
Understanding Diagrams in Technical Documents

Robert P. Futrelle, Ioannis A . Kakadiaris, Jeff Alexander, Catherine M. Carriero, and Nikos Nikolakis
Biological Knowledge Laboratory, College of Computer Science, Northeastern University, Boston, MA 021 15

Joseph M. Futrelle
Hampshire College, Amherst, MA 01002

C onverting documents to knowl-
edge bases requires that the
computer function as an intelli-

gent document “reader” or “viewer.”
This artificial intelligence task involves
computer vision and natural-language
understanding. The Biological Knowl-
edge Laboratory at Northeastern Uni-
versity is developing such a system. The
lab’s goal is to develop a knowledge
base of biological research papers that
supports the Scientist’s Assistant, an in-
telligent system that will provide a sci-
entist with interactive access to the re-
search results, methods, and reasoning
in a collection of scientific papers.

Document Understanding System.
The system (see Figure 1) comprises a

series of modules, starting with docu-
ment scanning and ending with the Sci-
entist’s Assistant. The Scientist’s Assis-
tant is based on the paradigm of
conceptual retrieval, which allows the
user to find specific passages and data
even if the user doesn’t know the exact
form in which the material is stored.
With the Scientist’s Assistant, a scien-
tist ultimately should be able to point to
a feature in a diagram from an older
paper and ask, “Do people now under-
stand the origin of this?” The Scientist’s
Assistant will then be able to find the
most recent discussion of the phenome-
non. For this to occur, the diagrams in
the documents will have to be analyzed
and the diagram contents added to the
knowledge base.

We already know how to implement
some of the modules shown in Figure 1,
but implementing other modules will
require extensive research and experi-

This means that it is not
yet possible to test the entire system or
even get input for some of the later
modules when they depend on modules
still under development. To avoid this
impasse, we use alternative paths
through the system during development
and testing (represented by the dashed
lines in Figure 1).

The novel aspects of the system in-
clude the design and use of graphics
constraint grammars for describing and
analyzing diagrams, the use of spatial
indexing in diagram analysis and under-
standing, and extensions of natural-

Diagram Understanding System

I
I

I

Scan
documents.

OCR -. SGML
\
\ tagging
\
\
\ 0
\ 0
\ 0

0
0

Natural Language Understanding System

Figure 1. Overview of the Document Understanding System. Ovals denote databases and knowledge bases, rectangles
represent processing systems and subsystems, and dashed arrows show the alternative strategies used during system de-
velopment.

July 1992

_~.

75

~

language processing techniques to com-
plex scientific text. This article will em-
phasize the Diagram Understanding
System. See Futrelle et al.’ for a discus-
sion of text processing.

The Diagram Understanding System
(shown in Figure 1) entails:

Documents:Our corpuscontains 1,518
papers covering essentially all of a sub-
field of biology (bacterial chemotaxis)
from its beginning in 1965.

Object form of diagrams: Using im-
age processing or the alternative of trac-
ing over scanned images, the diagrams
are converted from scanned, pixel-based
images into a collection of graphical
objects, such as lines, polygons, and
positioned text.

Diagram understanding: Graphics
constraint grammars are used for syn-
tactic and semantic diagram analysis.
Spatial indexing is used to rapidly dis-
cover spatial relations. The output is
knowledge frames.

Tagged text: This comprises an in-
dexed database of the entire text of
each paper, encoded using the Standard
Generalized Markup Language
(SGML). The encoding marks every
logical element such as sections, para-
graphs, and sentences, as well as nota-
tions such as superscripts, subscripts,
and Greek letters.

Natural-language understanding: This
is a complex enterprise employing
lexicons, grammars, parsers, and seman-
tic interpreters, resulting in linked
knowledge frames representing text se-
mantics.

The Scientist’s Assistant, the intelli-
gent system that allows a scientist to
navigate through the knowledge bases,
is the goal of the project.

Diagram Understanding System -
graphics constraint grammars. Just as
we must learn the language we read and
write, we must also learn the represen-
tational conventions of diagrams. Once
learned, the process of reading or inter-
preting a diagram is relatively effort-
less. However, for a machine, these tasks
are not so easy. A human must first
describe the representational conven-
tions formally and concisely in a way

Figure 2. A data graph is the common
type of diagram appearing in scientific
and technical papers. The data points
are the most important informational
elements. The more regularly ar-
ranged elements, such as the tick
marks, serve a supporting role.

that allows the computer to carry out an
analysis. For diagrams, this description
is similar to the grammars that are writ-
ten to describe natural language.

