
Appl. Algebra, Alg. Algo. and Error-Correcting Codes (AAECC-8, 1990) Springer-Verlag Lecture Notes in Comp. Sci. 508

APPLICATIONS OF CAYLEY GRAPHS

G. Cooperman, L. Finkelstein and N. Sarawagi

College of Computer Science
Northeastern University

Boston, Ma. 02115, U.S.A.

Abstract

This paper demonstrates the power of the Cayley graph approach to solve specific applica-
tions, such as rearrangement problems and the design of interconnection networks for parallel
CPU’s. Recent results of the authors for efficient use of Cayley graphs are used here in ex-
ploratory analysis to extend recent results of Babai et al. on a family of trivalent Cayley graphs
associated with PSL2(p). This family and its subgroups are important as a model for intercon-
nection networks of parallel CPU’s. The methods have also been used to solve for the first time
problems which were previously too large, such as the diameter of Rubik’s 2× 2× 2 cube. New
results on how to generalize the methods to rearrangement problems without a natural group
structure are also presented.

1. Introduction

Each finite group G, together with a generating set Φ, determines a directed graph called
a Cayley graph. Once a Cayley graph has been constructed for G, it is possible to obtain
algorithmic solutions to the following problems: describe a complete set of rewriting rules for G
relative to some lexicographic plus length ordering on the words of Φ [9]; obtain a set of defining
relations for G in terms of Φ [6]; and find a word in Φ of minimal length that represents a specified
element of G. The last problem is called the minimal word problem for G. The solution of the
minimal word problem provides an optimal strategy for many rearrangement problems, where
the elements of the generating set have some physical significance. These include problems
in communications, which can be viewed as token movements on graphs [11], as well as such
popular puzzles as Rubik’s cube.

There has been a great deal of interest recently in Cayley graphs and their generaliza-
tion, Schreier coset graphs, for their exceptionally nice characteristics both as models for tra-
ditional parallel network architectures and as a potential source of new networks for parallel
CPU’s [1, 3, 5, 7, 8]. Using Cayley graphs, researchers have discovered new regular graphs with
more nodes for a given diameter and for a given number of edges per node than were previ-
ously known. This allows construction of larger networks, while meeting design criteria of a
fixed number of nearest neighbors and a fixed maximum communication time between arbitrary
nodes.

This paper uses theoretical techniques originally developed for designing parallel networks
of CPU’s [9], and applies them to applications requiring a (sub)optimal solution to the minimal
word problem. The purpose is as much to demonstrate the power of the Cayley graph approach,
as to solve specific applications. Using these techniques, it has been possible to make empirical
observations and computational progress which would not have been possible in a more tradi-
tional approach, such as the rewriting system approach described by the authors in an earlier
work [4]. An immediate example is the computation of the full Cayley graph of Rubik’s 2×2×2
cube (3,674,160 nodes) on a SUN-3 with 8 megabytes of storage in less than 60 CPU hours.

In understanding the significance of this work, it is important to observe that in applications
which involve large groups, one is most often limited by memory resources rather than time. The
theoretical tools described in [9] provide both space-efficient data structures and CPU-efficient
algorithms for computing with Cayley graphs and Schreier coset graphs. In particular, we are

Appl. Algebra, Alg. Algo. and Error-Correcting Codes (AAECC-8, 1990) Springer-Verlag Lecture Notes in Comp. Sci. 508

able to implicitly store a minimal spanning tree for a Cayley graph (or Schreier coset graph) using
only log2(3) bits per node, independant of the size of the generating set, plus additional storage
which is small in comparison to the total. Routing depends on the nature of the representation
of the underlying group, but can always be performed efficiently for the class of permutation
groups. Similar ideas have appeared elsewhere, (see for example [12]), although this is the first
time that these techniques have been successfully applied to Cayley and Schreier coset graphs.

These techniques greatly increase the range of problems that can be solved. To see this, it
is necessary to first review the definition of a Cayley graph.

A Cayley graph G is a directed graph associated with a group G, and set of generators Φ.
The nodes of G are the elements of G and the edges are labelled by generators in Φ. We will
always assume that Φ is closed under inverses. If α and β are two nodes connected by a directed
edge (α, β) and the edge is labelled by φ ∈ Φ, then β = αφ as an element of G. A Schreier coset

graph is similarly defined, but requires the additional specification of a subgroup H of G. A
Schreier coset graph GH is defined to be a directed graph whose nodes are the right cosets of H
in G and whose edges are labelled by generators in Φ. If Hα and Hβ are two nodes connected
by the directed edge (Hα, Hβ) with label φ, then Hαφ = Hβ.

Memory, rather than CPU time, represents the limiting resource for constructing both
Cayley graphs and Schreier Coset graphs within the computer technology of today and the
near future. This can be shown informally by examining the requirements for using simple
breadth-first search to construct a spanning tree for a Cayley graph. This clearly requires
space proportional to |G|, the order of the group G. The corresponding time requirements are
proportional to |Φ||G|, assuming hashing takes constant time. |Φ| is usually small for many
group generating sets of interest, while |G| is on the order of thousands, millions, or more. A
unit memory operation may require 8 bytes (one 4-byte word to store a node representation,
and one 4-byte word to store a pointer to a parent). The corresponding time to examine the
|Φ| neighbors of a known node (to find new nodes) is usually significantly less than a CPU
millisecond on a SUN-3 workstation.

