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Abstract
Various methods for the vectorization of line 
drawings have been developed in the past.  The 
predominant ones are based on skeletonization/
thinning, edge detection and sparse pixel techniques.  
This paper describes a new approach to vectorization 
based on using spatial moment analysis of gray 
levels in k x k regions around each pixel to generate 
parameters for object models. The line model, in 
particular, consists of a core and two wing regions 
which are initially determined by a principal 
component analysis of the moments.  The model is 
refi ned by fi tting to the pixel gray levels, minimizing 
the sum of the core and wing errors. This study 
uses two evaluation procedures: In the fi rst, vector 
parameters from a ground truth model are compared 
to the fi tted models;  in the second, pixel statistics 
for the difference between the images of the ground 
truth model and the fi tted model are evaluated.  The 
results show that our approach can produce excellent 
results for the vector-derived diagrams common in 
scientifi c papers, the class of diagrams our group 
works on.

the resulting objects, producing a syntactic analysis 
(Futrelle, 1998; Futrelle & Nikolakis, 1995) and 
fi nally, produce a semantic analysis that will allow 
the diagram content to be stored and indexed for 
conceptual retrieval and related tasks.

This paper introduces a vectorization technique 
which goes beyond previous approaches. There are 
a number of factors that lead to our new approach, 
including: Moore s̓ Law - Going beyond the 1 bit 
per pixel approaches that originated in a time when 
systems were much smaller and slower.  Open 
Source - We plan to make our Java-based system 
available to all.  The Scientifi c Literature - Unlike 
most vectorization research, our work focuses on 
the Biomedical literature which produces about 5 
million distinct fi gures each year.  New Algorithms
- The desire to explore new algorithms and compare 
them with existing techniques.

We evaluate the vectorization (lines only) 
of a typical diagram from the Biology literature 
demonstrating that our method performs well,  in 
some cases with sub-pixel accuracy.  We discuss 
the challenges of Biology diagrams that lie beyond 
our successful approach to line vectorization, e.g., 
separating occluding elements.  The system is built 
using Java, Java Swing, and Java 2D and runs 
without recompilation on Sun Solaris, Linux (Intel) 
and Mac OS X.

2.  The Vectorization Process
Sections 2.1-2.4 fi rst describe the class of images 
we analyze. Then the moment analysis of local 
pixel distributions and how it leads to line models 
are discussed.  The line models are then fi tted to 
the full gray-level image through optimization and 
extension procedures.  The line models have natural 
ways of dealing with line intersections.

2.1  Images in scientifi c papers
When the author of a scientifi c paper creates a 
diagram, she/he creates it in a vector-based drawing 
application (Xfi g, MATLAB, Adobe Illustrator).  
Then the fi gure is saved in a vector-derived raster 
format for transmission to the publisher, or the format for transmission to the publisher, or the format
conversion is done by the publisher.  Such raster 

1.  Introduction
The problem of vectorization is the reduction of 
raster images to object representations, e.g., turning 
an image of a line segment into a few parameters -- 
the endpoints and width  (Ablameyko & Pridmore, 
2000).  The raster images can arise from scanning 
hardcopy or from electronic fi les generated by 
various applications.  The primary domains of 
application have been legacy engineering drawings 
and maps.  Over the years, a variety of techniques for 
vectorization have been introduced, each attempting 
to extend the applicability of the methods and to 
increase the speed and accuracy of vectorization 
systems.  

Much of the work on vectorization is focused 
on the development of effi cient and accurate 
vectorization systems, with less attention paid to 
the use of the vectors produced.  Our group has 
a different focus:  Extracting knowledge from 
scientifi c diagrams, particularly those in the Biology 
research literature.  The pipeline for such work is 
to fi rst vectorize diagrams (this paper), then parse 
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images typically contain precisely vertical and horizontal 
lines, lines whose width is precisely constant, etc., limited 
only by the raster conversion/compression algorithm.  We 
mimic this protocol in our work, but maintain realism by 
“tracing” over published diagrams using Adobe Illustrator. 
The SVG vector version of the diagram is used to extract 
the vector coordinates.   Our images are quite different 
from images generated from scanned hardcopies, the ones 
studied in much of the vectorization fi eld.  

2.2 Principal Component Analysis
Each pixel in the image is examined in turn.  A k x k
region, e.g., 16x16, centered on each pixel is used for 
principal component analysis (PCA) (Duda, Hart, & 
Stork, 2001) of the gray level distribution using the fi rst 
three moments, M0, M1 and M2 to produce a quadric fi t.   
Quadrics that may correspond to a line are discovered 
using three tests in sequence: 
1. Is the value of M0 not too large (all background) and 

not too small (all foreground)?
2. Are the M1 components, xav and yav approximately 

equal to the pixel position? (True if the pixel is near 
the center of the line or other symmetric object.)

