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Biomedical text plays a fundamental role in
knowledge discovery in life science, in
both basic research (in the field of
bioinformatics) and in industry sectors
devoted to improving medical practice, drug
development, and health care (such as
medical informatics, clinical genomics, and
other sectors). Several groups in the IBM
Research Division are collaborating on the
development of a prototype system for text
analysis, search, and text-mining methods to
support problem solving in life science. The
system is called “BioTeKS” (“Biological Text
Knowledge Services”), and it integrates
research technologies from multiple IBM
Research labs. BioTeKS is also the first major
application of the UIMA (Unstructured
Information Management Architecture)
initiative also emerging from IBM Research.
BioTeKS is intended to analyze biomedical
text such as MEDLINE™ abstracts, medical
records, and patents; text is analyzed by
automatically identifying terms or names
corresponding to key biomedical entities (e.g.,
“genes,” “proteins,” “compounds,” or “drugs”)
and concepts or facts related to them. In this
paper, we describe the value of text analysis
in biomedical research, the development of
the BioTeKS system, and applications which
demonstrate its functions.

The large scale sequencing of the human genome
has greatly increased our knowledge of the genetic
basis of biological processes and accelerated the pace

of research and development aimed at treating dis-
ease and enhancing the health and well-being of hu-
mans. However, these advances also result in in-
creased complexity in understanding and applying
biomedical research and data. There is consensus in
the life-science (LS) industry and academic labora-
tories that managing the complexity of biological data
and knowledge requires an integrative, information-
based systems approach, in which computer technol-
ogy must play an essential role. For a cogent anal-
ysis of this situation and the role of computational
methods in life science, see References 1–3.

Key components of computational technology that
are relevant to this effort include analyzing, search-
ing, and mining biomedical text, and correlating the
structured data derived from texts with data derived
from biomedical experiments, transcribed medical
records, and so on. This paper describes an IBM Re-
search project to exploit and develop the text-
analytical technology needed for managing, analyz-
ing, and using biomedical text to solve problems in
life science. We call the system BioTeKS for “Bio-
logical Text Knowledge Services.” BioTeKS is also
one of the first major systems implemented with the
IBM Unstructured Information Management Archi-
tecture (UIMA), which is described later in this pa-
per, in other papers in this issue,4 and elsewhere.5
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This paper begins by describing the role and value
of text analysis in LS research and development, and
how BioTeKS fits into the broad range of technol-
ogies needed to manage text content. It then focuses
in detail on the BioTeKS system specifically, and how
BioTeKS is being used to explore text analysis, text
search, and text mining to support problem solving
in life science.

The role of text analysis in life-science
research and development

Text analysis is a key component in text-oriented un-
structured information management (UIM). The gen-
eral goal of text analysis in UIM is to transform un-
structured text information into structured
information, and to use this information to support
higher-level processes of text search, mining, and dis-
covery. (For comprehensive reviews of UIM, see Ref-
erences 4, 6, and 7.) Transforming unstructured text
into structured information means transforming
“chunks” of text into specific, discrete data objects
categorized or labeled by one or more attributes,
where the data objects are words, phrases, or larger
text segments. The essence of what the BioTeKS sys-
tem does is information extraction (IE) for life-
science text. Examples of IE include identifying
names of biomedical entities, like gene, protein, and
disease names (which may be expressed in multiword
phrases), and identifying more complex facts about
and relations between entities, such as interactions
between proteins, genes, and the functions associ-
ated with them, or the correlations between drug ef-
fects and disease indications. Several overviews of
text IE exist, in general,8,9 and specifically for life sci-
ence,10–12 and we assume readers have some famil-
iarity with the basic technical issues in IE.

The business and research value of extracting struc-
tured text information is that it can be used to solve
problems in key biomedical domains and increase
productivity in research and development. Text anal-
ysis can enhance general knowledge management
practices and tools, for example, by improving the
effectiveness (i.e., precision) of searching for doc-
uments in large collections, and by organizing these
collections into taxonomy groupings or topic clus-
ters for easier browsing. More importantly, text anal-
ysis can support knowledge discovery in various do-
mains. Papers on knowledge portals and text-mining
research in IBM can be found in recent special issues
of the IBM Systems Journal. 6,7,13,14

Figure 1 provides examples of text analysis phases
in life science in relation to four key phases of drug
research and development (see Reference 3). In the
“Target Selection” phase for a drug (scenario 1), for
example, a researcher needs to search scientific and
patent literature to find out what drugs or diseases
other researchers or institutions are working on, and
what is already known and patented in this field.
Knowledge discovery can increase the speed (and
hence the productivity) of a drug researcher finding
a drug target, a competitor�s patent activity, or a par-
ticipant in a clinical trial. In the “Preclinical” phase,
researchers may conduct experiments that provide
indications of relevant gene responses to drugs or
disease agents. Scenarios 2, 3, 4, and 5 all pertain to
finding literature describing aspects of genes and pro-
teins that can help researchers investigate hypoth-
eses about the relevance of these genes or gene prod-
ucts to some drug, disease, or biological process of
interest. For example, studies have shown that lit-
erature references to genes can improve the search
for gene homologies that may be relevant to iden-
tifying functions of novel target genes15 (scenario 2),
validate molecular pathways,16,17 and help interpret
why a cluster of genes might react together under
some experimental conditions18 (scenario 3).

In later stages of drug development, the effective-
ness of target drugs is evaluated in the “Clinical Tri-
als” phase (scenario 6). Text analysis of medical rec-
ords can provide information which can be combined
with other kinds of more traditional structured data
(e.g., individual genomic information), to assist in
data mining of factors associated with positive or neg-
ative drug and treatment effects. Text mining can be
used to find participants for a clinical trial (scenario
7), based on specific attributes of treatment, med-
ical history, and so on. Finally, once a drug is in the
marketplace, feedback about large-scale use under
uncontrolled circumstances provides additional valu-
able feedback. Text mining can be used to analyze
treatment effects as reported in various forums, field
reports, and call center records (scenario 8).

In each of these scenarios, text analysis has the po-
tential for reducing the time it takes researchers to
find relevant documents and to find specific factual
content within documents that can help researchers
interpret experimental data, clinical record informa-
tion, and business intelligence data contained in pat-
ents. As Ng and Wong put it, “The race to a new
gene or drug is now increasingly dependent on how
quickly a scientist can keep track of the voluminous
information online to capture the relevant picture
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(such as protein-protein interaction pathways) hid-
den within the latest research articles.”16

These text-based search and mining tasks are typ-
ically functions available in end-user applications.
BioTeKS has not yet been used to build all the ap-
plications implied in Figure 1. These applications
tend to be highly customized for specific needs and
practices of specific pharmaceutical organizations.
BioTeKS has focused instead on the core text anal-
ysis methods needed to extract the text data that such
applications would use as input for further higher-
level processing; that is, indexing a text search en-
gine or clustering search results, mining trends, or
associations among terms expressing concepts of
interest.