Under the assumptions of 8 bytes and 1 millisecond per node in G and assuming |G| =
10, 000, 000, the computation will require 80 megabytes of storage (excluding storage for the hash
table) and approximately 14 CPU hours on a workstation. Since hashing of new nodes represents
random accesses throughout data memory, efficient execution requires that all data be stored
in semiconductor memory. Otherwise, frequent random disk accesses for virtual memory would
make the program unacceptably slow. Hence, the requirements of 80 megabytes of semiconductor
memory and 14 SUN-3 CPU hours clearly show the memory to be the limiting resource. In
today’s technology, the use of a supercomputer would show memory to be even more of a
limiting resource. A future generation of parallel CPU’s only strengthens further the argument
that memory is the critical resource for constructing Cayley graphs.

There are many interesting applications that are outgrowths of the ability to compute with
large examples. In section 3, these techniques are applied to an important family of trivalent
Cayley graphs associated with the parametrized family of groups PSL2(p), for p a prime. Babai,
Kantor and Lubotzky [2] describe an elegant routing algorithm for these graphs with the property
that a path between any two nodes has length at most 45 log(|G|). Although this provides an
upper bound on the diameter, these graphs are substantially more dense than indicated by the
work of Babai et al., and therefore more interesting as possible interconnection networks. This
has reduced the worst case estimate of the diameter to 22.5 log(|G|). Furthermore, in these
groups short relations have been discovered that hold for all primes p.

In section 4, we present some results about the Cayley graph for Rubik’s 2 × 2 × 2 cube.
To the authors’ knowledge, this is the first time that the diameter of Rubik’s 2× 2× 2 cube has

Appl. Algebra, Alg. Algo. and Error-Correcting Codes (AAECC-8, 1990) Springer-Verlag Lecture Notes in Comp. Sci. 508

ever been computed. Yet, it was carried out in LISP on a SUN-3 with 8 megabyte of memory,
and used included 1 megabyte for the main data structure. Estimates of space required to
map out other well-known groups are presented. In particular, in the implementation of an
interconnection network for parallel CPU’s, a graph with 64,000 nodes could be mapped out
and stored at each node of the network, yet consuming only 13 kilobytes for each instance.

In section 5, the methodology is extended to Schreier coset graphs. This allows one to
model certain rearrangement problems in which the composition of two legal moves is not always
possible. This is the case, for example, in the popular 15-puzzle or more generally to certain
token movement problems on graphs [11]. In the token movement problem, labelled tokens are
placed on the nodes of a graph. At least one token is designated a blank token. A legal move is
one which interchanges a blank token with any token currently residing on a neighbor node. The
object is to see if a goal configuration can be reached from some initial configuration through a
sequence of legal moves.

This methodology has a wide range of applications including problems in operations research
and the management of memory in totally distributed systems. Kornhauser et al. [11] developed
an approach to this problem in which the question of whether the tokens can be arranged in
a specified configuration is reduced to the group membership problem [13], which is solvable
in polynomial time. Unfortunately their methodology for finding solutions will never yield an
optimal length solution, because each of their group generators is composed of several token
moves.

In order to remedy this, we describe a previously unpublished technique [10] and show how
it can be extended so that many of these pebble moving problems can be solved optimally by
finding a path of shortest length in a Schreier coset graph from the identity coset to a specified
coset. This means that each generator, for a certain group associated with the graph, corresponds
to a legal move and that the cosets for a suitably chosen subgroup are in 1-1 correspondence
with the set of states of the problem. Using techniques in [9], we may now achieve substantially
shorter solutions than those using a direct group theoretic approach. We illustrate these ideas
in section 5, for the 8-puzzle.

2. Space-Efficient Data Structures for Cayley Graphs.

Given a finite group G and generating set Φ, there are two keys to our construction of a
space-efficient data structure for the Cayley graph G. First, an easily computable function count
is used which assigns to each element g ∈ G, a unique integer in the range 0 to |G| − 1. This
allows us to store information for a node of the graph in an array of length |G| by using count as
an index into the array, instead of storing an explicit node representation. Second, the distance
from a node to the identity modulo some base is used instead of pointers to the parent or other
neighboring nodes. Similarly for a Schreier coset graph CH defined by the subgroup H of G, a
function countH can be used which assigns to each right coset Hg of H, a unique integer in the
range 0 to [G : H]− 1.

The functions count and countH assume the existence of some concrete representation for
G, such as a group of permutations or matrices. In the case where G is an arbitrary permutation
group, count is defined using standard ideas from computational group theory. The function
countH is far more subtle and depends on a delicate counting argument given in [9]. The general
description of count and countH is omitted, since this work does not depend on the details of
computation of those functions. A method for defining count in the case where G is the set of
unimodular 2× 2 matrices over GF (p), p a prime, is given in the next section.