One of the major conventions in dia-
grams is the separation of the informa-
tional components from the substrate
on which the information is presented.
For example, in Figure 2, the primary
informational items are the data points.
The vertical and horizontal scale lines
are substrate items, serving as a “frame”
in which to present the data. This divi-
sion of labor can be subtle. For exam-
ple, the positions of the circular data
points are informational, whereas the
diameters of the circles are not.

We describe the organization of dia-
grams with grammars. A grammar is a
logical specification of a possibly infi-
nite set of structures. It specifies a set of
objects, the objects’ attributes, and their
relations. In the graphics constraint
grammars we have developed, low-
level elements are objects such as lines
and polygons. High-level objects are
more complex structures such as
Data-points or Scale-lines. Graphics
constraint grammars are similar to the
approach Helm, Marriott, and Oder-
sky3 developed independently. The
major difference in the approaches is
that ours includes generalized equiva-
lence relations and spatial indexing (both
described below). Another difference
between the approaches is that our gram-

mars are incorporated in a complete
system for document understanding.

Each graphics constraint grammar is
a collection of rules (see Figure 3) com-
prising a production, a set of constraints,
and a set of propagators:

A production names the rule object
as its left-hand side and the constituents
of the object as its right-hand side.

Constraints consist of spatial rela-
tions (such as Near, Horizontal, Aligned,
etc.) as well as type constraints, which
require that an object be of a certain
type, such as a line or text.

Propagators describe the relations
between the attributes of the rule ob-
ject and the attributes of the constitu-
ents. For example, the Center attribute
of a set of lines might be computed as
the center-of-mass of the set of lines.

The constituents of a rule may each
be complex entities defined by still oth-
er rules. This allows us to build hierar-
chical descriptions of complex diagrams.

Example diagram and grammar. The
example diagram of Figure 2 is a typical
data graph. The highest level object of
its hierarchical description has the con-
stituents Data-set, Vertical-scale, and
Horizontal-scale. The Horizontal -scale
in turn has constituents Horizon-
tal -scale-line and Axis-label -“Time
(in hours)” in the example.

Figure 3 presents a fragment of the
graphics constraint grammar for a data
graph. Rule 1 defines the rule object,
Horizontal-scale-line, with constituents
Horizontal-axis-line and Ticks. The
Ticks object is of type Labeled-x-ticks,
which rule 2 defines as a pair of sets
whose elements are Tick and Label,
respectively. The propagator for rule 1
sets the value of the Head attribute of
Horizontal-scale-line to the line ob-
ject, Horizontal-axis-line. The Head
attribute is the single item that best
represents the rule object. The propa-
gator for rule 2 sets the value of Head to
a bounding box, the smallest rectangle
surrounding all the objects in the sets
Tick-marks and Label-set.

Generalized equivalence relations as
constraints. One of the distinguishing

76 COMPUTER

characteristics of the substrate of the
data graph in Figure 2 is its simple and
regular organization. For example, the
x-axis tick marks are horizontally aligned
and equally spaced. This organization is
reflected in the two corresponding con-
straints in rule 2.

Sets of items that group together like
the tick marks in the example can be
described by equivalence relations. A
simple equivalence relation is
Equal-length. When applied to a col-
lection of lines, Equal-length divides
the lines into a collection of nonover-
lapping equivalence classes, each con-
taining lines of the same length. An
equivalence relation is reflexive, sym-
metric, and transitive. We have extend-
ed the notion of the equivalence re-
lation to that of the generalized
equivalence relation. A generalized
equivalence relation generalizes an or-
dinary equivalence relation in two ways:

(1) It can be approximate in nature
so that it can produce classes that over-
lap.

(2) It has grouping relations (such as
Equal-spaced) that are not normally
thought of as equivalence relations.

