
PERMUTATION ROUTING VIA CAYLEY GRAPHS

WITH AN EXAMPLE FOR

BUS INTERCONNECTION NETWORKS

GENE COOPERMAN AND LARRY FINKELSTEIN

Abstract. Cayley graphs have been used extensively to design interconnec-
tion networks and provide a natural setting for studying point-to-point routing
[1, 2, 3, 5, 6, 7, 12]. The extension of these techniques to the more important

problem of permutation routing on interconnection networks presents funda-
mental problems. This is due to the potentially explosive growth in both the
size of the graph and the number of generating permutations, referred to as

one-step permutation routes, used to define the underlying graph. This pa-
per describes a technique for moderating that growth so that the techniques
in [8] can be applied for finding optimal permutation routes. In a particularly
striking example, a bus interconnection architecture involving 1.0× 1017 per-

mutations (nodes of the Cayley graph) is reduced to a computation on a graph
with only 3,950 nodes. Further, it is shown how many of the 58,624 generators
(directed edges labelled by one-step permutation routes) at each node of the

graph may be eliminated as locally redundant.

1. Introduction

There has been an extensive literature on the use of Cayley graphs to design
interconnection networks [1, 2, 5, 6, 7, 12]. Cayley graphs have been used extensively
to study point-to-point routing, and they have been particularly attractive for the
degree-diameter problem [3, 5, 7]. Nevertheless, other patterns of routing, such as
broadcast, permutation routing, and general many-to-one routing are at least as
important for parallel computing. This paper describes the use of Cayley graphs
to study permutation routing. There are also other approaches to permutation
routing [1, 11] that concentrate more on heuristics and an overall framework.

A Cayley graph G is a directed labelled graph associated with a group, G, and
generating set S. The nodes of G are elements of G and the edges are labelled by
generators in S. Two nodes, g and h are connected by a directed edge, (g, h), and
the edge is labelled by s ∈ S, if h = gs. In the case where S = S−1, whenever g is
connected to h by a directed edge labelled by s, h is simultaneously connected to
g by a directed edge labelled by s−1, and so G may be viewed as undirected. This
is typically the case and will be assumed throughout this paper. Cayley graphs

1991 Mathematics Subject Classification. Primary 05C25, 68M10; Secondary 20-04, 68R10,
90B12.

Key words and phrases. permutation routing, Cayley graph, bus interconnection network.

The authors were partially supported by NSF Grant CCR-9204469.

1

2 GENE COOPERMAN AND LARRY FINKELSTEIN

have the property that they are vertex-symmetric. This means that for any two
nodes, there is a graph isomorphism of the graph into itself that maps the first
node into the second. In the case of Cayley graphs, this graph isomorphism also
preserves the labels of the edges. In fact, this property can be easily established
by simply embedding G into Aut(G) through the left regular action so that the
resulting image is transitive on the nodes of the graph and preserves edge labels.

A spanning tree T for G rooted at the identity e allows one to find shortest
paths between arbitrary nodes. Given elements g and h of G, one uses T to find a
shortest path from e to g−1h. If w is the word in the edge labels along this path,
then h = gw. Since G is vertex-symmetric, it follows that w also defines a shortest
path in G from g to h as well. An important interpretation is that w is a minimal
length word in the generating set S that represents the group element g−1h. In
particular, this allows for the solution of the minimal word problem for G relative
to the generating set S.

In [8], an efficient method of encoding Cayley graphs was developed, using stan-
dard techniques from computational group theory [13]. This method required log2 3
bits of storage per node of the graph to store a data structure for a spanning tree
for the Cayley graph. The spanning tree was derived essentially through a method
of breadth-first search. During computation of the data structure, log2 5 bits per
node were temporarily required. Since this is approximately 2 bits, it was called
the 2-bit method. Furthermore, it was shown how to use this data structure to
find shortest paths in G between any two nodes. Applications of this method are
presented in [9].