In order to simplify the discussion, we restrict our attention to Cayley graphs. The case
of Schreier coset graphs is a straightforward generalization. Given G, Φ and G, allocate a bit
vector D of length 2|G|, and associate with each pair of bits a unique address from 0 to |G| − 1.

Appl. Algebra, Alg. Algo. and Error-Correcting Codes (AAECC-8, 1990) Springer-Verlag Lecture Notes in Comp. Sci. 508

If count(g) = i, then we store in D[i], the distance modulo 3 in G from g to the identity node
e. Note that the distance from g to e, is the minimal length of any word in Φ which represents
g. D will sometimes be referred to as the 2-bit data structure for G. We define a parent of node
g to be any neighbor which has distance to the identity one less than that of g. Note that g
need not have a unique parent. Similarly, we define a child of g to be any neighbor which has
distance one more than that of g. A sibling of g is any neighbor which has the same distance as
g. Note that only the identity node does not have a parent.

Finding a minimal word representation for g ∈ G is simple once D has been constructed.
The idea is to create a path of minimal length from g to e by choosing an arbitrary parent node
as the successor of each node along the path. Each time a new node is selected, the distance
to e is diminished by one unit. Since e has no parent, the path eventually must terminate at
e. The length of the path is equal to the length of a minimal word representation for G. In
order to find a parent of g, it suffices to check the values of D[count(gφ)] for each φ ∈ Φ. If g
is not equal to e, then there exists a parent node gφ1 of g. We then continue the process with
g replaced by gφ1. If φ1, φ2, . . . , φk is the sequence of edge labels along the path from g to e,
then gφ1 · · ·φk = e. Since Φ is closed under inverses, it then follows that φ−1

k · · ·φ
−1
1 is a word

of minimal length which represents g.

The time for computing a minimal word representation for g ∈ G is O(d|Φ||count|), where
d is the diameter of G, and |count| is the cost of invoking the function count. In the case where
G is represented as a permutation group of degree n, then |count| = O(m2) where m < n is the
size of a base for G. A base is a subset of {1, 2, . . . , n} with the property that only the identity
of G fixes every point of the set (see [13] for related concepts). Many interesting groups have
bases with a small number of points. For these cases, the cost of computing count will be small
in proportion to n. In the family of groups PSL2(p) of section 3, the cost of computing count
is O(1).

The above scheme leads to a simple routing algorithm for G. Suppose a path of minimal
length between two arbitrary nodes g and h is desired. If φ1 · · ·φk are the labels along a path of
minimal length from e to g−1h, then the path from g specified by the sequence φ1, . . . , φk will
terminate in h and have minimal length. (We identify the group element gh−1 with the name
of the corresponding node.)

Storing the distance of each node to the identity modulo 3 clearly requires at least log2(3) ≈
1.58 bits per node. One can use 8 bits to store such data for 5 nodes, leading to 1.6 bits per node,
which is close to the theoretical optimum. To efficiently compute the data structure initially
requires additional temporary storage. In [9], a more complex scheme is described to compute
the data structure using 2 bits per node of storage in time proportional to d|G||Φ||count|. That
scheme requires that count−1 be computed within the same time bounds as count.

The construction from start of the 2-bit array D from the generators of a group follows.
First, initialize D so that D[i] = 3, for 1 ≤ i ≤ |G|−1 and D[0] = 0 (assuming that count(e) = 0).
The value 3 for an entry in D is a marker which indicates that the final value, which must be
0, 1, or 2, has not yet been entered. Assume that for ℓ ≥ 0, we have filled in the value of
D[count(g)] for all nodes g with distance at most ℓ from e. The initialization takes care of the
case when ℓ = 0. To compute the correct D values for nodes at distance ℓ + 1, for each j with
D[j] = 3 check if g = count−1(j) has a parent h at distance ℓ from e. This is a necessary and
sufficient condition for g to have distance ℓ+1 from e. To check this, compute D[count(gφ)] for
each φ ∈ Φ. If any has value ℓ mod 3, then enter ℓ + 1 mod 3 in D[j].

The time to construct the 2-bit data structure can be reduced to |G|(d+ |Φ||count|) by using
log2(5) bits per node [9]. The method also generalizes to Schreier coset graphs.

Appl. Algebra, Alg. Algo. and Error-Correcting Codes (AAECC-8, 1990) Springer-Verlag Lecture Notes in Comp. Sci. 508

3. Exploring PSL2(p).

This section is concerned with an exploratory analysis of rewrite rules and short word
algorithms for PSL2(p), p a prime, p > 2. The purpose of this section is to show the advantages
of using our Cayley graph techniques to explore an interesting class of trivalent graphs discovered
by Babai, Kantor and Lubotsky [2] associated with the groups PSL2(p), p a prime. We present
some computational results on the actual diameters of these graphs together with the discovery
of some new general relations for these groups, which lead to a shorter routing algorithm than
the one described by the authors.

