
GCD of Many Integers
(Extended Abstract)

Gene Cooperman1,?, Sandra Feisel2, Joachim von zur Gathen2,
and George Havas3,??

1 College of Computer Science, Northeastern University
Boston, MA 02115, USA

gene@ccs.neu.edu
2 FB Mathematik-Informatik, Universität–GH Paderborn

33095 Paderborn, Germany
{feisel,gathen}@uni-paderborn.de

3 Centre for Discrete Mathematics and Computing
Department of Computer Science and Electrical Engineering
The University of Queensland, Queensland 4072, Australia

havas@csee.uq.edu.au

Abstract. A probabilistic algorithm is exhibited that calculates the gcd
of many integers using gcds of pairs of integers; the expected number of
pairwise gcds required is less than two.

1 Introduction

In many algorithms for polynomials in Z[x], e.g., computation of gcds or fac-
torization, one is interested in making a polynomial primitive, i.e., computing
and removing its content. The primitive polynomial remainder sequence needs
such gcd computations but is not used in practice: Ho and Yap [7] state that
“the primitive PRS has the smallest possible coefficients, but it is not efficient be-
cause content computation is relatively expensive”. Geddes, Czapor and Labahn
[4, Chapter 7], write about the primitive polynomial remainder sequence: “The
problem with this method, however, is that each step requires a significant num-
ber of GCD operations in the coefficient domain. . . . The extra cost is prohibitive
when working over coefficient domains of multivariate polynomials.”

We remedy this sorry situation for Z[x] by computing the gcd of random
linear combinations of the inputs. More precisely, we solve the following problem.

Given m positive integers a1, . . . , am with m > 1, compute gcd(a1, . . . , am)
with a small number of pairwise gcds, i.e., gcds of two integers each.

Main Theorem. This problem can be solved by taking an expected number
of less than two pairwise gcds of random linear combinations of the input.
? Supported in part by NSF Grant CCR-9509783

?? Supported in part by the Australian Research Council

T. Asano et al. (Eds.): COCOON’99, LNCS 1627, pp. 310–317, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

GCD of Many Integers 311

We stress that we are not doing an average-case analysis, as is done in [11,
Note 8.2], where the inputs a1, . . . , am are randomly chosen according to some
distribution, but rather a worst-case analysis: we are looking for probabilistic
algorithms for which we can prove a good bound on the expected number of
gcds that is true no matter what the inputs are. A different approach to solving
this problem is implicit in [5, Proof of Lemma 1.2] while a brief and less precise
treatment appears in [1]. We provide a refined algorithm together with a rigorous
analysis and some experimental results.

The use of random linear combinations is readily suggested by the success of
that method for polynomials but we do not know how to prove that the naive
implementation of this idea works. Our main algorithmic contribution is a clever
choice of the range for the random coefficients. There is a natural (heuristic)
upper bound on the success probability of any algorithm; with our choice of the
range, we can prove a lower bound that is reasonably close to that upper bound.
In fact, the lower bound can be moved arbitrarily close to the upper bound,
but at the expense of requiring very large coefficients, which limits the practical
usefulness.

However, we believe that our method, free of any heuristic or distributional
assumption, makes content computation for integer polynomials eminently prac-
tical.

2 Iterative gcd computation

By the associativity of the gcd

gcd(a1, . . . , am) = gcd(gcd(a1, a2), a3, . . . , am)
= gcd(. . . (gcd(gcd(a1, a2), a3), . . . , am),

the most obvious way to solve our problem is to compute the pairwise gcds
successively and to stop whenever a result is 1. This iterative computation of
pairwise gcds will work well for random inputs, but there are “nasty” inputs on
which this method will need m − 1 pairwise gcd computations.

If the inputs are randomly chosen integers this naive algorithm usually does
not need all the m − 1 steps:

Fact 1. Let two integers a and b be chosen uniformly at random from the positive
integers up to N . Then for large N

prob(gcd(a, b) = 1) → ζ(2)−1 =
6
π2 ∼ 0.60793.