We will now show how to apply these ideas to permutation routing in an arbitrary
interconnection graph I. We first define a one-step permutation route π to be a
permutation of the nodes Ω of I with the property that either π(x) is connected to
x for each node x or π(x) = x. The idea is that any one-step permutation route can
be executed in parallel without any conflicts. A k-step permutation route is one
that is obtained from a sequence of at most k one-step permutation routes. If I is
connected, then a transposition of the nodes of any edge is a one-step permutation
route. This leads to the following observation.

Theorem 1. If I is connected, then the set S of one-step permutation routes gen-

erates Sym(Ω) and any permutation of the nodes of Ω is a
(

|Ω|
2

)

permutation route.

The basic problem we want to consider is given an arbitrary permutation π of I,
express π as a sequence of k one-step permutation routes where k is minimal. This
can then be viewed as finding a word of minimal length in the set S of one-step
permutations that represents π. It is precisely this problem which must be solved.

2. Bus Interconnection Networks

We now apply the previous ideas to bus interconnection networks. From this,
it will be clear how to generalize to other examples. Specifically, let C be a set of
chips and let B be a set of bus lines. Let Ω = C ∪B and let I be a graph on Ω such
that (a, b) is an edge of I if and only if a ∈ C, b ∈ B, and chip a is connected to
bus line b.

The following model corresponds to the case in which each chip has only one
register. In each clock cycle, for each chip a, either the data in a is interchanged

PERMUTATION ROUTING VIA CAYLEY GRAPHS 3

with the data on some unique bus line b or else the data on chip a remains fixed.
Section 5 discusses how to generalizes this to multiple registers per chip. Essentially,
one identifies C with the set of chip registers, rather than chips. The simpler model
is analyzed in detail in section 3 to illustrate the concepts.

Let S be the set of all involutions g ∈ Sym(Ω) with the property that g is
a product of disjoint transpositions of the form (a b) where a ∈ C and b ∈ B.
The elements of S are precisely the one-step permutation routes of I. Let M =
max(|C|, |B|) and let m = min(|C|, |B|). Then, the size of |S| is bounded above by
(M + 1)m.

This is a restricted version of an interconnection network in which distinct data
is both read and written to the bus in one clock cycle, thus insuring that the
communication is indeed a permutation. This may be the physical situation if the
setup time to connect chips and bus lines dominates the actual transfer time. The
bus line and/or the chip can hold dummy data, in which case the important transfer
of data is in one direction only.

3. Experimental Model

For simplicity in computational experiments, we also assume that each chip is
connected to each bus line. This allows us to find experimental data dependent
only on parameters |C| and |B|. It is easy to see that if S is the set of one-step
permutation routes for I defined in the previous section, then S generates G =
Sym(C ∪B). The technique can be easily applied to other interconnection patterns,
and details of that generalization are contained in section 5.

The goal is to express each permutation route as a shortest possible sequence of
one-step permutation routes. In the language of group theory, for each permutation
g of Ω that setwise stabilizes B, we must find a shortest word in S that represents g.
Given the Cayley graph G for G with generating set S, this is equivalent to finding
a shortest path in G from the identity node 1 to the node g.

Rather than work with the Cayley graph G, we will work with a reduced la-
belled multigraph, defined below. This smaller graph greatly reduces the necessary
computation. The reduced graph is constructed through two reductions. First, we
construct a Cayley coset graph GH from G, and second, we construct a reduced
labelled multigraph G̃ from GH .

The first reduction is obtained by noting that we are concerned only with per-
mutations of data on the chips, and not with permutations of whatever data may
initially be on the bus lines. This can be best expressed by right cosets Hg ∈ G/H,
where g ∈ G and H ∼= Sym(B) is the subgroup of G that fixes C pointwise. For-
mally, the Cayley coset graph of G/H with generating set S is a directed labelled
multigraph GH , with nodes labelled by G/H. Two nodes Hg1 and Hg2 are con-
nected by an edge with label s if Hg1s = Hg2. Thus, the image of g′ ∈ Hg on C
depends only on g and not on the choice of g′. So, it suffices to find a shortest word
w in S representing an element of Hg. Many routing problems can be formulated
in terms of Cayley coset graphs (also referred to as group action graph in [2]). In
general, Cayley coset graphs are not vertex-symmetric.

