Adaptive Checkpointing for Master-Worker Style Parallelism
(Extended Abstract)

Gene Cooperman; Jason Ansel and Xiaogin Ma*
{genejansel ,xgma} @ccs.neu.edu
College of Computer and Information Science
Northeastern University, Boston, MA, USA

1 Introduction

We present a transparent, system-level checkpointing
solution for master-worker parallelism that automatically
adapts, upon restore, to the number of processor nodes
available. We call this adaptive checkpointing. This is im-
portant, since nodes in a cluster fail. It also allows one to
adapt to using mutliple cluster partitions, as they become
available. Checkpointing a master-worker computation has
the additional advantage of needing to checkpoint only the
master process. This is both fast (0.05 s in our case), and
more economical of disk space.

We describe a system-level solution. The application
writer does not declare what data structures to checkpoint.
Furthermore, the solution is transparent. The application
writer need not add code to request a checkpoint at appro-
priate locations. The system-level strategy avoids the labor-
intensive and error-prone work of explicitly checkpointing
the many data structures of a large program.

The solution has been implemented in TOP-C (Task Ori-
ented Parallel C/C++) [1], an open source software de-
veloped over ten years. While there is a common con-
ception that master-worker style parallelism is limited to
“embarrassingly trivial” parallel programs, this is not the
case. For example, TOP-C supports optimistic concurrency,
dataflow diagrams, and other parallel models through a sim-
ple master-worker model. (See the overview on the TOP-C
home page [1] for further information.)

2 Checkpointing and Restoring in Master-
Worker Parallelism

Because TOP-C uses a master-worker style of paral-
lelism and the master process already contains a copy of
the TOP-C shared data, the task of checkpointing can be re-
duced to taking a snapshot of the master process, only. This
is based on that fact that in our system the same state and
shared data are uniformly maintained and updated across
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all processes. Upon restore, this one snapshot serves as a
template to restore both master and workers’ memory. We
create the snapshot by inducing a core dump in a forked
copy of the process.

To resume a saved checkpoint, the master is first restored
by running the original unmodified binary with a special
flag which causes the checkpointed data to be loaded from
the checkpoint file. It copies the checkpointed stack onto
the current stack, and restores the context of the call frame
from which the process was checkpointed. (See Figure 1.)
The restored master spawns off the worker processes, which
then repeat the same sequence of events.

Maintaining State of Open Files To give the illusion that
the status of open files has not changed across a checkpoint,
we maintain a file information table to record such kernel
information as open file descriptors. To populate this ta-
ble, we intercept the library calls: open, cl ose, f open,
fcl ose, dup and others. We define our own wrapper
functions of the same name. After intercepting a call by
the application, the wrapper uses dl open and dl symto
call the original libc implementations, and then records the
results in the file information table.

At checkpoint time we record the current file offsets for
each open file in the file information table. At restore time
we recreate the file/stream state described in the file infor-
mation table.

Checkpointingthe program state. Once the system is in
a consistent state (no outstanding tasks), we update file off-
sets in the file information table and call set j np to save
stack context information. Then, we simply trigger a core
dump (without stopping execution of the current program),
the work of interpretting this core dump will be done at re-
store time.

Restoring from a checkpoint. To restore, we run the
original user program with a “restore” flag. Loading the
checkpoint file (core dump) is done in four main steps:
1) grow the new program stack past the old program stack;
2) load all segments of the core dump with the writable
flag into memory, overwriting our current program; 3) re-
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(1) Grow stack past the old stack, so top will be safe to use without destroying data
(2) Load data (incl. stack) from checkpoint file to location it wasin in old file (overwriting existing memory)
(3) Restore file descriptors/streams and longjmp() into checkpointed stack

Figure 1. Restoring core to a running process

store the kernel file descriptor state from the file informa-
tion table; and 4) | ongj np into the original stack and
re-initialize TOP-C. (See Figure Figure 1.)

The checkpointed data may contain ELF sections that
were not present in the original executable, because, for ex-
ample, of calls to mmap. We must again mmap such sec-
tions, before copying their data from the checkpoint file.
(Note, in GNU libc mal | oc calls above a threshold will in
turn call mmap.)

We are now effectively back inside a duplicate of the
program, as it existed before we checkpointed. Next, we
restore file descriptors from the file information table, and
call f r eopen on open streams. We then restart the worker
processes. If the user defined an optional restore function,
we call it. We then continue where the checkpoint left off.

Assumptionsand Limitations The package has been tar-
geted toward UNIX, using ELF. The current implementa-
tion runs in Linux. It could be ported to UNIXes using
loader formats other than ELF. The key requirements for
a port to another O/S are dI symnidl open and the ability to
copy data sections from a core file to their original location
in memory. Additionally, it is assumed that if we run a pro-
gram twice, its memory will be laid out at the same absolute
addresses in virtual memory each time, since code will have
pointers to data, and ELF is not available for relocation.

3 Fault Tolerance as Wor ker Processes Fail

MPI standards do not require fault tolerance capability.
If one process in an MPI computation fails, or one socket
fails, the entire computation is aborted. This is reason-
able in MPI, but it is a disaster for a parallel application
that has been running for weeks. TOP-C tries to detect
two failure modes: slow worker nodes and dead worker
nodes. A worker node is considered dead when the socket
to that node is no longer alive. This occurs and is detected
when the worker process has died (POSIX ECONNRESET),

or when the network socket connection has died (POSIX
EPI PE). A worker node is considered slow if the corre-
sponding processor is heavily loaded, lacks sufficient re-
sources, or when a network connection is experiencing in-
termittent network failures. A slow node is detected if a
worker fails to return from a task in a timely manner, and if
a replicate of the task then finishes earlier.

4 Timing

The tests were run on a 2.4 GHz Pentium-4 with 512 KB
cache and 1 GB of RAM. The operating system was Debian
Linux (“Sid”) with kernel 2.6.10. The C library used was
glibc 2.3.2.

The master always completes its checkpoint in less than
0.05 seconds. This is the time to fork and wait on the child
process while it calls abor t () to trigger a core dump. The
core is then renamed as the checkpoint file. The O/S asyn-
chronously writes out the core file while the user process
proceeds.

Restoring checkpoints involves the time to restore the
memory, plus the time to rerun the initialization code to
spawn off all the nodes. The time was close to the time
to read the checkpoint file from disk.

The actual cost depends on additional factors, such as:
(1) waiting for slaves to complete their current task before a
checkpoint; (2) application-dependent reinitialization after
arestore; (3) and a time proportional to the number of nodes
for the purpose of running ssh and opening sockets to each
worker. A future version will not wait for slaves to complete
before checkpointing.
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