For a proof, see [8], Section 4.5.2.
In this case, the probability that a1 and a2 are already coprime is about

0.6, and for randomly chosen a1, . . . , am, we can therefore expect that the naive
algorithm will already stop after about two computations of a pairwise gcd.

312 G. Cooperman et al.

Heuristic reasoning says that a prime p divides a random integer a with
probability p−1, and m random integers with probability p−m. Assuming the
independence of these events, we have

prob(gcd(a1, . . . , am) = 1) =
∏
p

(1 − p−m) = ζ(m)−1.

This can be made into a rigorous argument showing that the probability
that m random integers, as in Fact 1, have trivial gcd tends (with N → ∞) to
ζ(m)−1. The first few values are:

m ζ(m)−1

2 0.608
3 0.832
4 0.924
5 0.964
6 0.983
7 0.992
8 0.996
9 0.998

10 0.999

Although this strategy is quite successful for randomly chosen inputs, there
exist “nasty” sequences, in which the m − 1 steps in the above algorithm are
really necessary.

Example 1. Let p1, . . . , pm be the first m primes, A = p1 · · · pm, and ai = A/pi

for each i. Then gcd(a1, . . . , am) = 1 but for any proper subset S of {1, . . . , m},
gcd({ai: i ∈ S}) is non-trivial. So the successive computation of pairwise gcds
does not give the right output until m − 1 steps in the above algorithm have
been performed.

We do not address the question of representing the gcd as a linear combina-
tion of the inputs. This problem is considered in [9,6].

3 Random linear combinations

In the case of polynomials over a field F , the use of random linear combinations
is known to be successful.

Fact 2. Let F be a field, a1, . . . , am ∈ F [x] be nonzero polynomials of degree at
most d, h = gcd(a1, . . . , am), A ⊆ F finite, x3, . . . , xm ∈ A be randomly chosen
elements, and g = a2 +

∑
3≤i≤m xiai ∈ F [x]. Then h divides gcd(a1, g), and

prob(h = gcd(a1, g)) ≥ 1 − d/#A.

GCD of Many Integers 313

This is based, of course, on resultant theory ([2], [3]), and also works for
multivariate polynomials. So for the polynomial case, we expect that with only
about one calculation of a pairwise gcd of two polynomials we find the true gcd
of many polynomials, provided that A is chosen large enough.

We try to solve the corresponding integer problem by using a similar ap-
proach, and consider therefore the following algorithm.

Algorithm 1. Probabilistic gcd of many integers.

Input: m positive integers a1, . . . , am with ai ≤ N for all i, and a positive integer
M .
Output: Probably gcd(a1, . . . , am).

1. Pick 2m uniformly distributed random integers x1, . . . , xm and y1, . . . , ym in
{1, . . . , M}, and compute x =

∑
1≤i≤m xiai and y =

∑
1≤i≤m yiai.

2. Return gcd(x, y).

Then g = gcd(a1, . . . , am) divides gcd(x, y), and we can easily check equality
by trial divisions by gcd(x, y). This is a Monte-Carlo algorithm and we want
to prove a lower bound for its success probability, i.e., for the probability that
gcd(x, y) equals g.

Due to Fact 1 we cannot expect this probability to be as high as in the
polynomial case, but tests show that this strategy seems to have roughly the
expected success probability of 6/π2. For two lists we have tested (with 5000
independent tests each) whether two random linear combinations of the list
elements have the same gcd as the list elements. The list “nasty” has 100 elements
as described in Example 1, whose largest entry has 220 decimal digits, and
“random” is a random list with 100 elements of up to 220 decimal digits.

Table 1. Using random linear combinations

nasty list random list
M success rate success rate
2 0.7542 0.6066

10 0.6522 0.6016
100 0.6146 0.6078

1000 0.6020 0.6098
30030 0.5952 0.6038

Table 1 shows that one gcd computation of two random linear combinations
of the ai gives the right answer in about 60% of the cases, i.e., in most of the
cases, and this seems to be somewhat independent of the size of M . (The higher
success rate for the nasty list using low M is readily explained.)