The second reduction is obtained from the symmetries of the chosen bus inter-
connection architecture. Recall that a group automorphism is a permutation σ of
G such that σ(gh) = σ(g)σ(h) and σ(g−1) = (σ(g))−1 for all g, h ∈ G. For G

4 GENE COOPERMAN AND LARRY FINKELSTEIN

corresponding to the bus interconnection architecture I, we define a symmetry to
be an automorphism, σ, of G such that σ(H) = H and σ(S) = S.

This definition insures that the symmetries of G act as graph automorphisms of
the Cayley graph G (with generating set S), which map paths of minimal length
in G to other paths of minimal length. If (g1, g2) is a directed edge of G with
label s ∈ S, then σ maps (g1, g2) to the directed edge (σ(g1), σ(g2)) with label
σ(s) ∈ S. This and the invertibility of σ imply that σ preserves the paths of
minimal length in G. Furthermore, as indicated above, we are actually interested
in shortest words which represent a fixed coset Hg. But the symmetries of G also
act as graph automorphisms of GH in the same sense as for G. To see this, note
that if (Hg1,Hg2) is an edge of GH with edge label s ∈ S then σ(H) = H and
σ(s) ∈ S implies that (σ(Hg1), σ(Hg2)) = (Hσ(g1),Hσ(g2)) is an edge of GH with
label σ(s). Thus σ preserves paths of minimal length in GH as well.

Conjugation provides a natural means of constructing such symmetries. Define
the conjugate of g by u to be gu = u−1gu, and extend the definition to sets HU =
{hu : h ∈ H,u ∈ U}. The mapping σu : g 7→ gu is an automorphism of G,
and is known in group theory as an inner automorphism. In the case of our bus
interconnection network, we let U ∼= Sym(C) × Sym(B), and choose as the set of
symmetries {σu : u ∈ U}. We often refer to a symmetry σu simply as u. Note that
HU = H and SU = S for this choice of U , and so the definition of symmetry is
satisfied. Hence, conjugation by U preserves shortest words. From group theory, it
is known that if |C ∪ B| 6= 6, then the set U contains all possible symmetries.

With this motivation, we now introduce the reduced labelled multigraph G̃, derived
from G, in which nodes of G̃ are identified with subsets [Hx] = (Hx)U = HxU ⊆ G
for x ∈ G. Thus, {[Hx]}x∈G partitions G into disjoint subsets. In the language of
group theory, [Hx] can also be viewed as the union of the cosets in the orbit of Hx
under the conjugation action of U on G/H.

It remains to define the edges of G̃. For purposes of computation, the edge set
of G̃ is defined to be only a subset of the naturally induced edge set from GH .
One would normally expect that for [Hx] 6= [Hy], there is an edge between [Hx]
and [Hy] if there is an edge in G between x′ and y′ for x′ ∈ [Hx] and y′ ∈ [Hy].
For purposes of computation, it is more convenient to first choose an arbitrary
transversal T ⊆ G consisting of exactly one point from each distinct set [Hx] for
x ∈ G. Denote by x the unique element in [Hx]∩T . We define G̃ to have a directed
edge between [Hx] and [Hy] labelled by s ∈ S if and only if [Hxs] = [Hy].

We next show that the edges in the two views of G̃ really do correspond. There is
an edge in the unlabelled graph if and only if there is at least one directed, labelled
edge in the directed, labelled multigraph. The backward implication is easy. For
the forward implication, suppose there is an edge in the unlabelled graph. So, there
are x′ ∈ [Hx], y′ ∈ [Hy] and s′ ∈ S such that x′s′ = y′. Then there is a u ∈ U ,
such that x′u ∈ Hx and so x′us′

u
= y′u ∈ [Hy]. Note also that when S is closed

under inverses, if there is a directed edge from [Hx] to [Hy], then there is at least
one directed edge from [Hy] to [Hx].

Suppose now that g is an arbitrary element of G, and we want to construct a
shortest word on S whose action on C is the same as the action of g on C. This is
the same problem as finding a shortest sequence, g1, . . . , gk of elements of S such
that g(g1 · · · gk)−1 ∈ H, or equivalently, that g ∈ Hg1 · · · gk. The next result shows
how to construct such a sequence from any path of length k from [H] to [Hg].