3. Based on the M2 components, is the aspect ratio of the 
quadric appropriate to a line, “long and narrow”?
The data for each acceptable fi t is encapsulated 

in a QuadricFit object that contains the center point, QuadricFit object that contains the center point, QuadricFit
orientation angle, height and width of the principal 
components.  It also contains an integer group_id, used 
later when QuadricFit objects are clustered by similarity.  
A 2D quadrics array the size of the image is used to hold 
the QuadricFit objects.  This is an example of using 
image-sized object arrays, something not normally done 

in earlier 1-bit or integer-based approaches, but easily 
accommodated in RAM today.    

2.3 Clustering Quadric objects 
The pixels making up a single line in the image can lead 
to the generation of many QuadricFit objects, all near the 
lineʼs centerline.  Clusters of these objects are built that 
correspond to uninterrupted straight segments, using the 
following agglomerative technique (Duda et al., 2001):
1. Initially, a small set of adjacent QuadricFit objects are 

forced into a cluster and the mean and variance of the 
width and orientation are computed for the cluster.

2. An iterative algorithm builds a queue of additional 
adjacent QuadricFit objects for consideration.  Single 
objects are added to the cluster if their width and 
orientation are within a certain factor of the standard 
deviations of the width and orientation.  This addition 
must not increase the standard deviations in the 
cluster beyond chosen limits.

3. When all acceptable QuadricFit objects have 
been added, the cluster is complete and additional 
unclustered QuadricFit objects are examined to create 
additional clusters.

2.4 Line model fi tting and refi nement
The collection of objects in each quadric cluster is used 
to defi ne the termini and width of a line model.  The line 
model is an idealized one that consists of a core with 
foreground gray level and two wings with background 
gray levels, Figure 1. It is important to note that our 
method uses a full and explicit model of the gray level 
distribution of an idealized line and compares this with the 
full gray levels of the image, without the information loss 
inherent in binarization (thresholding) of the image.

Quadric fi ts stop short of non-line regions, e.g., near 
line crossings, T intersections and line termini.   The 
line models generated by quadrics are extended in such 
situations until they fail, e.g., when a core attempts to 
extend past the corner on the right in Figure 1A.  The set 
of centerline endpoints of all of the maximally extended 
line models is clustered based on the distance between 
the endpoints, typically resulting in clusters containing 
one to four nearby endpoints.  All pairs of endpoints in 
a cluster which terminate collinear lines are “sealed” 
by an additional core-only extension if the gap region 
has foreground values.  This allows lines to be merged 
across intersections.  Figure 2 shows the result of fi tting, 
refi nement and sealing for a typical data graph.

3. Evaluation
Quantitative evaluation of vectorization systems is 
important.  The actual coordinates of the vectors that are 
being sought must be known -- the ground truth.  The 
detected vectors are compared to the ground truth.  There 
are useful descriptions of how to conduct evaluations; but 
our approach is somewhat different.  For example, in line 
object evaluation in (Phillips, Liang, Chhabra, & Haralick, 

FIG. 1.  The line model shown in A is initialized by 
the quadric fi t (PCAs) of the gray level distribution.  
Then the positions of the two core/wing boundaries in 
the cross-section B are adjusted independently to mini-
mize the sum of the foreground and background errors 
(differences between the gray levels and the model).
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1998), the relative positions of the endpoints of the ground 
truth and detected lines are not taken into account, a 
measure we use and feel is important.  In (Liu & Dori, 
1997), the wide variety of comparisons done leads to less 
than optimal specialized comparisons.  In the evaluation 
here, besides comparing vectors, we conduct pixel-level 
comparisons by comparing anti-aliased rendering of the 
detected vectors with source pixel distributions to identify 
missed pixels and false alarms. In the discussion below, 
the ground truth vectors or raster image are labeled source, 
and the vectors generated by our system or the raster 
image rendered from them is labeled detected.  

The fi rst task in the vector comparisons is to match 
the detected lines with those in the ground truth.  This is 
done by requiring that the endpoints of the two correspond 
within a few pixels and that the slopes of the lines are 
similar, e.g., within π/125 radians. Our current system 
produces small artifacts, short segments near the ends of 
some of the polylines, cf. Figure 2.  These are called minor
components, contrasting with the major ones include in major ones include in major
the evaluations.  There are 38 source vectors underlying 
Figure 2.  Our system detects 39 major components, 
splitting one of the source lines into two.  The Euclidean 
distance separation is computed between corresponding 
endpoints, taking into account the one split line.  The 
perpendicular distance from the endpoint of the detected 
line to the centerline of the corresponding source is 
computed.  These are averaged over the 76 endpoints.  In 
addition, the difference in the lengths of the corresponding 
major source and detected components is computed. The 
results corresponding to Figure 1 are:

Average separation = 1.85 pixels
Average perpendicular distance = 0.07 pixels
Average length difference = 2.57 pixels

The average perpendicular distance, less than a tenth of 
a pixel, emphasizes how accurately our vectorization 
method can be when operating on vector-derived raster 
images.