Our task is to prove that the probability that gcd(x, y) = g is high.

314 G. Cooperman et al.

Remembering Fact 1, the solution of our problem would be easy if x and y
were random numbers, but although the results in Table 1 show that they behave
approximatively as if they were uniformly distributed, this is not literally true.
So we have to find another way to bound the probability that g 6= gcd(x, y).

4 A probabilistic estimate

It would, of course, be sufficient to show that our random linear combination x
behaves like a random integer in its range. Then the bound ζ(s)−1 would hold
for the gcd of s random linear combinations. In any case, we cannot reasonably
hope to have a better success probability than this bound. However, we want a
(small) bound on M , possibly in terms of the inputs. Then, if a1, . . . , am ≤ N ,
we have

x =
∑

1≤i≤m

xiai ≤ mMN = B,

but x is clearly not uniformly distributed in {1, . . . , B}. Even if it were, the
probability that a prime p divides x would not be the exactly desired 1/p, but
only close to it, since B is not necessarily a multiple of p. We circumvent this
obstacle by choosing M to be the product of the first r primes. For r = 6, we
have M = 2 · 3 · 5 · 7 · 11 · 13 = 30030. (In fact, for our purposes a multiple of
this number suffices.) Then for all primes p up to the rth prime pr, p divides
a random linear combination with probability exactly 1/p. For our probability
estimate, the main contribution becomes

∏
p≤pr

(1 − p−s),

just as for the unavoidable ζ(s)−1 =
∏

p(1 − p−s). We only use this idea for
s = 2, and abbreviate

ηr =
∏

p≤pr

(1 − p−2).

We fix the following notation. For m ≥ 2 and r ≥ 1, let a1, . . . , am be positive
integers, all at most N ; let M be a multiple of Πr = p1 · · · pr. Let x1, . . . , xm,
y1, . . . , ym be uniformly distributed random integers between 1 and M ; and let
x =

∑
1≤i≤m xiai and y =

∑
1≤i≤m yiai.

For the probability estimate we need the following lemma:

Lemma 1. If gcd(a1, . . . , am) = 1, then the events that pi divides x for 1 ≤ i ≤
r are independent.

Proof. Let 1 ≤ k ≤ r. Since gcd(a1, . . . , am) = 1, there exists an index j such
that pk - aj . Then for any x1, . . . xj−1, xj+1, . . . , xm ∈ Z the congruence

xjaj ≡ −
∑
i 6=j

xiai mod pk

GCD of Many Integers 315

has exactly one solution xj modulo pk. Hence, there are pm−1
k solutions with

1 ≤ x1, . . . , xm ≤ pk and
∑

1≤i≤m

xiai ≡ 0 mod pk.

Now let I ⊆ {1, . . . , r} and q =
∏

k∈I pk. By the Chinese Remainder Theorem,
we have

∏
k∈I pm−1

k = qm−1 solutions modulo q giving x ≡ 0 mod q. Since q | M ,
this congruence has qm−1 · (M/q)m solutions 1 ≤ x1, . . . , xm ≤ M . Hence,

prob{q | x} =
qm−1 ·

(
M
q

)m

Mm
=

1
q
. (1)

In particular, prob{pi | x} = 1/pi for each i ≤ r, and since (1) holds for each
subset of {1, . . . , r}, the events are independent. ut

Theorem 1.
With the above notation, let P be the probability that gcd(a1, . . . , am) = gcd(x, y).
Then

P > ηr − 2.04
pr ln pr

− 2
M

(
ln lnM +

1
ln2 M

+
1

2 ln2 pr

− ln ln pr

)

− mN

M(ln(mMN) − 3/2)
+

r

M2 .

The proof of this theorem is by detailed analysis of various cases and uses
several bounds from [10].

Corollary 1. For any ε > 0 one can choose r and M such that P > ζ(2)−1 − ε.