Document clustering using BioTeKS components
can be found as a function in the publicly accessible
Web-based Bio-Dictionary* tool19 developed by the
Computational Biology Center20 at the IBM Watson

Research Center. Bio-Dictionary uses pattern-
matching algorithms to analyze protein sequences
in relation to molecular-level subunits called “se-
qlets” (seqlets are to proteins roughly what words
and phrases in a dictionary are to sentences that use
them to express ideas). Much of the protein analysis
has nothing to do with text, per se, but as the system
searches for known and homologous proteins on
public protein databases such as Swiss-Prot**,21 it
also retrieves and compiles MEDLINE** abstracts that
describe facets of these proteins. These documents
contain descriptions of potentially relevant functions
and characteristics of the proteins under analysis.
The document clustering results shown in Figure 2
are a subset of several hundred MEDLINE documents
compiled by Bio-Dictionary for the sample protein
sequence “SODUM-BORU,” and the clusters are la-
beled with topically relevant keywords. These include
phrases suggesting attributes and functions. Hierar-
chical document clustering with cluster labels helps

Figure 1 Text–mining scenarios for four phases of drug development
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users browse document collections more easily than
unordered lists of MEDLINE titles, especially when
the cluster labels suggest topics for subsets of MED-
LINE abstracts. The clustering engine, an example
of BioTeKS application-enabling middleware, uses
noun phrases in its clustering algorithm and for la-
beling each cluster. BioTeKS annotators (described

later) extract these noun phrases and make them
available to the clustering engine. Other BioTeKS
components format the results of clustering as an
XML (eXtensible Markup Language) file that can be
presented to an end user as a dynamic (interactive)
HTML (HyperText Markup Language) Web page, as
shown in Figure 2.

Figure 2 Hierarchical document clustering results
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In this context, BioTeKS functions as a text-analysis
middleware component of a larger system that starts
with input documents obtained from some source
(e.g., search processes in the Bio-Dictionary tool),
and ends as an end-user application view (e.g., the
Web page in the figure) that enables end users to
do something useful with text documents, such as
browse them by means of a hierarchy of labeled clus-
ters. The labels suggest specific topics relevant to in-
terpreting the characteristics of the original novel
protein.

In the next section, we discuss the larger middleware
technology context for BioTeKS, and then we de-
vote the rest of the paper to describing BioTeKS text-
analysis methods.

Technologies for managing text content
A variety of technologies are needed to support text-
based knowledge management and discovery, from
accessing and managing documents (unstructured in-
formation) from various sources to delivering anal-
ysis results to end user applications. Figure 3 shows
a generic platform depicting this end-to-end se-

quence of technologies. BioTeKS focuses on the
green components in the figure: text-analysis meth-
ods, indexing, and storage of text-analysis data. Ap-
plication middleware engines access and further an-
alyze this text data. Many products are available from
IBM and other vendors to implement this platform
(see the Life Sciences Framework22 for a descrip-
tion of available IBM products and technologies).

Managing unstructured text information begins with
accessing text information using crawling or feder-
ated search methods. Once text is accessed, it needs
to be filtered or converted from a variety of formats
(e.g., PDF [Portable Document Format], HTML, XML)
into a standard form for further processing. The lat-
ter includes document parsing to extract text con-
tent (“blobs”) and meta-data, and it often involves
storing this information in local data warehouses
within an organization. Collected text information
is typically stored in diverse and heterogeneous re-
positories, including public and corporate Web sites
and internal corporate databases (e.g., Lotus Notes,
file systems). These basic functions are available in
standard IBM products (e.g., IBM DB2* Information

Figure 3 Generic platform for managing unstructured ( text ) information
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Integrator for Content23) or other vendor products
in the domain of content and document
management.

Once the basics of text access and warehousing or
storage are accomplished, text analysis of various
kinds can be carried out at a finer granularity, to sup-
port a wide range of text searching and mining ap-
plications. This is where the BioTeKS system and
UIMA come into play. The numbered arrows in Fig-
ure 3 show the high-level flow of information be-
tween these components. Accumulated documents
flow in to the text analysis component (arrow 3). Text
analysis processes in this component automatically
extract text features of various kinds and annotate
these features with linguistic and semantic informa-
tion that associates meaning with text features (e.g.,
a string is a “gene” relative to some resource). Text
analyses produce fine-grained, structured text data
that typically need to be stored and indexed for use
by higher-level applications. Structured data ex-
tracted from the document as meta-data (e.g., au-
thor, title, date, keyword annotations based on
MeSH [Medical Subject Headings] codes, etc.) and
extracted from text content (e.g., entity names such
as genes, drugs, or diseases contained in MEDLINE
abstracts) can be stored (arrow 4) in a relational da-
tabase for access by upstream text-mining applica-
tions using SQL (structured query language) database
queries. In addition, text content can be indexed in
a text search engine, enabling text search based on
many more terms indexed in the full document text
content.

The application-enabling engines identified in Fig-
ure 3 provide access to text-analysis data for text-
search and higher-level text-mining functions, includ-
ing tools that allow researchers to control these
analyses and visualize results. Arrow 7 in the figure
indicates access to indexed information by applica-
tion-level components, and arrow 5 indicates how
end-user (Web) applications communicate user re-
quests to these middleware application components.
For example, the user may submit a text query in
some query language, which is ultimately provided
as input to the text search engine via the “semantic
search” component in the figure. This component
can also contain additional functions to enhance
searching, for example, to help users express search
intentions in query languages, or to iteratively re-
fine searches by suggesting query terms based on
users selecting result documents they judge to be rel-
evant to their interests (i.e., “show me more like
this”). Searching can also be enhanced by ranking

result documents by their relevance to query terms,
and by clustering or categorizing documents, mak-
ing it easier for users to browse large collections of
search result documents.

Text-mining functions provide additional ways of or-
ganizing and visualizing text, either at the document
level or at the level of more specific text content.
Text-mining methods include analyzing associations
and trends between categories of entities, such as
correlations between names of researchers and re-
search topics, genes and gene products, drug and
compound effects and disease indications, and so on.
We discuss these and other text-mining applications
in more depth later.

The technology platform indicated in Figure 3 in-
cludes tools for developing applications, including
graphical user interfaces and Web services to man-
age the application logic supporting application cli-
ents. These services are used for controlling the in-
tegration and information flow among middleware
components like databases and search engines and
document-clustering engines. In the section, “Ap-
plication prototypes and application-enabling en-
gines,” we discuss examples of such applications.

An overview of the BioTeKS system
BioTeKS is a system focused on methods for ana-
lyzing or annotating biomedical text, including a
scheme for storing and indexing text-analysis data
generated from these methods and a suite of pro-
totype application-enabling engines for supporting
certain types of biomedical text-mining applications.

Figure 4 presents specific text-analysis components
of BioTeKS which were shown in green in Figure 3.
As shown, the text-analysis engine applies a sequence
of text annotators to annotate input documents. Text
analysis data is stored in a database and in a text
search engine, and application-enabling engines ac-
cess this text data and apply additional text-mining
methods to the data.

BioTeKS functions in a larger context where doc-
uments have already been crawled or compiled into
a collection, and a set of applications of interest might
already exist (e.g., text search applications). BioTeKS
focuses on the analysis and extraction of text infor-
mation from documents in this collection to support
text searching and mining applications.