PERMUTATION ROUTING VIA CAYLEY GRAPHS 5

Theorem 2. Let g be an arbitrary element of G. There exists a path in G̃ from [H]
to [Hg] of length k if and only if there exist g′1, . . . , g′k ∈ S such that g ∈ Hg′1 · · · g

′
k.

Proof. Suppose first that there exists a path of length k from [H] to [Hg] in G̃.
Then there exists g1, . . . , gk ∈ S and w0, . . . , wk ∈ T (hence wi = wi) such that
w0 = 1, wk = g and [Hwi−1gi] = [Hwi]. Note that [Hwi−1gi] = [Hwi] implies
that there are hi ∈ H and ui ∈ U such that wi = hiw

ui

i−1g
ui

i . Iterating this, shows

that wk = hg
u′

1

1 · · · g
u′

k

k for h = hk(hk−1(hk−2 · · ·)
uk−2)uk−1 ∈ H and u′

i = ui · · ·uk.

Letting g = hk+1w
uk+1

k and setting g′i = g
u′

iuk+1

i ∈ S proves the assertion in the
forward direction.

Conversely, suppose g ∈ Hg′1 · · · g
′
k. Define u′

i and h′
i so that wi = h′

i(g
′
1 · · · g

′
i)

u′

i

satisfies wi = wi. Let w0 = 1. Note that wk = g and [Hwi(g
′
i+1)

u′

i+1] = [Hwi+1].
This then gives the required path of length k from [H] to [Hg] in G.

3.1. Encoding of nodes of reduced graph. Next, we consider how to produce
a 1-1 mapping of the nodes of G into a “small” set of integers. The encoding serves
as an almost perfect hash function of G, in that the number of integers is not
much larger than the number the number of nodes. The results in [8] show how to
use such a 1-1 mapping to store a spanning tree using storage of only log2(3) bits
times the size of the “small” integer set. This is especially important for the larger
graphs. For example, given 16 chips and 4 bus lines (|C| = 16, |B| = 4), the number
of cosets, Hg, to explore is |G/H| = (16 + 4)!/4! ≈ 1.0 × 1017. Yet the reduced
graph has only 3,950 nodes. The following technique allows a unique encoding of
those 3,950 nodes within the range [0, 5,822].

In order to construct a unique encoding of [Hg], we require two auxiliary func-
tions, r(x, y) and s(x, y). We denote by r(x, y) the number of partitions of x in-
distinguishable elements, such that the largest set within the partition is of size
no larger than y. So, for example, r(5, 2) = 3 since the set of 5 elements can be
partitioned into subsets of size (2, 2, 1), (2, 1, 1, 1) and (1, 1, 1, 1, 1) for which no
subset has more than 2 elements. In general,

r(x, y) =

y
∑

i=1

r(x − i,min(i, y, x − i)).

Also, s(x, y) is the number of ways in which x+y indistinguishable elements can be
partitioned, where the x + y elements are first split into two distinguished subsets,
the first of size at most x and the second of size at least y. So, for example, s(1, 2) =
5 and the partitions are of the form ((1), (2)), ((1), (1, 1)), ((), (3)), ((), (2, 1)) and
((), (1, 1, 1)). In general,

s(x, y) = r(x, x)r(y, y) + s(x − 1, y + 1)

for x > 0 and s(0, y) = r(y, y).
We now give a unique characterization of a node of the reduced graph in terms

of a sequence of invariants. The proof that this is a unique characterization is easy,
but is not included here. In the restriction of g to the union of the cycles that fix B,
let ci be the length of the i-th such cycle. Let bi be the number of points x ∈ C such
that xgj

∈ C for all j < i and xgi

/∈ C. Then [Hg] is uniquely characterized by (a)
the sequence c1, . . . , c|C| and (b) the sequence b1, . . . , b|B|. Alternatively, one can

6 GENE COOPERMAN AND LARRY FINKELSTEIN

say that the ci and bi are invariants of any permutation h ∈ [Hg] and the collection
of invariants identifies a unique [Hg].