The trivalent graphs for PSL2(p) which we have studied are only a special case of a more
general theory developed by Babai et. al. Their main result shows that every finite simple
group G has a set of at most 7 generators so that every element g ∈ G can be written as a word
of length O(log2(|G|)) in these generators. Furthermore, they give an algorithm for finding a
short, but not minimal, word representation for each element of G in terms of these generators.
The implication for Cayley graphs is clear. The case where G = PSL2(p) is the core case and
appears to be the one for which the corresponding Cayley graph will be the most dense.

The existence of a short word algorithm is very significant because it leads to a host of
possible dense Cayley graphs as models for interconnection networks with good built in routing
algorithms. Some very dense Cayley graphs have recently been discovered (see section 1).
However, many of these do not have “natural” routing algorithms. The hypercube is an example
of an interconnection network with a particularly nice routing algorithm, but which is relatively
sparse. A node of the hypercube can be represented as a vector of bits (0’s and 1’s). A step to
another node can be represented as toggling a single bit.

The group PSL2(p) is the quotient group of SL2(p) (the set of 2 × 2 matrices over GF (p)
of determinant 1) by its center which is the cyclic group generated by −I, where I is the
2× 2 identity matrix. Our investigation begins with the generating set S = {x(1), x(1)−1, r′ ≡
h(1/2)r}, for PSL2(p), where

x(t) =

(

1 t
0 1

)

, h(b) =

(

b−1 0
0 b

)

for b 6= 0, and r =

(

0 −1
1 0

)

.

It was shown in [2] that the diameter of the Cayley graph G(p) for PSL2(p) with respect
to S is O(log2 |PSL2(p)|). In fact it was shown to be bounded by 45 log2(|PSL2(p)|). This is a
direct consequence of a clever short word algorithm. Since |PSL2(p)| = p(p2 − 1)/2, this leads
to the upper bound on the diameter of G(p) of ⌈135 log2(p)− 45⌉. A closer reading of [2] shows
that the diameter of G(p) is actually bounded by 45 log2(p).

We found the true diameters by generating the 2-bit data structure for G(p) for various p
up to p = 131. The generating set used was S in all cases. The encoding function count that
was used for for the 2-bit data structure was defined from G to the set of positive integers < p3.

For any g =

(

a b
c d

)

∈ PSL2(p), since ad− bc = 1, count(g) = bp2 + cp+d if d 6= 0. Otherwise,

count(g) = ap2 + cp. The true diameters are compared with the theoretical estimate below.
Most graphs G(p) were generated in a matter of minutes, and the largest (p = 131) required a
few hours and half a megabyte of data, using the above data encoding resulting in a density of
half the optimal density.

Appl. Algebra, Alg. Algo. and Error-Correcting Codes (AAECC-8, 1990) Springer-Verlag Lecture Notes in Comp. Sci. 508

Group Number of Bound True
(PSL2(p)) Nodes on Diameter Diameter

(45 log2(p))
PSL2(3) 12 72 3
PSL2(5) 60 105 6
PSL2(7) 168 127 9
PSL2(11) 660 156 11
PSL2(13) 1,092 167 12
PSL2(17) 2,448 184 14
· · · · · ·

PSL2(107) 612,468 303 25
PSL2(109) 647,460 305 28
PSL2(113) 721,392 307 26
PSL2(127) 1,024,128 315 27
PSL2(131) 1,123,980 317 26

This large difference in the actual diameters of these Cayley graphs from the estimated
diameters led to a closer study of the short word algorithm in [2]. Instead of the theoretical
upper bound of 45 log2(p), the table shows an empirical fit of the diameter to 4 log2(p).

The original short word algorithm is reproduced here, followed by a discussion of the im-

provements that were made. Let g =

(

a b
c d

)

∈ PSL2(p) with ad− bc = 1 and c 6= 0 then

(A) g = x(c−1(a− 1))rx(−c)rx(c−1(d− 1))

(B) r = h(2)r′

Moreover if 0 ≤ n < p , m + 1 = ⌈log4(p− 1)⌉ and n =
∑m

i=0 ai4
i is the base 4 representation of

n, then

(C) x(n) = h(2)−mx(am)h(2)x(am−1)h(2) . . . x(a1)h(2)x(a0)

where ai ∈ {0, 1, 2, 3}. (A) implies that the length of g with respect to the generating set S is

3 max1≤t<p(length(x(t))) + 2 length(r). If c = 0 then rg =

(

a′ b′

c′ d′

)

with c′ 6= 0. Therefore

the diameter of G(p) is at most 3 max1≤t<p(length(x(t)))+3 length(r). Since r = h(2)r′ and by
(C) the length of any x(t) and r with respect to S depends upon the length of h(2), it is crucial
to get a short word representation for h(2). Babai et al. gave a word for h(2) in S of length 13,

h(2) = x(1)−2r′x(1)2r′x(1)r′x(1)−4r′.

This formula is true for all PSL2(p). Using the fact that the length of h(2) ≤ 13, the diameter
of G(p) was estimated to be ≤ 45 log2(p).

Since the constant 45 in the estimate of the diameter depended on the length of the word
representation of h(2), it was natural to try to find a minimum length word representation for
h(2). Our approach was to use the 2-bit data structure for G(p) to compute the shortest word
for h(2) in each PSL2(p) as p was increased.

