mat_b] do

sum := 0;

for k in Length[mat_a] do

sum := sum + mat_a[i][k] * mat_b[k][j]; do;

# parallel matrix multiplication

ParMatMult( mat_a, mat_b )

local mat_c;

mat_c := NullMat( Length[mat_a[1]], Length[mat_b];

ParallelLoop := function()

local i, j;

for i in Length[mat_a[1]] do

for j in Length[mat_b] do

SetTask([i,j]); od; od; end;

DoTask := function( task )

local i, j, k, sum;

i := task[1], j := task[2], sum := 0;

for k in Lenth[mat_a] do

sum := sum + mat_a[i][k] * mat_b[k][j]; do;

return sum; end;

GetTaskResult := function( result, task )

local i, j;
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i := task[1], j := task[2];

mat_c[i][j] := result; end;

RawMasterSlave(ParallelLoop, DoTask, GetTaskResult,

UpdateEnvironment);

return mat_c;

end;

Internally, even the routine MasterSlave() has been implemented in terms of
RawMasterSlave(). The routine RawMasterSlave() makes it easier to parallelize
existing code that is implemented in many nested loops, but it has the corresponding
drawback of a less elegant user interface.

GAP/MPI is implemented on top of a slave-listener layer. As an alternative
to the master-slave architecture, one can use GAPMPI directly at this level. This
level supports the commands, SendCommand() and GetResult(), which are briefly
mentioned in section 8, but are not otherwise discussed in this paper.

7. Efficiency Considerations

One of the most common causes of inefficiency in parallel programs is high
communication overhead. The communication efficiency can be defined as the ratio
of the time to execute a task by the time taken for the master to send an initial
task message to a slave plus the time for the slave to send back a result message.

Poor communication efficiency is typically caused either by too small a task
execution time (which would be the case in the example of section 4) or too large
a message (in which case the communication time is too long). We first consider
execution times that are too small.

On many Ethernet installations, the communication time is about 0.01 seconds
to send and receive small messages (less than 1 Kb). Hence the task should be
adjusted to consume at least this much CPU time. If the naturally defined task
requires less than 0.01 seconds, the user can often group together several consecutive
tasks, and send them as a single larger task. For example, in the factorization
problem of section 3, one might modify DoTask() to test the next 1000 numbers as
factors and modify GetTask() to increment counter by 1000.

There is another easy trick that often improves communication efficiency. This
is to set up more than one slave process on each processor. This improves the
communication efficiency because during much of the typical 0.01 seconds of com-
munication time the CPU has off-loaded the job onto a coprocessor. Hence, having
a second slave process running its own task on the CPU while a first process is
concerned with communication allows one to overlap communication with compu-

tation.
We next consider the case of messages that are too large. In this case, it is im-

portant to structure the problem appropriately. The task architecture is intended to
be especially adaptable to this case. The philosophy is to minimize communication
time by duplicating much of the execution time on each processor.

Hence, rather than build a large initial global data structure on the master and
then send it to the slaves, it is often better to build the initial data structure on
each processor independently, since this requires no communication. This is why
InitDataStructure() from section 5 was executed on the master and all slaves.
This requires less communication overhead than executing InitDataStruct() once
on the master and sending the result to all slaves.
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After the initial data structure has been built, it will usually be modified as a
result of the computation. In order to again minimize communication, the result
of a task, which is typically passed to UpdateEnvironment(), should consist of the
minimum information needed to update the global data structure. Each process
can then perform this update in parallel.

8. Tracing and Debugging

Code development should initially be done on one master and one slave, thus
ensuring that one debugs essentially sequential code. If possible, the master and
slave should be the same CPU, so as to minimize network delays and ill effects on
other users. When that code works correctly, it can then be tested on two slaves,
and finally on all possible slaves.

When an error occurs, perhaps the first resort should be to inspect the values
of global variables on the slave. This can be aided by having each slave save
appropriate trace information in a global variable. In general, one can execute an
arbitrary command. As a particularly simple example, consider interrogating slave
number 2 for the usm of its variables x and y.

SendCommand("x+y;\n", 2);

GetResult();

The second command returns the result of the computation that was done on the
first slave. The pair of commands act as a version of ParEval() that operates on
a single slave, only. One can optionally omit the second argument, which defaults
to 1 (slave number 1).

Internally, these commands are part of a lower layer, the slave-listener layer.
This layer may be of independent interest for programming a special-purpose al-
ternative to the master-slave architecture using GAP.

Another easy testing strategy is to trace all messages to and from the master.
One can cause each task description to be printed in the order that it is seen by
the master by setting the following variable:

MasterSlaveTrace := true;

If this produces too much output, or not the right kind of information, one
can add print statements anywhere, whether on master or slave. The MPICH
implementation of MPI arranges for output from all processes to be printed on the
user console. When printing from a slave, one should be aware that there may be
a delay before a printout from a slave appears on the user console, since it must go
through the master processor to reach the user console.

If the bug is exhibited even in the context of a single slave, then the code
is ”almost” sequential. In this case, one can test further by replacing the call to
MasterSlave() by the following generalization of the sequential code in section 2.

contTask := NULL;

NO_ACTION := 0; UPDATE := 1; REDO := 2; CONTINUATION := 3;

NOTASK := "no_task"; # Should not conflict with user values.

Continuation := function(task)

contTask := task; return CONTINUATION; end;

IsUpToDate := function() return true; end;

MasterSlave := function(arg)

local GetTask, DoTask, GetTaskResult, UpdateEnvironment,

task, result, action;



14 GENE COOPERMAN

GetTask := arg[1]; DoTask := arg[2]; GetTaskResult := arg[3];

if Length(arg) = 4 then UpdateEnvironment := arg[4];

else UpdateEnvironment := NULL; fi;

task := GetTask();

while ( task <> NOTASK ) do

contTask := NULL;

result := DoTask(task);

action := GetTaskResult(result, task);

if action = NO_ACTION then task := GetTask(); # do nothing

elif action = UPDATE then

if UpdateEnvironment <> NULL then

UpdateEnvironment(result, task); fi;

task := GetTask();

elif action = REDO then

Print("REDO isn’t useful in sequential case\n"); return;

elif action = CONTINUATION then task := contTask;

else Print("illegal return value of GetTaskResult\n"); return;

fi;

od; end;

In this context, one is debugging a completely sequential program.

9. Conclusion

The emphasis of this work is on ease-of-use, even when this conflicts with
the design philosophy of a more general tool for parallelization. Nevertheless, the
methodology proposed here serves surprisingly well in parallelizing a large variety
of algorithms. It appears to fit especially well with many algebraic algorithms that
require the flexibility of a MIMD (Multiple Instruction, Multiple Data) parallel
architecture for task parallelism. Section 5, a General Parallel Template, is a useful
starting point in a project to parallelize such a sequential algorithm, while section 8
contains a simple sequential emulator for initial testing.

Several further extensions would be of great interest. One would be the use of
GAP/MPI. Unfortunately GAP, like most programs with built-in garbage collection,
does not support a shared memory architecture, but this would be an attractive
generalization. Another useful extension would be the elimination of ParEval().
One should instead allow the user to choose to “attach” the user console to the
master (default), or to the master and all slaves (ParEval-mode), or to a single slave
(for debugging). Such experiments should wait for the upcoming GAP version 4.
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