We can now describe the encoding of the equivalence class [Hg] in terms of its
invariants, ci and bi for fixed |C|. Let b =

∑

i bi and let c =
∑

i ci. Note that
b + c = |C|. Then the encoding is given by

Encoding of [Hg]: s(b − 1, c + 1) + t((b1, . . . , b|B|))r(c, c) + t((c1, . . . , c|C|)).

(We set s(b − 1, c + 1) = 0 when b = 0.) Here, for fixed b, if
∑i

j=1 xi = b, then
t((x1, . . . , xi)) is a unique encoding of the partition (x1, . . . , xi) among all partitions
of b elements. The value of the function “t” is defined to be independent of the
order of its arguments. We re-order the arguments so that x1 ≥ · · · ≥ xi and define

t((x1, . . . , xi)) = t((x2, . . . , xi)) + r(

i
∑

j=1

xi, x1 − 1)

for i > 0 and t(()) = 0 for i = 0. Note that t((x1, . . . , xi)) ≤ r(
∑i

j=1 xi, max
1≤j≤i

xi) ≤

r(
∑i

j=1 xi,
∑i

j=1 xi).

3.2. Optimization: Use of Reduced Generating Sets. Since the reduced
labelled multigraph (defined in section 3) is a multigraph, an edge between nodes
in the reduced graph may have multiple labels. One can recognize, a priori, that
certain edge labels in the reduced graph are redundant. This allows us to moderate
the exponential explosion in the number of generators as |C| and |B| increase. This

is critical, since |S| =
∑|B|

i=1

(

|C|
i

)(

|B|
i

)

i!. To take an extreme example, for 16 chips
and 4 bus lines, |S| = 58,624. Yet for x = 1 ∈ G, there are only 4 non-redundant
generators, g, (each uniquely characterized by the number of transpositions in g)
yielding distinct equivalence classes [Hxg]. All other elements of xS are conjugate
to one of the 12 under U .

In order to discover these redundant edge labels, consider the the node [Hx],
x = x, with outgoing edge labelled by g0. One must eliminate those g ∈ S such
that g 6= g0 and [Hxg] = [Hxg0]. Equivalently, for a given x ∈ G and g0 ∈ S, one
must find those g ∈ S with g 6= g0 such that h(xg)u = xg0 for some h ∈ H and
u ∈ U .

The following three heuristics are used to remove certain g ∈ S from considera-
tion. The statement assumes some arbitrary ordering of the points C ∪ B, so that
“smallest” and “<” are well-defined. The correctness of these heuristics follows
from the results of section 4, which define a total ordering on S. So, if g, g0 ∈ S,
g0 < g, and the heuristic can establish that [Hxg] = [Hxg0], then g is eliminated.

Let C′ = {a : axi

∈ C ∀i} ⊆ C.

(1) First, g can be removed if there is a point a ∈ C′ moved by g that is not
the smallest in the cycle of x containing a and for which g does not move
the point that is first in that cycle. (There is a conjugation in U that
“rotates” the points of the cycle until a is first in the cycle, while leaving
x unchanged.)

(2) Second, g can be removed when there is a point of C′ moved by g such
that it is smallest in a cycle of x if there is an earlier cycle of points of the
same length as the current cycle, and g does does not move the point that

PERMUTATION ROUTING VIA CAYLEY GRAPHS 7

bus lines
chips 1 2 3 4 5 6 7 8

4 6/12 3/17 3/19 3/20
0.05 0.2 0.7 0.7

5 7/19 4/28 3/33 3/35 3/36
0.1 0.3 1.0 3.1 5.6

6 9/30 5/47 4/57 3/62 3/64 3/65
0.2 0.6 3.5 11.8 30 56

7 10/45 6/73 4/92 3/102 3/107 3/109 3/110
0.9 1.2 6.7 37 120 293 699

8 12/67 6/114 5/147 4/167 3/177 3/182 3/184 3/185
0.4 2.2 17 104 460 1432 4259 13351

is smallest in that cycle. (In that case, there is a conjugation in U that
interchanges the two cycles, and so leaves x unchanged.)