Appl. Algebra, Alg. Algo. and Error-Correcting Codes (AAECC-8, 1990) Springer-Verlag Lecture Notes in Comp. Sci. 508

It was soon observed experimentally that for a number of values p ≥ 11 a minimum word
for h(2) was given by the same word of length 9 in x(1) and r′.

h(2) = x(1)r′x(1)4r′x(1)r′, p ≥ 11

This led to the hypothesis that the relation would be true for all p, p > 2. This fact can
be directly verified by simply transforming the above elements to matrices over GF (p) and
performing the required multiplication.

The shorter formula for h(2) lowered the estimate from 45 log2(p) to 32 log2(p). Further
study of the algorithm then resulted in a decrease of the diameter to 22.5 log2(p) − 33, using
symbolic manipulation.

The three identities

(i) r′h(2)−m = h(2)mr′,

(ii) x(t)h(2)m = h(2)mx(4mt) ∀m ≥ 0, and

(iii) rx(t)r = r′x(4t)r′

were employed to find a shorter word for g in equation (A) as follows.

Using identity (iii) in equation (A) we get,

(A′) g = x(c−1(a− 1))r′x(−4c)r′x(c−1(d− 1))

If c = 0 then r′g =

(

a′ b′

c′ d′

)

with c′ 6= 0. Since r′ is a generator, the diameter of PSL2(p) is at

most 1 + length(g), where g is as in equation (A′).

Let u = c−1(a− 1) =
∑m

i=0 ui4
i, t = −4c =

∑m
i=0 ti4

i, and v = c−1(d − 1) =
∑m

i=0 vi4
i be their

base 4 representations, (ui, ti, vi ∈ {0, 1, 2, 3}). Then rewriting (A′) we see, g = x(u)r′x(t)r′x(v).

Using (C), (i) and (ii) successively in the above equation, we can obtain the following equation.

g = h(2)−mx(um)h(2)x(um−1)h(2)x(um−2)h(2) . . . x(u1)h(2)x(u0)
r′x(t′m)h(2)x(t′m−1)h(2)x(t′m−2)h(2) . . . x(t′1)h(2)x(t′0)
r′x(vm)h(2)x(vm−1)h(2)x(vm−2)h(2) . . . x(v1)h(2)x(v0)

By the above expansion, length(g) ≤ 4m length(h)+3(m+1) length(x(3))+2. Since length(h) ≤
9, and length(x(3)) ≤ 3, so length(g) ≤ 45m + 11. Moreover, m + 1 = ⌈log4(p − 1)⌉ implies
that length(g) ≤ 22.5 log2(p)− 34. This proves the following result.

Proposition 3.1. diameter(G(p)) ≤ 22.5 log2(p)− 34.

As a step to further improve the theoretical estimate of the diameter for G(p), the minimum
words for x(t) were studied experimentally, using the precomputed 2-bit data structure for G(p).
Since x(t)−1 = x(p − t) in PSL2(p), only the minimum words for x(t) for 1 ≤ t ≤ (p − 1)/2
needed to be examined. This was done for PSL2(p) for all prime p from 3 to 131. The minimum
words either fell into the following four patterns, or were well-determined concatenations of these
four patterns. We would expect that new patterns would emerge for significantly larger p, but
the range up to 131 seems to be sufficient for currently envisioned applications.

(a) For sufficiently small t depending on p, x(t) had a minimal word of the form x(1)t.

Appl. Algebra, Alg. Algo. and Error-Correcting Codes (AAECC-8, 1990) Springer-Verlag Lecture Notes in Comp. Sci. 508

(b) For each p > 33, x((p− 3)/2) had the same minimum word of length 15,

x((p− 3)/2) = r′x(1)4r′x(1)−1r′x(1)−1r′x(1)4r′.

When this word was multiplied out over GF (p), it was found to be equal to x(−3/2). This
provided a word, W3/2, in the elements of S for x(−3/2) of length 15. Concatenating W3/2

with x(1)i forms minimal words for x(i + (p − 3)/2) for some i. For example x((p − 1)/2)
had minimal word x(1)W3/2 of length 16, for p > 33.

(c) For many large p, x(20) had the same minimal word W20 of length 19. For example W20x(1)
and W20x(1)2 were the minimal words for x(21) and x(22) of lengths 20 and 21 respectively.
We also observed that the minimal word for X(23) was not W20x(1)3 of length 22, but was
W24x(1)−1 of length 21, where W24 was the minimal word for x(24) of length 20. This lead
to a set of formulas for x(4i) = W4i where

W4i = r′x(1)−1r′x(1)−4r′x(1)i−2r′x(1)−4r′x(1)−1r′

is a word in S of length 14 + i, for all i > 2. W4i concatenated by x(1), x(1)x(1) or x(1)−1

gives words for x(4i + 1), x(4i + 2) or x(4i− 1) of length 15+i, 16+i or 15+i respectively.

(d) Finally there were several values of t for which the shortest word, when multiplied out over
the rationals yielded formulas for x(1/4), x(7/4), x(9/4), x(3/8), x(13/8), x(11/8), x(9/8).