BioTeKS uses the UIMA framework and tools from
which it derives much of its value. The component
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labeled “Text Analysis Engine” in Figure 4 also de-
scribes the essential elements of the UIMA implemen-
tation of BioTeKS. Other papers describe UIMA in
depth, and we only highlight aspects of it relevant
to describing BioTeKS.4,5

How UIMA improves text analysis processing. UIMA
(and BioTeKS) address the challenges of analyzing
text by standardizing and improving the process of
developing, deploying, and integrating the operation
of multiple text-analysis methods that operate on dif-
ferent levels of linguistic analysis.5 Document text
expresses ideas that involve all the complexity of hu-
man language expression. Analyzing the form and
content of text is complicated because it entails in-
tegrating and coordinating analysis methods for mul-
tiple levels of analysis of linguistic structure, from
character strings and word tokens to names and

phrases, to syntactic elements including clauses and
sentences, to still higher-level topic structures that
might span multiple paragraphs within documents
and even multiple documents. Each of these levels
of information requires specialized analysis meth-
ods, all of which need to be orchestrated and
integrated.

How BioTeKS improves text analysis processing for
life science. BioTeKS in turn is focused on meth-
ods for text analysis of biomedical text, which is es-
pecially complicated scientific text. What these meth-
ods are, and how these methods improve the analysis
of biomedical text, is the subject of the rest of this
paper. The starting point, however, is to use UIMA
as the framework to develop and orchestrate a col-
lection of text-analysis methods that automatically
identify names of biomedical entities (e.g., genes and

Figure 4 Overview of BioTeks system and UIMA
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proteins) and facts about them (e.g., a gene expresses
a protein, one protein activates another protein, a
gene cluster appears implicated in a disease syn-
drome, etc.). Table 1 summarizes features and func-
tions of the annotators that are used in the “Text
Analysis Engine” component shown in Figure 4.

In BioTeKS, text annotators have a standard imple-
mentation specified by UIMA, in which annotators
create, use, and interoperate via the Common Anal-

ysis System (CAS). CAS annotations are structures
consisting of attribute-value pairs, where the at-
tribute is some type of classifying or identifying de-
scription (e.g., a linguistic category like “noun,” or
a semantic category like “gene”) and the value is a
span of text in the document to which this annota-
tion applies. Each annotation can have additional
properties associated with it as well, such as the lo-
cation of the span of text in the document. Each an-
notator takes a CAS structure as input and returns

Table 1 Annotators used in BioTeKS

Annotator Name Function in BioTeKS Comments

LanguageWare
linguistic
engine

Used for tokenizing text
into strings and sentences.
Assigns generic lexical
information to strings.

Tokenization based on regular expression rules and dictionary lookup.
Dictionary lookup also provides generic lexical (lemma) information (e.g.,
part of speech). Dictionaries can be customized for specific categories of
entities.

POS (part of
speech) tagger

Assigns parts of speech
to tokens, using context.

Assigns parts of speech to tokens based on statistical model of terms in
context. Can also disambiguate POS annotations from prior annotators. POS
tagger can be trained on manually annotated document corpus. Default
training corpus is licensed from Language Data Consortium.28

FST (finite state
transducer)
with shallow
parsing rules

Parses sentences into
syntactic units (e.g.,
subject noun phrase).

General-purpose FST engine. Syntactic parsing rules customize the FST for
shallow parsing. Shallow parser assumes POS tags of individual string tokens.

Dictionary
Lookup

Assigns a lexical or
semantic category to a
string (e.g., “Trk A is a
protein”) and other
lexical information

General-purpose dictionary-based pattern-matching lookup. Takes tokens as
input or does its own tokenization. Includes reference to an authority (e.g.,
MeSH), canonical form, and synonyms. Multiple dictionaries for flexible
entity extraction; e.g., MeSH terms, genes, proteins, and drugs. Includes
functions for handling case, stemming, etc. Dictionaries developed as XML
files.

BioAnnotator Identifies biomedical
terms and phrases and
associates a UMLS
identifier with them.

General-purpose dictionary-lookup method specialized for UMLS. Takes
noun phrases as input and classifies them as “biological” if they match
selected categories of UMLS terms or contain UMLS terms. Includes regular
expression rules for disambiguating terms in context.

ChemFrag Identifies complex tokens
as organic chemical names.

Identifies organic chemical names using rules based on chemical fragment
strings. Does not identify specific chemical name with respect to chemical
name-resource.

DrugDosage Identifies phrases
containing drug name
and a dosage qualifier.

Uses dictionary lookup for drug names, quantities, and dosage qualifiers and
FST rules for identifying phrasal combinations of these elements.

Term Ontology
Mapper

Adds taxonomy
information to identified
terms.

Dictionary lookup methods identify terms relative to ontology and dictionary
resources, but in some cases, like MeSH (Medical Subject Headings), there is
additional information for placing terms in a hierarchical taxonomy. This
annotator fills in this additional semantic information.

Term Categorizer Assigns a lexical and
semantic category to a
string (e.g., “congestive
heart failure” is a disease
symptom).

Term Categorizer is an annotator based upon machine-learning techniques
applied to training documents (see text).

Relation
Extractor

Identifies syntactic
clauses containing noun
and verb phrases.

Extracts clauses consisting of subjects, verbs, and objects. Takes shallow
parsing annotations as input.
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a modified CAS structure as output. Text annotators
are executed in the text analysis engine shown in Fig-
ure 4, and multiple annotators can be organized in
a pipeline.

The current set of BioTeKS text annotators are
shown in Table 1. These annotators focus on infor-
mation extraction; that is, identifying the location,
category, and properties of the names of significant
biomedical entities and identifying certain relations
between these entities. However, to analyze entities
and relations requires exploiting more generic nat-
ural language processing (NLP) analyses, beginning
with tokenization and part-of-speech tagging of text
strings. These are discussed in the next section.

UIMA also specifies various services and methods for
collection-processing management, resource man-
agement for linguistic and other resources needed
by annotators (e.g., dictionary or ontology resources),
and CAS consumer methods for translating CAS an-
notations to other forms of data that can be indexed
and stored (see Figure 4). Neither UIMA nor
BioTeKS have functions for accessing document col-
lections in the sense of crawling. (Figure 4 shows doc-
ument access and management as external to the
text-analysis component). However, BioTeKS does
adopt the UIMA collection-processing scheme for im-
plementing “collection reader” functions, for feed-
ing documents from a compiled collection into a text-
analysis engine. A collection reader parses each input
document and initializes a new CAS structure con-
taining the initial flat text on which annotators will
operate, as well as optional document meta-data
(e.g., title, author, etc.). BioTeKS has a collection
reader specialized for MEDLINE abstracts, and a
reader for aspects of patent documents. In both
cases, the documents are initially available as XML
documents with labeled fields for document-level
meta-data, such as, “title,” “author,” and “date,” as
well as fields for extended segments of text contain-
ing the contents of the documents (e.g., MEDLINE
abstract, patent abstract or claims, etc.).