(3) Third, g can be removed if there are points a, a′ ∈ B such that a′ < a,
(a′)x = a′, (a′)g = a′, ax = a and ag 6= a. (The transposition (a a′) ∈ U
leaves x unchanged.)

3.3. Experimental Results. The following table describes the maximum length
permutation route, the CPU time, and the number of nodes in the reduced graph
for various values of the number of chips and the number of buses. The computation
was carried out under AKCL 1.615 (Common LISP). A SPARCstation-2 was used.
For each tested combination of number of chips and bus lines, three numbers are
reported. The first is the number of steps for an optimal permutation route for
the worst case permutation (the diameter of the reduced labelled multigraph). The
second is the number of nodes required to store the internal data structure. For
large numbers of nodes, this will usually dominate the space requirements. Only
two bits are required to store each node [8]. So, storage requirements are minimal
for the examples shown. The third number is the number of seconds of CPU time
to generate the data structure. From this data structure, an optimal permutation
route can be computed in less than a millisecond for any desired permutation.

For 12 chips with 4 bus lines and 16 chips with 4 bus lines, two special tests were
made. The results were a diameter of 5 with 919 nodes (5/919) and a diameter of
6 with 3,950 nodes (6/3950), respectively. The computation was carried out on a
SPARCserver 670 in 43 minutes and 10 hours of CPU time, respectively.

The range of encodings is larger than, but usually close to the actual number
of states. The range of encodings is independent of the number of bus lines. For
example, at the beginning of section 3.1, we saw an example of 16 chips and 4 bus
lines, in which the range [0, 5,822] was needed for 167 nodes. If the 2-bit encoding
scheme is used, space must be allotted for the total range of encodings. Where the
actual number of states used is much smaller, one can use hashing techniques to
require space proportional to the actual number of states. Naturally, the constant
of proportionality would be much higher than two bits.

Note that the length of the optimal permutation route for the worst case is always
at least three. The reason for this is easy to see, since a one-step permutation route
is required to move the data from the chips to the bus lines. A second one-step

8 GENE COOPERMAN AND LARRY FINKELSTEIN

permutation route moves the data from the bus lines to other chips. A third one-
step route then places some of the data back on the bus lines. In practice, one is
only interested in permutation routes that leave all data on the chip, and none on
the bus lines. Hence, for permutation routes of interest, with sufficiently many bus
lines, there is always a permutation route of length at most two.

4. Pruning Locally Redundant Generators

Although G̃ was previously defined as the reduced labelled multigraph, we also
identify it with the labels the nodes of the graph, which are the equivalence classes
[Hx] for x ∈ G. For [Hx] ∈ G̃ and y ∈ S, we define [Hx]y = [H(xy)] as in section 3.

The next theorem characterizes a set of representatives, xSx, for the distinct
equivalence classes [Hx]S ⊆ G̃. Equivalently, this characterizes representatives for
the nearest neighbors in the reduced labelled multigraph.

Theorem 3. Let ρ be a total ordering on S. Let H ⊆ U , HU = H and SU = S.

For x ∈ G, let Sx = {g ∈ S : g ≤ρ h ∀h ∈ (x−1(xg)UH) ∩ S}. Then [Hx]S =

[Hx]Sx and |[Hx]S| = |Sx| — i.e. the number of nearest neighbors of [Hx] in G̃ is

|Sx|.

Proof. [Hx]S = [Hx]Sx follows from the definitions of [Hx] and Sx, along with the
properties of H. Let g, h ∈ S. Then

[Hx]h = [Hx]g ⇔ H(xh)U = H(xg)U ⇔ (xh) ∈ H(xg)U

⇔ h ∈ x−1H(xg)U = x−1(xg)UH.

Thus if g, h ∈ Sx and [Hx]h = [Hx]g then g and h must both be lexically least,
and so g = h.

Define the centralizer of x ∈ G in U to be CentU (x) = {g ∈ U : xg = x}.

Corollary 4. Let ρ be a total ordering on S. Let H ⊆ U , HU = H and SU = S.