Using the above four patterns and the formulas discovered, the shortest word for any x(t) ∈
PSL2(p) can easily be found for p ≤ 131. Disregarding the minimal words of type (d), a simple
short word algorithm for x(t) is described below.

Short-Word-Algorithm Input: An arbitrary t, 1 ≤ t < p , where PSL2(p). Output: A
short word for x(t).

If t ≤ (p− 1)/2
If t = (p− 1)/2

Then if t < 16 Output x(1)t

Else Output x(1)W3/2

Else write t = 4q + r , where 0 ≤ r < 4
d← minimum {t, 15 + (p− 3)/2− t, 14 + q + r, 14 + q + 2}

if d = t output x(1)t

if d = 15 + ((p− 3)/2)− t output W3/2x(1)t−(p−3)/2

if d = 14 + q + r and r < 3 output W4qx(1)r

if d = 14 + q + 2 and r = 3 output W4(q+1)x(1)−1

Else t > (p− 1)/2 output the inverse word of Short-Word-Algorithm(p− t)

Using the above algorithm to find a short word for x(t), and using the factorization of an
arbitrary g ∈ G in terms of the x(t)’s and r′, we can show that the diameter of G(p) is at most
3(p/10 + 16.3) + 3. For p < 349 this leads to a better estimate of the diameter than the best
known asymptotic theoretical bound, 22.5 log2(p)− 33.

Another interesting application of the 2-bit data structure, is its use to find all possible
rewrite rules in the elements of S which are true for all PSL2(p). It was hoped to find a family
of rewrite rules which would reduce an algorithmically derived short word for a given group
element into a still shorter word. The idea is as follows. If an element g ∈ G has two different
minimal word representations, say w1 and w2, then both w1 and w2 can be found easily from
2-bit data structure. Therefore w1w

−1
2 = e is a relation of even length in G. Further, if an

element g ∈ G and the element sg where s ∈ S, have respective minimal words w1 and w2 of
the same length then again w1 and w2 can be found easily, and sw1w

−1
2 = e is a relation of odd

length in G. In this way all such relations of odd and even length in G can be found.

Appl. Algebra, Alg. Algo. and Error-Correcting Codes (AAECC-8, 1990) Springer-Verlag Lecture Notes in Comp. Sci. 508

All such relations in PSL2(131) up to length 20 were generated as described above, and
then checked to see which relations were also true for all p. Three such universal relations were
found of length 2, 9, and 21.

(i) (r′)2 = 1

(ii) (r′x(1)2)3 = 1

(iii) r′x(1)−1r′x(1)4r′x(1)r′x(1)4r′x(1)−1r′x(1)−4 = 1

4. Large Problems.

In addition to efficiently exploring many smaller cases, as in section 3, the space-efficient
version of Cayley graphs is especially important in solving larger problems which would formerly
have either been infeasible or required much larger computers. As an example, we find that on
a SUN-3 workstation using LISP we are able to process 1,000,000 nodes of a Cayley graph for
PSL2(p) every 4 CPU hours. The rate is roughly independent of p.

Our largest example to date is finding the diameter of the Cayley graph for the group Rubik2

associated with Rubik’s 2 × 2 × 2 cube. Singmaster [14, p. 60] poses this as an outstanding
problem. This cube consists of the corners of the traditional Rubik’s 3 × 3 × 3 cube, while
ignoring all other sub-blocks. The entire Cayley graph for Rubik2 was mapped out in place and
stored, using log2(5) bits/node ×3, 674, 160 nodes = 1 megabyte of space. The task used the
more general function count instead of the PSL-specific encoding and required 60 CPU hours
on a SUN-3 workstation.

The more traditional method of breadth-first search, as described in the introduction, would
have required 8 bytes/node ×3, 674, 160 nodes = 30 megabytes of memory for data, or a ratio of
30 times more data storage. If a hashing scheme was used the ratio would have been proportion-
ately increased due to overhead of the hash table. While this represents only an argument with
respect to order of magnitude, the ratio of 30 illustrates the power of the proposed methodology.

The traditional generating set for Rubik2 consists of nine elements. If an orientation of the
2× 2× 2 cube is fixed, there are three basic moves: u = rotation of the upper face by 90 degrees
clockwise; f = rotation of the front face by 90 degrees clockwise; and l = rotation of the left
face by 90 degrees clockwise. This, along with their inverses and their squares form the nine
element generating set.

The diameter of the Cayley graph for Rubik2 with these nine generators is 11. This was
found as a result of constructing the 2-bit data structure for the Cayley graph. If the generating
set is restricted to the six independent generators and inverses {u, f, l, u−1, f−1, l−1}, then the
diameter of the Cayley graph is 14. This computation took 100 CPU hours.

5. Extension to Schreier Coset Graphs.

Many applied rearrangement problems have invertible state transitions (legal moves), but
do not have a natural group structure. This prevents one from applying the Cayley graph
methodology. An interesting (and difficult) example of a rearrangement problem without a
natural group structure is the classic 15-puzzle. This has 15 tiles and a blank arranged in a 4×4
rectangle. A legal move consists of interchanging a tile and the blank. The goal is to achieve a
specified configuration of the tiles.