NLP annotators. BioTeKS includes the following ge-
neric NLP text annotation methods:

● LanguageWare* linguistic engine
● Part-of-speech (POS) tagger
● Finite state transducer (FST) with shallow parsing

syntax rules

The LanguageWare linguistic engine24 segments text
into tokens and sentences, using a specific text an-

notation model. The LanguageWare tokenizer com-
bines dictionary lookup with algorithmic processing
to segment input text into distinct lexical units.25 Lan-
guageWare dictionaries also contain additional lex-
ical information that can be associated with the lex-
ical items identified as part of segmentation, such as
a word�s lemma or part of speech. This lexical in-
formation is useful for the subsequent annotation
processes, including disambiguation of POS tags.

The POS tagger and FST component annotators are
research-enhanced annotators based on an earlier
text analysis engine developed by IBM Research,
called Textract, which was available in the IBM In-
telligent Miner* for Text (IM4T) software product.26

(Textract components are described in more detail
in Reference 27.) These two annotators, along with
the LanguageWare tokenizer, use a common “text
annotation framework” (TAF), also described in Ref-
erence 27. TAF specifies a set of CAS annotation types
appropriate for multiple levels of linguistic process-
ing, for example, tokens (strings), terms (including
multiword phrases), sentences, clauses, and so forth,
and properties of these linguistic objects, such as the
character location of the span of annotated text in
a document, part of speech for the span, and so forth.
Most BioTeKS annotators interoperate through this
annotation type system, or through annotation types
derived from this set.

The output of the tokenizer consists of CAS anno-
tations which form the input to the POS tagger. The
POS tagger uses a statistical language model, created
during a separate training phase, to disambiguate the
possible POS tags based on the language model. Sta-
tistical methods are also used to determine a POS tag
for tokens which are not in the language model. The
tagger needs to be trained manually to develop this
statistical language model by using a corpus anno-
tated with correct POS tags.28

The shallow parser analyzes syntactic relationships
among these POS-tagged terms, and produces a shal-
low syntactic parse, which groups tagged terms into
noun, verb, prepositional phrases, and so forth, and
in some cases, identifying the “subject,” “verb,” and
“object” clause structure of sentences. Figure 5 shows
an example of shallow-parsing results for a sentence,
indicating POS tags and syntactic groups of tagged
terms (NP is noun phrase, VP is verb phrase, PP is
prepositional phrase, NPP is noun phrase with prep-
ositional phrase, and VG is verb group). BioTeKS
does not generate the ideal semantic representation
in the top frame, but it does generate the interme-
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diate shallow parse. This syntactic parse is useful for
certain types of relation extraction because verbs typ-
ically describe relations between named entities in
a sentence.

The shallow parser is realized as a cascade of finite
state grammars running within a generalized FST en-
gine. This transduces one sequence of symbols into
another.8, 22 For example, rules corresponding to En-
glish grammar are used by the FST to compose a se-
quence of word tokens (with parts of speech, such
as noun or adjective, disambiguated by a statistical
tagger) into noun phrases (NPs) to combine NPs and
other phrasal units into syntactic arguments, and to
assign grammatical roles (such as “subject” or “ob-
ject”) to these arguments. FST rules are declarative
and capture linguistic regularities in human-readable
form. An FST compiler compiles these rules into a
runtime “state transition graph” executable that can
be run efficiently against sequences of text fragments
(e.g., document content) or, more abstractly, applied
to sequences of annotations that may be of lexical,
syntactic, or indeed any annotation type. In addition
to its use for shallow parsing, the FST engine pro-
vides powerful general-purpose capabilities for
manipulating text structures, syntactic or otherwise.

These annotators produce a rich set of generic lin-
guistic annotations that capture key linguistic infor-

mation which can be used by other BioTeKS anno-
tators and applications, as we describe in the
following. This information is useful outside the con-
text of biomedical text. Indeed, pre-UIMA versions
of the TALENT (Text Analysis and Language Engi-
neering Technology) tools on which the TAF com-
ponents are based have been used in applications
involving customer call centers and other
information.13,29

These annotators can be modified to work effectively
on biomedical text. For example, standard POS tag-
gers and shallow-parser rules are developed for sen-
tence structures in generic text (e.g., news articles),
and need to be modified for sentences and word-to-
word statistical patterns characteristic of narrated
physician reports or other kinds of biomedical text.
In addition we should note that additional NLP an-
notators exist, including deep syntactic parsers.30

However, we have not yet exploited these for life-
science tasks.

Annotators for biomedical entity extraction. Entity
extractors are annotators that identify the location
of an entity name in a text and categorize the name
relative to one or more knowledge resources like
MeSH and UMLS** (Unified Medical Language Sys-
tem), both developed by the National Library of
Medicine.31 Examples shown in Table 1 include en-

Figure 5 Shallow parsing results for a sentance in PubMed abstract 12568865

(MUTATED_GENE: BrCA1 FUNCTION: inhibits, PROCESS,  soluble HLA secretion 
CONFIDENCE: 75%)

PP

NPP

NP NP NPVG

A/a/DT point//NN mutation//NN of//IN the//DT BrCA1//JJ gene//NN
appears/appear/VBZ to//TO inhibit//VB soluble//JJ HLA//JJ secretion//NN

A point mutation of the BrCA1 gene appears to inhibit soluble HLA secretion

A point mutation of the BrCA1 gene appears to inhibit soluble HLA secretion.
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tity extractors for identifying genes, MeSH terms
(also used for manual annotation of MEDLINE ab-
stracts), drug names, and chemical-compound
names.

Figure 6 shows a debugging tool used in BioTeKS
to annotate in color specific categories of entities in
a MEDLINE abstract. The legend at the bottom iden-
tifies semantic categories of words (e.g., “genes,”
“diseases,” “chemicals and drugs”), and the data
structure in the right frame is a CAS annotation for
the selected term in the document. The annotation
frame shows the CAS annotation for lamin A/C. Note
that this is a variant of the gene LMNA, which ap-
pears in the title line (TI). Note also that the gene
string is annotated relative to LocusLink,32 a pub-
licly available gene description database.

Entity extraction is a broad domain (see Reference
8), and there are multiple techniques available.

BioTeKS is exploring three approaches to entity ex-
traction, and Table 1 identifies for each annotator
the general technique used to implement each an-
notator, namely:

● Pattern matching of terms (roughly string lookup)
using a dictionary or database of known terms in
some target category of terms (e.g., “MeSH”
terms, LocusLink-derived “gene” names, etc.)

● Rules defined over a set of features or annotations
characteristic of a category of terms

● Machine learning, based on human-created train-
ing documents containing correct examples of
some target category of terms and also based on
features or annotations associated with the target
category of terms

The strategy in BioTeKS is not to build annotators
for every possible biomedical entity. This is an open-
ended task that typically requires access to special-

Figure 6 MEDLINE abstract annotated with automatically extracted MeSH and gene names
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ized text sources (e.g., medical records) and domain
expertise. Rather, we have developed examples of
general techniques for a set of representative enti-
ties typical of bioinformatics (e.g., genes and pro-
teins), medical informatics (e.g., drugs and disease
indicators), and patent mining (e.g., drug and chem-
ical names, disease indicators). New annotators can
be built by extending this set of annotators by add-
ing new dictionaries, FST rules, or training documents
in the case of machine learning. This process is best
done with domain experts, who can provide more
in-depth expertise necessary for evaluating the qual-
ity of entity identification and for inferring how to
iteratively improve the quality of annotators by add-
ing terms and synonyms to dictionaries, improving
rules, or developing more accurate training
documents.