An example of a strict equivalence
relation is Coincident, referring to the
positions of two objects. A generaliza-
tion of Coincident is Near, a relation of
great importance in diagram analysis. If
two objects are near one another, they
often have a logical relation, as do tick
marks and their labels. Near is a gener-
alized equivalence relation; it is not a
true equivalence relation because it vi-
olates transitivity (for example, if A is
Near B and B is Near C, it is not neces-
sarily true that A is Near C). Another
useful generalized equivalence relation
is Strictly-near used in rule 1.
Strictly-near requires that all parts of
one object be near some part of anoth-
er; it is not a symmetric relation.

Efficient parsing of graphics constraint
grammars. Solving a graphics constraint
grammar problem can be an expensive
computation. In finding a solution to a
given rule, a number of possible assign-
ments of objects tovariables might have
to be tried. This is the classic constraint

Rule 1:

Production:
Horizontal-scale-line Horizontal-axis-line, Ticks

Type constraints:
(Line Horizontal-axis-line)
(Labeled-x-ticks Ticks)

Geometrical constraints:
(Strictly-near Horizontal-axis-line Ticks L1)

Propagators:
Head e Horizontal-axis-line

Rule 2:

Production:
Labeled-x-ticks 3 Tick-marks, Label-set

Type constraints:
(Set-and-members Tick-marks Tick)
(Set-and-members Label-set Label)
(Line Tick)
(Text Label)

Geometrical constraints:
(Vertical Tick)
(Horizontally-aligned Tick-marks)
(Equal-spaced Tick-marks)
(Vertically-aligned :some Tick :every Label)
(Near :some Tick :every Label L2)

Propagators:
Head G (Bounding-box Tick-marks Label-set)

Figure 3. Two graphics constraint grammar rules that describe the horizontal
scale line in the data graph shown in Figure 2. Rule 1 refers to an object of type
Labeled-x-ticks, which is in turn defined by rule 2.

satisfaction p r ~ b l e m . ~ T h e usual combi-
natorial explosion met in these prob-
lems is mitigated by adopting the hier-
archical view, which factors the problem
into a set of small, independent prob-
lems that can be solved sequentially.
Furthermore, the constraints that deal
with the largest number of objects are
typically generalized equivalence rela-
tions. These are designed to generate
only solutions that include the maximal
number of objects satisfying the con-
straint. In this way, large numbers of
elements, such as the data points or tick

marks in data graphs, are turned into
single entities before they have to be
dealt with in higher level rules.

Another potentially expensive set of
computations involves geometrical re-
lations such as Near or Aligned. For
example, given an object A , we might
need to find all objects B within a dis-
tance L from A , that is, satisfying (Near
A B L) . The normal method of doing
this is to inspect every object in the
diagram, compute its distance from A ,
and compare that to L.

Given the large amount of random-

July 1992 I1

access memory in modern machines, it
is more efficient to do such computa-
tions by precomputing large data struc-
tures that make such computations run
quickly - that is, by trading space for
time.

In the Diagram Understanding Sys-
tem, this is done by building a pyrami-
dal data structure.* Each level of the
pyramid is a square array of cells repre-
senting the diagram at a different level
of resolution. During the precomputa-
tion, each graphic object is examined,
and a reference to the object is placed in
any cell touched by or containing the
object. The pyramidal data structure
then operates as a spatial index.

Given a point in space, the objects at
that point can be found immediately.
Conversely, given any object, the cells it
occupies are immediately available in a
list stored in the object. The approach is
general, because the same cell-based
representation is used whether the ob-
jects are lines, polygons, curves, or text.
Therefore, only one version of each
geometrical constraint algorithm needs
to be written - one that deals with
cells.

Spatial indexing can then be used to
efficiently compute a constraint such as
(Near A B L). A level of the pyramid is
picked on the basis of the parameter L.
Only the cells adjacent to the cells in-
cluding A are examined, and all the
objectsfoundin those cells are returned.
The resolution of the pyramid stops well
short of pixel-level resolution, so the
pyramidal data structure is not particu-
larly large - typically no larger than
128 x 128.

Some objects cover a lot of area, so it
is inefficient to generate the number of
cell references required for them. For
example, as the parsing proceeds,
bounding boxes to high-level objects,
such as the one propagated in rule 2,
might be quite large. They are stored in
a different data structure, optimized
for the efficient computation of con-
straints.