One would like to impose a group structure on the 15-puzzle in which the generators are
the legal moves and the binary operator is composition. Where legal moves exist, associativity
holds and there is an inverse. The identity is the null move. However, arbitrary moves cannot

Appl. Algebra, Alg. Algo. and Error-Correcting Codes (AAECC-8, 1990) Springer-Verlag Lecture Notes in Comp. Sci. 508

be composed, and so there is not a well-defined binary operator for the group. For example, a
legal move interchanging a tile in position 7 with a blank in position 8 cannot be followed by a
legal move interchanging a tile in position 2 with a tile in position 3.

A new method is given for re-formulating the 15-puzzle as a coset problem, in which each
legal move corresponds to a generator of a group, and the goal state corresponds to a certain
coset of a specified subgroup of the group. This allows the use of Schreier coset graphs as
described in section 2.

Kornhauser et al. [11] described a formulation which has the defect of mapping a product of
legal moves into a generator for a specified group. They also show that any state accessible as a
product of arbitrary legal moves in the original formulation will also be accessible as a product
of generators in the new formulation. Thus the existence problem is formulated as a group
membership problem [13] in a group-theoretic setting. However, a word in the group-theoretic
setting will in general correspond to a longer word in terms of the original legal moves, and so
their approach cannot be used to find optimal solutions. The approach described here does not
suffer that defect.

For purposes of exposition, the 8-puzzle is discussed. This is the 3 × 3 analogue of the
15-puzzle above. The extension of the technique to the 15-puzzle and other problems will be
obvious.

The Eight Puzzle. The 3 × 3 board of the 8-Puzzle can be thought of as being in one of
three configurations based on the location of the blank space. Each of the configurations has a
set of four orientations: up, right, down, and left. We label the cells in each configuration and
orientation as shown below. The configuration appears above the configuration label (A, B, or
C), and four cells for the orientation appear below. The blank space of a configuration is shown
in square brackets.

1 2 3
4 5 6
7 8 [9]

A

10 11 12
13 14 15
16 [17] 18

B

19 20 21
22 [23] 24
25 26 27

C

28 29 30 31 32 33 34 35 36 37 38 39

Given a state of the 8-puzzle in configuration A and orientation 28, there are two possible
legal moves: sliding the tile in cell 8 into cell 9, and sliding the tile in cell 6 into cell 9. Both of
these result in a board position in Configuration B, although the latter move requires a built-in
rotation of the board by 90 degrees so that the blank ends up in the center cell of the bottom
row.

For the moment, we ignore the orientation cells, and describe the action on the 9 tiles of
a given configuration. Consider the move (6 → 9). This is represented by mapping the cells
of configuration A into configuration B with a 90 degree rotation. Thus, applying (6 → 9) in
configuration A followed by a 90 degree rotation yields the following configuration.

7 4 1
8 5 2
6 [9] 3

This arrangement must then be mapped into the cells of configuration B. Doing so yields
the permutation given below. (Cells of configuration C are fixed).

Appl. Algebra, Alg. Algo. and Error-Correcting Codes (AAECC-8, 1990) Springer-Verlag Lecture Notes in Comp. Sci. 508

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

12 15 18 11 14 16 10 13 17 7 4 1 8 5 2 6 9 3 19 20 21 22 23 24 25 26 27

)

Finally, the orientation cells must be mapped. Since the previous move involved a 90 degree
rotation, the four orientation cells of configuration A would be mapped by a cyclic rotation into
the orientation cells of configuration B.

In this manner we can represent each of the nine basic moves of the 8-puzzle. Three examples
are given below. The right arrow indicates which tile is being moved into which blank square.
The two configurations that are interchanged are also indicated, along with the mapping of cells.
Those cells which are mapped to themselves are not shown. For the 8-puzzle the generators are
transpositions, although this is not a requirement of this methodology.

(8→ 9) (A↔ B) (0 degree rotation)

(

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 28 29 30 31 32 33 34 35

10 11 12 13 14 15 16 18 17 1 2 3 4 5 6 7 9 8 32 33 34 35 28 29 30 31

)

(14→ 17) (B ↔ C) (0 degree rotation)

(

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 32 33 34 35 36 37 38 39

19 20 21 22 26 24 25 23 27 10 11 12 13 17 15 16 14 18 36 37 38 39 32 33 34 35

)

(24→ 23) (B ↔ C) (−90 degree rotation)

(

10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 32 33 34 35 36 37 38 39

25 22 19 26 24 20 27 23 21 12 15 18 11 17 14 10 13 16 39 36 37 38 33 34 35 32

)

Let G be the group generated by the obvious 9 generators corresponding to legal moves of
the 8-puzzle, and let H be the point stabilizer subgroup of G which stabilizes all the cells of
configuration A (1 through 9 and 28 through 31). A scrambled puzzle is then represented by
a permutation, where the cells of configuration A are mapped according to how the puzzle is
scrambled, with the cells of the configuration in which the scrambled puzzle lies. In fact a coset
of G in H corresponds to a unique scrambled puzzle. Solving this scrambled puzzle, in group
theoretic terms, is to find a word in the 9 nine generators for the coset representative of H in G
that contains the permutation representing the scrambled puzzle.