The Dictionary Lookup annotator uses a “dictio-
nary” of entity names, each categorized in relation
to a knowledge resource such as MeSH. For exam-
ple, in addition to a dictionary of MeSH terms, we
developed a dictionary for gene names, compiled
from the public LocusLink database.32 These dic-
tionaries are stored as XML files that include the ca-
nonical form of biomedical entity names, as well as
lexical variants, and other information, such as ref-
erences to the source (database, authority, or “on-
tology”) and an identifier of the entity name in that
source.

The annotator applies pattern matching to match to-
kens in the text (potential names) to each item in
the dictionary. The matching process is more than
simple lookup because it can also handle variations
in case and morphology (e.g., “Trk A” or “Trk-A”),
including stemming (e.g., the common “stem” un-
derlying plural vs. singular forms of a word).

The Dictionary Lookup annotator is actually several
annotators, each specialized for specific diction-
aries. Dictionaries can be built from MeSH and UMLS
resources available from the National Library of
Medicine33 (NLM), as well as publicly available data-
bases specialized for specific biomedical entities like
proteins (Swiss-Prot21) or genes (LocusLink32). Note
that many pharmaceutical and biotechnology com-
panies have also developed internal and proprietary
dictionaries of terms, including variants and syn-
onyms. In general, dictionary tools need to be able
to incorporate new dictionary resources, and the Dic-
tionary Lookup tool can do so, using other dictio-
naries when they are properly formatted.

The BioAnnotator (see Table 1) categorizes noun
phrases provided by a shallow parser as biomedical
phrases when they match terms in UMLS, either as
complete matches or as partial (substring) matches.
BioAnnotator uses the LanguageWare linguistic en-
gine described earlier to identify UMLS terms. This
is done by replacing the default English language dic-
tionary in the engine with a dictionary based on
UMLS. BioAnnotator also has a rule-based compo-
nent to identify biological terms not present in UMLS
and to resolve certain types of ambiguity in extracted
gene names (e.g., some gene names are also used to
name proteins or nonbiological entities, such as
“BIKE”).34 Dictionary Lookup and BioAnnotator
are annotator options that have overlapping func-
tions, but also explore different entity identification
methods.

The Term Categorizer annotator elaborates on the
semantic context of identified terms. For example,
MeSH terms are categorized in a hierarchical tax-
onomy. This annotator optionally associates iden-
tified terms with additional information such as syn-
onym and cross-reference information. Upstream
applications can use this information in various ways,
for example, to create a navigation function for
browsing and selecting terms. This function could
be bundled with Dictionary Lookup, but because it
is an optional level of annotation, it is appropriate
to keep it separate and invoked only when needed.

Entity extraction using dictionary lookup works well
when domain experts can enumerate the names of
entities of interest (as well as variants of these
names). However, this is not always possible. The
second approach to entity extraction is based on
rules, not enumeration, where the rules can be de-
veloped by domain experts, either directly or by us-
ing machine-learning methods. The context in which
a name occurs can sometimes provide feature cues
for the semantic type of name for a term. Where this
is the case, it is sometimes possible to write rules
based on these features. The ChemFrag and Drug-
Dosage annotators are examples of annotators based
on rules.

The ChemFrag annotator combines regular expres-
sion rules that recognize organic chemical names
with rules that assemble these fragments into larger
descriptions. A small dictionary of prefixes and suf-
fixes is used in some of the rules. An example of a
recognized chemical fragment is Pivaloyloxymethyl
1-ethyl-1,4-dihydro-4-oxo-7-(4-pyridyl)-3-quinolinecar-
boxylate. Note that identification in this case only
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means categorizing chemical names as “chemical
names,” and does not mean identifying the specific
chemical name in a standard resource (e.g., Refer-
ence 35). Rules are formal expressions, such as, “A
fragment contains balanced parentheses or brack-
ets and possibly, numbers and hyphens.” ChemFrag
is a hybrid consisting mainly of rule classification
based on features, augmented with a small dictio-
nary of known prefixes and suffixes.

The DrugDosage annotator (see Table 1) is also a
hybrid annotator.36 In DrugDosage, dictionaries are
used to identify known drug names (e.g., “Ibupro-
fin”) and strings associated with quantities and dos-
ages (e.g., the quantity “20,” and the abbreviation
“mg” for milligrams). Rules classify co-occurrences
of drug names, quantities and dosage abbreviations
(e.g., “ibuprofen, 20 mg”) as “drug and dosage” con-
cepts. The rules for identifying these concepts use
a modified version of the FST engine used in the TAF
shallow parser. However, instead of compiling and
using English language syntax rules, the rules for
drugs and dosages are modified to apply to noun
phrases that contain patterns of drug names, quan-
tities, and dosage modifiers. Writing rules manually
requires expertise and iterative refinement to achieve
satisfactory levels of accuracy.

The BioTeKS team is also exploring machine learn-
ing (ML) approaches to entity extraction. ML ap-
proaches are especially useful when neither dictio-
naries nor explicit rules are easy or possible to build.
ML approaches consist of a training phase involving
the creation by humans of a training corpus, provid-
ing true examples of a category of entity to be learned
(e.g., drug or gene names). The ML process automat-
ically builds a classification model of the target cat-
egory of term based on features associated with terms
in the document context. These may be features of
the term itself (e.g., distinctive characters, substrings,
prefixes, or suffixes) or features of the linguistic and
semantic context in which entity names occur.

There are several ML tools, some of which are avail-
able in the public domain, for example, the WEKA
tools.36 In BioTeKS, we are using an IBM Research
prototype for interactive and semi-supervised learn-
ing.37 The prototype uses a statistical-machine-learn-
ing algorithm called Generalized Winnow (an im-
proved version of the standard Winnow algorithm),
described in References 38 and 39. Some of the ad-
vantages of this tool are its interactive visual user
interface for guiding the process of identifying true
instances of an entity category based on confidence

levels (estimates of in-class probabilities), the op-
tional use of UIMA text annotators by the learning
algorithm, and the use of the resulting classification
model as a UIMA annotator for entity extraction.

Annotators for biomedical relation extraction.
BioTeKS also provides the capability to extract what
is expressed or predicated about specific entities,
once they have been identified. Extracting predica-
tions means identifying relationships expressed be-
tween two or more terms describing simpler enti-
ties. The following are examples of biomedical
relationships (where the bracketed and capitalized
terms refer to semantic categories of entities related
to each other):

1. [PROTEIN:]“ABP1”co-occurswith[PROTEIN:]
“SRV2.” (NOTE: the actual source sentence is
“SH3 domain of ABP1p binds specifically in vitro
to the proline rich segment of SRV2p.”)