Another evaluation metric we used is the comparison 
of the pixel distributions of the source and detected lines.  
This was done by thresholding both images at 128 (of 255 
gray levels) to separate out black foreground pixels and 
counting matched pixels (in both), matched pixels (in both), matched missed pixels (in source missed pixels (in source missed
only) and false alarms (in detected only).  The errors of 
interest are the missed and false alarms.  To bound the 
error between 0 and 100 percent, the missed pixels were 
normalized to the source image foreground pixel count 
and the false alarms to the detected image foreground pixel 
count.  The results are:

Missed pixel errors = 4.9%
False alarm pixel errors = 5.4%

The results of the evaluation show that our method is 
more than adequate at recovering source parameters from 
vector-derived images.

4. Previous Work
A common approach to vectorization is thinning to produce 
line skeletons (Lam, Lee, & Suen, 1992). This works 
well for portions of lines “in the clear”.  Skeletons also 
retain connectivity when passing through intersections.  
However, there are diffi culties in reconstructing 
intersections correctly (Hilaire & Tombre, 2002).  Our 
approach in which cores are projected into and through 
intersections is more straightforward than the various 
“correction” methods needed for the artifacts produced by 
thinning. 

In the interest of effi ciency, the Sparse Pixel 
Vectorization method has been developed (Dori & Liu, 
1999).  It examines fewer pixels than most methods.    But 
the method requires a collection of Junction Recovery 
Procedures to deal with its artifacts.  It is presumably more 
sensitive to noise because it ignores many pixels; our 
method uses the gray levels of every pixel to create and 
refi ne models.

The techniques closest to ours are described in an 
excellent paper (Song, Su, Tai, & Cai, 2002); a skeleton is 
created and then perpendicular runs are made to discover 
the line boundaries.  This technique is  “sparser” than ours 
and does not take into account full gray level distributions.   
The method relies on deleting objects once found, which 
destroys information from crossing lines, for example.  
Our method can fi nd a pair of intersecting lines without 
doing any deletions, e.g., the two pairs of crossing data 
lines in the upper portion of Figure 2.

Many numerical parameters are used in evaluation 
systems.  Often, the parameters that are optimal for one 
diagram or even for a portion of a single diagram are not 
optimal for another.  In one paper (Chang, Lu, & Pavlidis, 
1999), sweeps that cross contours can quickly fi nd sets of 
parallel edges which could help in choosing parameters.  
The choice of parameters affects run times.  Our prototype 

FIG. 2.  The SVP Viewer, showing the segments the 
system discovered (in pseudocolor). The two major 
line crossing were successfully “sealed” by the algo-
rithm.  There are small artifacts at some of the  poly-
line junctions which we are working to eliminate.  The 
original black and white diagram was derived from a 
JPEG in a Biology paper, with the data point mark-
ers and text omitted in this study.  This fi gure can be 
viewed in color at high resolution in Acrobat Reader. 
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system has undergone no optimization for speed, because 
that would detract from our explorations of a variety of 
strategies.  The prototype system uses about 1 minute 
of CPU time on a SunBlade 2000 to analyze a typical 
1000x1000 pixel diagram.

5. Future Work
The next stage, following vectorization, is parsing.  We 
have developed a successful diagram parsing system 
(Futrelle, 1998; Futrelle & Nikolakis, 1995) and are 
currently redeveloping it in Java.  Parsing produces 
a syntactic analysis of a diagram that can be input to 
a knowledge-based interpretation system, ultimately 
resulting in a representation for a diagram that allows 
conceptual analysis, indexing and retrieval.

One need only glance through a recent issue of Science
or Nature or an Open Access journal from BioMed Central 
to see the almost bewildering variety of diagrams being 
published.   A large fraction of the diagrams in Biology 
present challenges for vectorization, e.g., Figure 3.  Major 
additions are being made to our vectorization system to 
deal with the challenges.  One such addition will deal with 
occlusion by “delayering” which can be understood by 
considering a square black data point icon lying on a data 
line, as in Figure 3.  The unoccluded portions of the line are 
found fi rst.  What remains is the square, with the occluded 
line “within it”.  The pixels in the square are not deleted 
(set to background) but marked as being in the square.  The 
line can then be extended across the gap, sharing pixels 
with the square.   Strategies of this type are what led us to 
call our work the Strategic Vectorization Project or SVP.Strategic Vectorization Project or SVP.Strategic Vectorization Project

6. Conclusion
We have demonstrated that the new vectorization tech-
nique using moment-derived object models is capable of 
producing excellent results when applied to lines in vec-
tor-derived raster images of Biology diagrams.  There are 
millions of such diagrams published each year.  Vectorized 
versions of them will allow parsing and semantic analysis 

which will make them available for conceptual analysis, 
indexing and retrieval.  We are currently extending our 
vectorization techniques to model and analyze other object 
classes and multiple object occlusion. 
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FIG. 3.   One of the classes of challenges of sci-
entifi c diagrams is occlusion, such as the data line 
and data point occlusion examples shown here.   
Data to be reported does not arrange itself neatly 
as a designer of an engineering drawing can do. 