For x ∈ G, let S′
x = {g ∈ S : g ≤ρ h ∀h ∈ (gCentU (x)H) ∩ S}. Then [Hx]S =

[Hx]S′
x and |[Hx]S| ≤ |S′

x| for [Hx]S ⊆ G̃.

Proof. Note that since CentU (x) ⊆ U , gCentU (x)H = x−1(xg)CentU (x)H ⊆ x−1(xg)UH.
So, Sx ⊆ S′

x ⊆ S.

The advantage of S′
x over Sx is that, given CentU (x), there are well-known tech-

niques for enumerating the elements of S′
x [4]. For U equal to Sym(C) × Sym(B),

Sym(Ω) and many other special cases of interest, computing CentU (x) is also effi-
cient [10].

The heuristics of section 3.2 follow from the special case for S′
x. The order, ρ, is

a variation of lexical ordering.

g >ρ h iff ig = ih ∀i < j, jg 6= jh, and either jh = j or jg < jh 6= j

The use of a lexical ordering means that one can generate all elements of S′
x in

lexical order and if a permutation g ∈ X ′
x satisfies ig ≤ ih or ih = i ∀i ≤ j, ∀h ∈

gCentU (x)H, then the subtree {h ∈ gCentU (x)H : jg 6= jh, ig = ih ∀i < j} ∩ S′
x = ∅

and so the entire subtree can be eliminated.

PERMUTATION ROUTING VIA CAYLEY GRAPHS 9

Where it is feasible to compute Sx or where S′
x is not too much larger than Sx,

the entire computation of a data structure for the spanning tree of the reduced
labelled multigraph has a nice complexity characterization. Since |Sx| ≤ |G̃, the
algorithm examines at most |G̃|2 directed edges in its breadth-first search. Note that
enumeration of S′

x in lexical order costs O(|S′
x|n) for n = |Ω|, since on the current

branch, either the entire subtree will be eliminated, or a new element of S′
x will

be found before the necessity of backtracking. Computing the product xg and its
encoding cost O(n). So, the total cost of the algorithm is O(|G̃|2(n + E) + |G̃|(A +
Rn)), where A is the cost of computing the automorphism group and R is the
cost of enumerating the elements of Sx of S′

x. Further, for the bus interconnection
networks of section 3, O(|G̃|2n) is the dominant term.

5. Generalization to Other Models

The previous section was described under the assumption that each chip had
only one register (and hence hold only one piece of data at a time). Naturally,
most implementations will allow multiple registers or memory cells on a single
chip. Hence, shortest paths derived from previous calculations serve only as an
upper bound on the shortest length path when multiple registers are allowed.

The model can be extended to k registers per chip, by including k copies of each
chip. Every generator must also be replicated to include variation in which each bus
is connected to an arbitrary register. Finally, the subgroup H must be extended to
include generating elements that transpose arbitrary registers from the same chip.

The previous section was described in a situation with full connections between
chips and registers. If there are fewer connections, in general, one will need to
choose a subgroup of U = Sym(C) × Sym(B) that preserves the architecture under
conjugation. Thus, the subgroup U can be viewed as the automorphism group of
a labelled graph, where each node of the graph is labelled either by C or by B.
Usually ease of manufacturing dictates a uniform architecture, and so most real-
world example are still likely to have a fairly large automorphism group.

Finally, a few remarks about generalizations to other models besides bus inter-
connection networks is worthwhile. There is a common difficulty in translating
routes in physical networks to permutation routes. Suppose one has nodes A, B
and C with edges between A and B, and between B and C. One would like to
add a transposition between A and B as a one-step permutation route. Similarly,
one would like to add a transposition between B and C. Finally, one would like
to to move data from A to B while other data is moved from B to C, in parallel,
in a single one-step permutation route. However, a naive product of transpositions
would send data from A to C, which cannot be done in one step. The solution is
to split each node into two nodes corresponding to two registers/ports: a sending
port and a receiving port. Thus, one can move data from A to B in parallel with
distinct data moving from B to C, and this can be expressed as a permutation.