2. [RELATION:] located in, [SUBJECT:] collagen
molecules, [OBJECT:] type XIII plasma mem-
branes (of these cells)

3. [RELATION:] localized in, [SUBJECT:] [PRO-
TEIN:] “PRP20”, [OBJECT:] [CELL STRUC-
TURE] the nucleus

4. [MUTATED_GENE:] BrCA1, [FUNCTION:]
inhibits, [PROCESS:] soluble HLA secretion
(The original sentence is: “Apocytochrome c
blocks caspase-9 activation and BAX induced
apoptosis.”)

As with entity identification, there are multiple ap-
proaches for extracting information about relations
between entities, and BioTeKS is exploring at least
three methods.

● Computation of mutual co-occurrence of terms
(“unnamed relations” for short)

● Extraction of syntactic clauses using shallow and
deep linguistic parsing, with additional filtering of
relations based on the category of entities in the
relations (“named relations” for short)

● Graph mining, based on compiling relationships
with semantic and syntactic information, and
searching for common structural patterns in
subgraphs.

The first technique computes the frequency of co-
occurrence of entity names within a window of text,
for example, a sentence, paragraph, abstract, or other
segment. Co-occurrences can be found in multiple
documents, or multiple occurrences can be found
within a single document. We call these “unnamed
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relations” because they identify a likely association
between two or more terms, but cannot identify or
name the specific relationship. An example is item
1 in the examples listed previously (a co-occurrence
relation). Unnamed relations can be expressed in a
number of ways, including in a database triplet con-
sisting of the associated entities and a quantitative
measure of the strength of association (see Refer-
ence 40 for details).

The next two analysis methods use linguistic infor-
mation to identify relations, including information
about verbs connecting two entities. The name of
the verb can be used to name the relationship, and
hence we call these “named relations.” The Rela-
tion Extractor annotator (see Table 1) extracts syn-
tactic relations, using the shallow-parsing results of
the Shallow-Parser annotator to extract syntactic
clauses connecting nouns and verbs. In this case, the
relation is expressed as a verb connecting a subject
noun and an object noun, as shown in examples 2
and 3. These examples are essentially a compilation
of verb, subject, and object noun phrases extracted
from the Relation Extractor annotator.

Once a set of such relations is extracted, it needs to
be further analyzed to focus on specific relations of
interest. For example, example 4 is an instance of
a set of relations filtered by identifying verbs that
are characteristic of gene functions. Identifying gene
functions is a key bioinformatics task, and the bioin-
formatics research community has provided a mech-
anism for manual creation of descriptions of gene
functions, including a reference to a specific MED-
LINE record where this function is described in de-
tail. These descriptions are called Gene RIF (refer-
ence into function) descriptions. Example 4 is
expressed as a sentence and also by a somewhat more
formal representation labeling the entities and func-
tions expressed by verbs such as “blocks,” “activa-
tion,” and “induced.” This representation is shown
only for illustrative purposes because there are cur-
rently no formal standards for creating Gene RIF de-
scriptions (although Gene Ontology41 would be a
candidate). The National Institute of Standards and
Technology (NIST) sponsored the first Genomics
TREC (Text Retrieval Conference) track in 2003, with
a focus on finding MEDLINE abstracts and Gene RIF
descriptions for target genes using text information
extraction and search methods. Our work on iden-
tifying gene functions is based on IBM�s participa-
tion in this NIST-sponsored Genomics track.42

The Relation Extractor annotator is also being ex-
tended to include graph-mining techniques. Graph
mining applies data-mining techniques to graphs that
are derived from syntactic parse trees, where the
graphs� nodes and edges represent terms and syn-
tactic relations, respectively. Inokuchi has developed
graph-mining algorithms to find salient and frequent
patterns or subgraphs corresponding to interesting
relations.43

Performance of BioTeKS annotators. It is reason-
able to ask is how fast the BioTeKS annotators are
in processing documents. In the case of MEDLINE ab-
stracts, the corpus we are indexing currently consists
of about 11 million abstracts, corresponding to 35
gigabytes of text. The performance depends on what
annotators are applied in a text-analysis engine (see
Figure 4), what is done with the annotations (e.g.,
are they used to index a search engine or load a da-
tabase), the computing resources applied, and po-
tential optimization methods. We are using a single
XSeries* 335 Intel Xeon** 2.8 GHz processor with
1.5 GB of memory running Linux** release 9.0. Some
idea of the throughput can be gained from the re-
sults of two analysis runs:

● In the first run, it took 40 hours to annotate the
full MEDLINE corpus, using selected annotators
and annotator translation applied to each MED-
LINE abstract. Each MEDLINE abstract in XML for-
mat was parsed, terms and sentences were token-
ized, and Dictionary Lookup was used three times
to identify MeSH terms, expanded gene names,
and gene function verbs. CAS consumers were used
to translate annotations to an indexable format.
An additional 120 hours were needed to create a
Juru XML index (see “Semantic text search”) from
the MEDLINE abstract content, meta-data, and ex-
tracted annotations.

● In the second run, 360 hours were needed to an-
notate the full MEDLINE corpus, using selected an-
notators and annotation translation. Each MED-
LINE abstract in XML format was parsed, terms and
sentences were tokenized, and POS tagging, shal-
low parsing, and Dictionary Lookup for MeSH
terms were applied. CAS consumers were used to
create indexing input for text search (without ac-
tually creating a Juru XML index), and for creat-
ing noun-phrase feature files for on-demand clus-
tering of document search results.

The difference between these two cases is the use of
POS tagging and shallow linguistic parsing. It is gen-
erally the case that such processes are computation-
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ally intensive compared to other processes: for ex-
ample, the current shallow parser can parse 14
documents per second, as compared to Dictionary
Lookup, which can process between 200 and 1558
documents per second, depending on the size and
complexity of the dictionary entries. However, in-
dexing the entire MEDLINE corpus (or any other cor-
pus) is likely to be done very infrequently, and once
it is done, the indexes can be incrementally updated
as new documents are added to the source collec-
tion. There are numerous parameters influencing
processing throughput, and several optimization
strategies are being explored.

Quality of BioTeKS entity and relation annotators.
It is important to evaluate the quality of entity and
relation extraction, but it is also quite difficult, given
the state of the art in these technologies. Evaluation
requires the manual definition of a test bed of ac-
curately categorized entities or relations, against
which the results of text annotations can be com-
pared. This is difficult because of the inherent dif-
ficulty of unambiguously assigning meaning to lan-
guage expressions (humans do not always agree on
how to categorize a term or phrase), and because
there are virtually no comprehensive test beds against
which to compare performance (see Reference 10
for a discussion of this state of affairs). Nonetheless,
the BioTeKS project is pursuing the evaluation of
selected annotators. The following are some
examples.

The BioAnnotator tool described earlier identifies
“biomedical concepts” corresponding to noun
phrases that contain one or more keywords in one
or more UMLS thesauruses (including MeSH key-
words). An evaluation against the GENIA test bed of
670 MEDLINE abstracts44 produced standard preci-
sion, recall, and F-values45 of 0.87, 0.94 and 0.90, re-
spectively, for approximate matching (i.e., finding
phrases that have any GENIA term in them; for a full
report, see Reference 34). These are reasonable fig-
ures, although identifying more specific categories
of terms, such as specific MeSH or UMLS terms, may
be more difficult and is the subject of ongoing
investigation.