There are many complex issues in
diagram parsing that we will not at-
tempt to discuss here. For example, a
diagram might have many interpreta-
tions, so information in a figure caption
could be used to narrow the interpreta-

tion. Also, once the data is extracted
from a data graph, further analysis is
necessary to find data maxima, regions
of high slope, etc., for building the knowl-
edge representation that is to be que-
ried.

Results. Thus far, the text of 137 arti-
cles has been encoded using SGML,
and 270 diagrams have been converted
to object form. The Diagram Under-
standing System is working; about a
dozen diagrams have been analyzed with
early versions of the system. For data
graphs, the analysis has been able to
reconstruct the datapoint values them-
selves. The current prototype of the
Scientist’s Assistant incorporates ob-
ject-based diagrams - not bitmaps -
and contains automatically generated
hypertext links between text references
and figures, tables, bibliographic items,
and footnotes. Biologists have used the
prototype system and given us valuable
feedback. This feedback is helping to
guide the ongoing task of incorporating
more knowledge-based features in the
assistant.

Conclusions. The technology we are
developing has countless applications.
The biomedical literature alone has
grown by 7 million items since 1966 (as
indexed in the Medline on-line infor-
mation retrieval service) and is increas-
ing at a rate of 300,000 items per year.
Essentially every one of the 7 million
items is available solely in hard copy, so
all the techniques described here are
necessary if any of this knowledge is to
be converted into electronic form.

In the future, when scientific “pa-
pers” are originated, stored, and ac-
cessed purely electronically, it will still
be necessary to analyze the text and
diagrams in these electronic documents
in order to build useful knowledge bases.
The research described here is helping
to prepare us for the age of fully elec-
tronic documents. W

Acknowledgments
We thank Kent Wittenberg for insight pro-

vided during relevant discussions. This re-
search was supported in part by National
Science Foundation Grant No. DIR-8814522.

References
1. R.P. Futrelle et al., “Preprocessing and

Lexicon Design for Parsing Technical
Text,” Proc. Second Int’l Workshop Pars-
ing Techno[ogies, Assoc. Computational
Linguistics, Morristown, N.J., 1991, pp.
31-40.

2. R.P. Futrelle, “Strategies for Diagram
Understanding: Generalized Equiva-
lence, ObjectlSpatial Data Pyramids, and
Animate Vision,” Proc. 10th ICPR, Int’l
Con$ Pattern Recognition, Vol. 1, IEEE
CS Press, Los Alamitos, Calif., Order
NO. 2062, 1990, pp. 403-408.

3. R. Helm, K. Marriott, and M. Odersky,
“Building Visual Language Parsers,” CHI
91, Con$ Human Factors in Computing,
ACM, New York, 1991, pp. 105-112.

4. J.A. Mulder, A.K. Mackworth, and W.S.
Havens, “Knowledge Structuring and
Constraint Satisfaction: The Mapsee
Approach,” IEEE Trans. Pattern Analy-
sis and Machine Intelligence, Vol. 10, NO.
6, Nov. 1988, pp. 866-879.

Robert P. Futrelle is associate professor of
computer science and head of the Biological
Knowledge Laboratory at Northeastern
University. From 1975 to 1985, he served on
the biology faculty of the University of Illi-
nois at Urbana-Champaign.

Ioannis A. Kakadiaris, who received his MS
in computer science from Northeastern Uni-
versity, is a computer science PhD student at
the University of Pennsylvania. His research
interests include diagram understanding, fo-
veal sensing, and parallel processing.

Jeff Alexander is a graduate student in com-
puter science at Northeastern University,
where he received his MS. He also works at
the Charles Stark Draper Laboratory in Cam-
bridge, Massachusetts.

Catherine M. Carrier0 is a graduate student
in computer science at Northeastern Univer-
sity. Her research interests include diagram
understanding and parallel algorithms.

Nikos Nikolakis is a PhD student in comput-
er science at Northeastern University. His
interests include image processing and dia-
gram understanding.

Joseph M. Futrelle has worked for the Uni-
versity of Illinois and Symbolics Inc. He is an
undergraduate at Hampshire College, Am-
herst, Massachusetts, concentrating in com-
puter music.

78 COMPUTER