6. Conclusion

It has been demonstrated how to find permutation routes for larger data struc-
tures than would be possible by a direct approach. The solution involves pre-
computing a special data structure in seconds. One can then derive shortest per-
mutation routes achieving an arbitrary permutation from the pre-computed data

10 GENE COOPERMAN AND LARRY FINKELSTEIN

structure. Finding that solution is a computation that can be carried out in less
than a millisecond (and much shorter times are possible with hardware support).

In implementations, one would pre-compute the data structure for a given hard-
ware architecture off-line. The required space is very small, although the CPU time
for the pre-computation can be appreciable. Since the pre-computation is done once
only, long CPU times may be acceptable. Specific permutation routes would either
be computed at compile-time for an individual application, or else it would be be
computed as part of a set-up routine for a route determined at run-time. In the
latter case, one would expect the computed permutation route to be used many
times to justify the overhead of computing such a route at run-time.

7. Acknowledgements

The authors wish to thank Richard Draper, Chuck Fiduccia and Bryant York
for stimulating discussions.

References

1. F. Annexstein and M. Baumslag, “A Unified Framework for Off-line Permutation Routing in

Parallel Networks”, Math. Syst. Theory 23 (1991), pp. 233–252.
2. F. Annexstein, M. Baumslag, and A.L. Rosenberg, “Group Action Graphs and Parallel Ar-

chitectures”, SIAM J. Computing 19 (1990), pp. 544–569.
3. J-C. Bermond, C. Delome, and J-J. Quisquater, “Strategies for interconnection networks:

Some methods from graph theory”, Journal of Parallel and Distributed Computing 3 (1986),
pp. 433-449.

4. G. Butler, Fundamental Algorithms for Permutation Groups, Lecture notes in computer sci-
ence 559, Springer-Verlag, New York (1991).

5. L. Campbell, G.E. Carlsson, and M.J. Dinneen, “Small Diameter Symmetric Networks from
Linear Groups”, IEEE Transactions on Computers 41, no. 2, (1992), pp. 218–220.

6. G.E. Carlson, J.E. Cruthirds, H.B. Sexton, and C.G. Wright, “Interconnection networks based

on a generalization of cube-connected cycles”, I.E.E.E. Trans. Comp. C-34 (1985), pp. 769–
777.

7. D.V Chudnovsky, G.V. Chudnovsky and M.M. Denneau, “Regular Graphs with Small Diam-
eter as Models for Interconnection Networks”, I.E.E.E. Trans. Comp. (1988), pp. 232–239.

8. G. Cooperman and L. Finkelstein, “New Methods for Using Cayley Graphs in Interconnection
Networks”, Discrete Applied Mathematics 37/38 (special issue on Interconnection Networks)
(1992), pp. 95–118.

9. G. Cooperman, L. Finkelstein and N. Sarawagi, “Applications of Cayley Graphs”, Applied Al-
gebra, Algebraic Algorithms and Error-Correcting Codes (AAECC-8, Tokyo, 1990) Springer-
Verlag Lecture Notes in Computer Science 508, S. Sakata (ed.) (1991), pp. 367–378.

10. E. Luks, Permutation Groups and Polynomial-Time Computation, Proceedings of DIMACS

Workshop on Groups and Computation, DIMACS-AMS 11, L. Finkelstein and W.M. Kantor
(eds.), AMS, Providence, RI, (1993), pp. 139–175.

11. M. Ramras, “Routing Permutations on a Graph”, Networks 23, no. 4, (1993), pp. 391–398.
12. S.T. Schibell and R.M. Stafford, “Processor Interconnection Networks from Cayley Graphs”,

Disc. Appl. Math. 40 (1992), pp. 333–362.
13. C.C. Sims, “Computation with Permutation Groups”, in Proc. Second Symposium on Sym-

bolic and Algebraic Manipulation, S.R. Petrick (ed.), ACM, New York (1971).

College of Computer Science, Northeastern University, Boston, MA 02115

E-mail address: gene@ccs.neu.edu

College of Computer Science, Northeastern University, Boston, MA 02115

E-mail address: laf@ccs.neu.edu