An unpublished evaluation of the ChemFrag anno-
tator evaluated the accuracy of identification of or-
ganic chemical names in a manually annotated test
bed of ten patent documents. The evaluation pro-
duced precision, recall, and F-values of 0.91, 0.94 and
0.92, respectively. These are also reasonable figures
although the sample is small and there is consider-

able room for improvement. Note that identification
in this case means only categorizing names as any
“organic chemical names,” and does not mean iden-
tifying the structure of that compound (see Refer-
ence 35).

Regardless of these results, information extraction
(entity names and relations) is very difficult, and a
very active and challenging domain of research. A
few examples can indicate the difficulties. Annota-
tors need to identify lexical variants of an entity name
based on case and stemming. A case variant is ex-
emplified by “trk A” vs. “Trk A.” Handling stem-
ming variants means identifying the common stems
expressed in variations resulting from factors like plu-
ralization, as in “actin filament(s),” or by tense vari-
ation as in “bind(s/ing).” The entity annotators de-
scribed earlier include an approach for handling case
and stemming variants, but there are also ambigu-
ities that require taking the larger context into ac-
count. In a biomedical context, case may carry in-
formation; for example, the term “BIKE” capitalized
is likely to be a gene name, whereas “bike” or “Bike”
is likely to be the vehicle. Annotators need to be able
to take into account the context in which ambiguous
terms occur in order to resolve the ambiguity.

Annotators need to be able to handle partitive phrase
variants, that is, terms that are phrases, and that may
match part of larger phrases of biomedical interest.
A partitive phrase variant is exemplified by finding
the term “dendritic” in the phrase “dendritic struc-
tures” in a MEDLINE abstract, but not finding this
specific phrase in MeSH, while many other phrases
with the term “dendritic” (e.g., “dendritic cells”) do
occur in MeSH. The entity annotators described ear-
lier can also handle partitive phrase variants, but
again, there are policy issues to resolve. In some
cases, we may want only strict matching of phrases
relative to some resource like MeSH, whereas in
other cases, we may want to be made aware of
phrases that contain biomedically relevant terms
(e.g., “dendritic structures”) even if these specific
phrases do not actually appear in MeSH. The Bio-
Annotator uses this criterion to identify “biologically
interesting” phrases.

Annotators need to be able to resolve other types
of word-sense ambiguity. Names of entities can be
ambiguous without taking context into account. This
is especially true of gene names, which often do not
conform to simple naming conventions, and which
can be ambiguous with respect to other common En-
glish language terms. A simple dictionary lookup
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finds the gene names “FHC” or “OF” in the following
sentences. Both gene names are represented in a
gene dictionary based on LocusLink:32

● “Recent genotype-phenotype correlation studies
in familial hypertrophic cardiomyopathy (FHC)
have revealed that some mutations in the beta-my-
soin heavy chain (BMHC) gene may be associated
with a high incidence of sudden death and a poor
prognosis.” (from PubMeD** PMID 8655135)

● “BACKGROUND OF THE INVENTION”
(from a section title of a US patent)

In the first sentence, “FHC is also an acronym for “fa-
milial hypertrophic cardiomyopathy,” and in this con-
text “FHC” is not a gene name. The “OF” gene in the
second example is actually a preposition in a patent
document title, which is capitalized. These are ex-
amples of word-sense ambiguity, where the same
term can mean different things depending on the con-
text in which it occurs. This is a well-known and clas-
sic problem in NLP.8 Identifying the names of en-
tities often requires additional word-sense
disambiguation processes, which typically entail an-
alyzing the context in which names occur. The Bio-
Annotator annotator includes methods that use cer-
tain types of features to select the correct word sense.
An example is exemplified in the PubMeD sentence
above: “. . . in the beta-mysoin heavy chain (BMHC)
gene. . .” The presence of the term “gene” in the
phrase “. . . (BMHC) gene” is additional evidence that
“BMHC” is indeed the name of a gene.

BioTeKS includes annotators that compare the re-
sults of multiple annotators and choose the most
plausible annotation. For example, the POS tagging
and shallow-parsing annotators assign the syntactic
annotation “PREPOSITION” to the “OF” keyword in
the patent example above. A disambiguation rule
that requires gene name annotations to apply only
to keywords that are annotated with the syntactic an-
notation “NOUN” will reject the “GENE” entity name
annotation for this string annotated as a “PREPOSI-
TION.” Similarly for the “FHC” gene, an abbrevia-
tion annotator can associate phrases like “familial
hypertrophic cardiomyopathy” with acronyms like
“FHC” in close textual proximity.46 A disambigua-
tion rule gives precedence to the “ABBREVIATION”
annotation, compared to the “GENE” entity name.
Disambiguation rules must be written for a variety
of cases, and we are exploring these in the BioTeKS
project.

Like entity extraction, evaluating the accuracy of ex-
tracted relations is quite difficult. It is necessary to
develop test beds with real examples of relations
against which to compare relation extractors. The
BioTeKS project has data for two evaluations of re-
lation extraction. One evaluation focused on protein-
protein interactions in a manually annotated set of
573 MEDLINE abstracts based on a protein interac-
tion database developed by the Munich Information
Center for Protein Sequences.47 We conducted an
analysis of mutual co-occurrence, and filtered the un-
named relations by selecting relations with “protein”
entity names as subject and object nouns. This re-
sulted in precision and recall measures of 0.30 and
0.40 respectively.48 An analysis of the errors points
to the complexity of identifying protein names and
limitations of the MEDLINE abstracts, as opposed to
full source literature. For example, we identified
problems relating to handling complicated synonyms,
such as the synonyms for “SRV2,” which are “Srv2p,”
“SRV2p,” “CAP,” “CAP1,” and so forth. We devel-
oped functions to identify protein complexes, such
as those represented as “prot1-prot2,” which also ex-
press protein interactions.

Other problems are related to complex syntax, as in
a sentence like “Proteins A, B and C interact with
D.” In this case, mutual co-occurrence might find
all pair-wise relations among A, B, C and D, but only
those connecting A, B and C with D may be valid.
We discovered that many of the relations we detected
which had not been tabulated actually were discussed
in the abstracts, but had not been tabulated by the
Munich Information Center for Protein Sequences
database because they were not reports of new ex-
periments. Finally we eliminated missing relations,
which were not discussed in the abstracts but only
in the full papers. After taking all of these factors
into account, we found a more respectable precision
of 0.91 and recall of 0.84.