We generated the 2-bit data structure for the for the Schreier coset graph of the 8-Puzzle and
found that the diameter of the graph was 31. This signifies that given any scrambled 8-puzzle
it can be unscrambled in less than 32 moves. In the construction of the 2-bit data structure for
this Schreier coset graph, we used a special purpose encoding function, assigning to each coset
a unique integer in the range [0, 12 ∗ 87 = 25165824]. This is 100 times larger than optimal, but
it can be computed very efficiently.

Once the 2-bit data structure is constructed for the cosets of H in G, it is used to to find
a minimal word representing any coset in terms of the generators (moves of the 8-puzzle) of
G. Hence to solve a scrambled 8-Puzzle, first represent the given board X as a permutation σ,
which interchanges the cells of configuration A (i.e. A1∪A2) with the cells of the configuration in
which X lies, according to the scrambled board X, then find a minimal word w in the generators
for the coset Hσ. Applying the moves in the word wR (the reverse of the word w), in order, to
the scrambled puzzle will unscramble it.

Appl. Algebra, Alg. Algo. and Error-Correcting Codes (AAECC-8, 1990) Springer-Verlag Lecture Notes in Comp. Sci. 508

Pebble Motion on Graphs. The above representation of the 8-puzzle as a group in which
a legal move corresponds to one generator of the group, can be generalized to the pebble co-
ordination problem [11]. If the graph has n nodes and if k is the number of configurations of
the graph based on the position(s) of the blank node(s). Label the nodes of each configuration
consecutively (1 . . . , nk) starting with the nodes of the configuration (A) corresponding to the
goal state. Then each legal move and each scrambled state can be represented as a permutation
of {1, . . . , nk}. We can find a word in the generators, which represents the initial (scrambled)
state by finding an appropriate coset representative of a coset of the group representing the
problem in an appropriate point stabilizer subgroup (the subgroup that stabilizes all the cells of
configuration A).

References

1. F. Annexstein, M. Baumslag, A.L. Rosenberg, “Group Action Graphs and Parallel Archi-
tectures”, SIAM J. Computing 19 (1990), pp. 544–569.

4. L. Babai, G. Cooperman, L. Finkelstein, and Á. Seress, “Nearly Linear Time Algorithms
for Permutation Groups with a Small Base”, Proc. of the 1991 International Symposium on

Symbolic and Algebraic Computation (ISSAC ’91), AMC Press, pp. 200–209, July, 1991.

2. L. Babai, W.M. Kantor and A. Lubotsky, “Small diameter Cayley graphs for finite simple
groups”, European Journal of Combinatorics 10 (1989), pp. 507–522.

3. J-C. Bermond, C. Delome, and J-J. Quisquater, “Strategies for interconnection networks:
Some methods from graph theory”, Journal of Parallel and Distributed Computing 3 (1986),
pp. 433–449.

5. L. Campbell, G.E. Carlsson, V. Faber, M.R. Fellows, M.A. Langston, J.W. Moore, A.P.
Mullhaupt, and H.B. Sexton, “Dense Symmetric Networks from Linear Groups”, preprint.

6. J.J. Cannon, “Construction of Defining Relators for Finite Groups”, Discrete Math. 5
(1973), pp. 105–129.

7. G.E. Carlson, J.E. Cruthirds, H.B. Sexton, and C.G. Wright, “Interconnection networks
based on a generalization of cube-connected cycles”, I.E.E.E. Trans. Comp. C-34 (1985),
pp. 769–777.

8. D.V Chudnovsky, G.V. Chudnovsky and M.M. Denneau, “Regular Graphs with Small Di-
ameter as Models for Interconnection Networks”, 3rd Int. Conf. on Supercomputing, Boston,
May, 1988, pp. 232–239.

9. G. Cooperman and L. Finkelstein, “New Methods for Using Cayley Graphs in Intercon-
nection Networks”, Discrete Applied Mathematics 37/38 (special issue on Interconnection
Networks), 1992, pp. 95–118.

10. M. Frydenberg, A. Riel, N. Sarawagi, Unpublished manuscript.

11. D. Kornhauser, G. Miller and P. Spirakis, “Coordinating Pebble Motion on Graphs, the Di-

ameter of Permutation Groups and Applications”, Proc. 25th IEEE FOCS (1984), pp. 241–
250.

12. T. Ohtsuki, “Maze-Running and Line-Search Algorithms”, article in Advances in CAD for

VLSI, 4, North Holland, Amsterdam (1986).

13. C.C. Sims, “Computation with Permutation Groups”, in Proc. Second Symposium on Sym-

bolic and Algebraic Manipulation, edited by S.R. Petrick, ACM Press, New York, 1971,
pp. 23–28.

14. D. Singmaster, Notes on Rubik’s Magic Cube, Enslow Publishers, Hillside, N.J., 1981.