Corollary 2. Let r ≥ 6. Then

P > 0.5466 − mN

M(ln(mMN) − 3/2)
.

Proof. We have ηr > 1/ζ(2) for all r ≥ 1, and

2
M

(
ln lnM +

1
ln2 M

+
1

2 ln2 pr

− ln ln pr

)
< 0.0000983402

for r = 6. The left hand side expression decreases strictly for increasing r. Hence,

P > 0.6079271016 − 2.04
13 ln 13

− 0.0000983402 − mN

M(ln(mMN) − 3/2)

> 0.5466489662 − mN

M(ln(mMN) − 3/2)
. ut

316 G. Cooperman et al.

Corollary 3.
Let r ≥ 6, and M ≥ 3mN be a multiple of p1 · · · pr. Then P > 51%.

Proof. Let M ≥ 3mN . Indeed M ≥ 30030 and we can also assume m ≥ 3 and
N ≥ 2 (otherwise everything is trivial). Then

ln(mMN) − 3/2 ≥ ln(3 × 30030 × 2) − 3/2 > 10,

so

P > 0.5466489662 − mN

M(ln(mMN) − 3/2)

> 0.5466489662 − mN

10M
> 0.5466489662 − 1/30
> 0.51. ut

So, if M is chosen large enough, Algorithm 1 has a success probability greater
than 0.51. The results in Table 1 and other experiments suggest that P is even
somewhat larger and rather independent both of the size of M and of its choice
as a multiple of the small primes.

Thus we have a Monte-Carlo algorithm for which the result is correct in more
than 50% of the cases. Hence after two independent executions of the algorithm
we expect that the smaller value of g equals gcd(a1, . . . , am).

Acknowledgements

We are grateful to Mark Giesbrecht, Boaz Patt-Shamir and Igor Shparlinski for
helpful discussions.

References

1. Gene Cooperman and George Havas, Elementary Algebra Revisited: Random-
ized Algorithms. In Randomization Methods in Algorithm Design, DIMACS Series
in Discrete Mathematics and Theoretical Computer Science 43 (1999) 37–44.

2. Angel Dı́az and Erich Kaltofen, On computing greatest common divisors
with polynomials given by black boxes for their evaluations. In ISSAC’95 (Proc.
Internat. Sympos. Symbolic and Algebraic Computation), ACM Press (1995) 232–
239.

3. Joachim von zur Gathen, Marek Karpinski and Igor Shparlinski, Count-
ing curves and their projections. Computational complexity 6 (1996), 64–99. (Ex-
tended Abstract in Proc. 25th ACM Sympos. Theory of Computing.)

4. K. O. Geddes, S. R. Czapor and G. Labahn, Algorithms for Computer Algebra.
Kluwer Academic Publishers, 1992.

5. Mark Giesbrecht, Fast computation of the Smith normal form of an integer ma-
trix, In ISSAC’95 (Proc. Internat. Sympos. Symbolic and Algebraic Computation)
ACM Press (1995) 110–118.

GCD of Many Integers 317

6. George Havas, Bohdan S. Majewski and Keith R. Matthews, Extended
gcd and Hermite normal form algorithms via lattice basis reduction. Experimental
Mathematics 7 (1998) 125–136.

7. Chung-Yen Ho and Chee Keng Yap, The Habicht approach to subresultants.
Journal of Symbolic Computation 21 (1996), 1–14.

8. Donald E. Knuth, The Art of Computer Programming, Vol.2, Seminumerical
Algorithms. Addison-Wesley, Reading MA, 3rd edition, 1997.

9. Bohdan S. Majewski and George Havas, A solution to the extended gcd prob-
lem. In ISSAC’95 (Proc. Internat. Sympos. Symbolic and Algebraic Computation)
ACM Press (1995) 248–253.

10. J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some
functions of prime numbers. Illinois J. Math. 6 (1962), 64–94.

11. Richard Zippel, Effective polynomial computation. Kluwer Academic Publishers,
1993.

	Introduction
	Iterative gcd computation
	Random linear combinations
	A probabilistic estimate