A second evaluation involved finding MEDLINE doc-
uments (and sentences in them) that describe gene
functions for a target gene. We alluded to this task in
our earlier discussion of the NIST Genomics track.42

The track organizers created a test bed of 500 000
MEDLINE abstracts that were associated with man-
ually created Gene RIFs describing the functions as-
sociated with genes described in the abstracts. Par-
ticipants in the Genomics track had two tasks. The
first task was to find relevant abstracts and Gene RIFs,
given a target gene, where a relevant abstract is one
that describes a function of the gene and, in partic-
ular, is cited in a Gene RIF entry for that gene. For
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the 50 genes provided as test queries by NIST, the
BioTeKS team achieved a mean average precision
of 0.28. The second task was to automatically extract
the best sentence describing a gene�s function from
an article known to describe the gene�s function.
Gene RIF descriptions (created by biology experts)
were used as a “gold standard” for describing gene
functions. The BioTeKS team achieved .505 on a
measure of similarity computed between the text
summaries generated by the BioTeKS system for
each MEDLINE abstract (a sentence selected from the
abstract), and the “standard” description contained
in the Gene RIF text.42

Relation extraction based on co-occurrence statis-
tics, syntax, or even graph mining is a good start but
may not be abstract enough to represent the deeper
semantics of what is being asserted or predicated
about the entities named in the relations. Annota-
tors need to map varied forms of relationship expres-
sion to a common underlying relationship. For ex-
ample, a purely syntactic analysis would extract as
separate relations the following active and passive
forms of a relationship: “Trk A expression is inhib-
ited by factor X” vs. “Factor X inhibits Trk A expres-
sion.” To extract the common underlying relation-
ship, a top-down approach may be necessary, using
a more knowledge-based and ontology-based ap-
proach for representing relations. The analysis of se-
mantic relations is an active area of research in the
bioinformatics and computational linguistic research
communities.17,49,50

Indexing and accessing text annotations. The text
annotators described in the previous sections all pro-
duce CAS annotations. Typically, these annotations
need to be stored for each document in the collec-

tion so that they can be accessed easily for further
collection-level text-mining processing and applica-
tions. In UIMA, CAS annotations are converted to
other forms of data by implementing CAS consum-
ers. Examples of CAS conversions in BioTeKS are
shown in Table 2, and include extractors which cre-
ate formatted input for indexing a database and text-
search engine, noun phrases for a clustering engine
(described later), and an XML file of the annotations
represented as XML tags embedded in the source doc-
ument (and viewable as Web pages, as in Figure 6).

CAS consumers iterate, filter, and translate CAS an-
notations into other formatted data, including strings
and flat files. The details depend on the text-anal-
ysis data needed by applications. For example, the
database schema alluded to in the figure includes a
table for storing extracted terms and their offsets (lo-
cations) in documents. This information is used to
compute mutual co-occurrence statistics for text min-
ing applications.40 In other cases, storing text-anal-
ysis results is convenient for performance reasons.
For example, the noun phrases used for document
clustering can be extracted in real time for an ad hoc
collection of documents (e.g., resulting from a
search), but computing and storing them ahead of
time in a specialized file format improves overall clus-
tering performance.

Biomedical ontology resources. An ontology is a
conceptual framework for defining the basic classes
of entities in some domain of knowledge, the rela-
tionships these entities have to each other, and the
organization of concepts in terms of higher-level con-
cepts, typically taxonomic in nature.51,52 The term on-
tology is often used to refer to a range of linguistic
and conceptual resources, from thesauri and dictio-

Table 2 Examples of CAS conversions in BioTeKS

1. CAS to index specification: Generates an indexing input for a text search engine. The text search engine used in BioTeKS
indexes conventional content keywords indexed in the full-text index, sentence-boundary annotations, and a specifiable set
of “semantic” annotations extracted by the text annotators.

2. CAS to database index: Generates a database load file for batch database indexing of text annotations. The database
schema indexes document meta-data (e.g., title, author, date, etc.), extracted terms and statistics (e.g., location in source
document), and semantic identifying information for terms (e.g., MeSH identification code).

3. CAS to noun phrases: Generates a formatted flat-file representation of indexing features needed as input for application-
level clustering of document collections, such as that resulting from a text or database search. These cluster features could
also be stored in a database.

4. CAS to XML file: Generates XML for the document text, with text annotations represented as inline XML-tagged strings
and used for viewing entity annotations (e.g., MeSH terms) in a Web browser, with annotated terms highlighted and linked
to their CAS annotation data structures. (see Figure 6)
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naries containing records defining key terms, syn-
onyms, and so forth in some domain, to taxonomies
that classify names and phrases in higher-level cat-
egories, and formal knowledge representations that
might support automatic inferences and certain types
of reasoning.

In biology, an ontology like MeSH33 provides a set
of broad-based, multidisciplinary concepts and cat-
egories that biomedical experts (librarians) use to
annotate the content of literature in terms of key con-
cepts describing genes, proteins, cell function, an-
atomical objects, diseases, and so on. The Gene On-
tology41 (GO) is a more specialized and semantically
richer ontology that organizes knowledge about
genes and cell functions associated with genes. Re-
lations may be taxonomic (e.g., “Trk A” is a “recep-
tor”), or part-whole (e.g., “cell membrane” is part
of “cell”).41 Ontologies have to be built and main-
tained, and this is a difficult, labor-intensive, and ex-
pertise-intensive task. The National Library of Med-
icine supports major ontology development efforts
(the UMLS metathesaurus33,53), as do many other re-
search institutions (e.g., the GENIA Project11).

As discussed earlier, we use MeSH to create a lookup
dictionary of terms expressing biomedical concepts.
Dictionaries are not the only way that entity names
can be identified (rules and machine-learning meth-
ods are among the alternatives), but they are an effec-
tive first approximation. Ontology information can
also be stored in a relational database to support da-
tabase queries on this information, and BioTeKS in-
cludes software components for loading MeSH and
UMLS information into database schemas.

Application prototypes and application-
enabling engines
The value of the annotations produced by BioTeKS
is a function of the applications that use these an-
notations. In this section, we briefly highlight sev-
eral application prototypes we have built with
BioTeKS to indicate how it can be used. We have
focused on two broad classes of applications: text
searching and text mining. Searching refers to find-
ing collections of documents that meet some search
criteria. Text mining refers to analyzing collections
of documents at a more fine-grained level, to iden-
tify, for example, relationships and trends among spe-
cific topics and concepts expressed within documents
in a collection. Text mining can also be applied to
the results of a search or to collections of documents
derived from other kinds of processes. The follow-
ing are several examples.

Semantic text search. One of the most basic appli-
cation functions is searching for documents, for ex-
ample MEDLINE abstracts, using biomedical terms.
The focus in BioTeKS on generating rich semantic
annotations of terminology in biomedical documents
suggests the opportunity for text search to index not
only keyword content, but also the semantic anno-
tations associated with those keywords. That is, we
want to explore the value of indexing and searching
not only keywords corresponding to a specific gene
name, such as “LMNA,” but also indexing and search-
ing annotations associated with these keywords, such
as the category annotation “gene” associated with
“LMNA.” BioTeKS uses an IBM Research text search
engine called Juru XML54–56 to explore the indexing
and search of annotations generated by BioTeKS
annotators.

Semantic search can refer to many things,8 but for
our purposes it means simply indexing semantic in-
formation (in our case expressed as annotations) as-
sociated with keywords, and using this in the search
process. Juru XML can index and search both key-
words (based on text content) and semantic anno-
tations of text keywords expressed as XML tags for
keyword annotations, initially stored in CAS anno-
tations.54,56 The results of a Juru XML search are re-
turned as a list of documents or document compo-
nents, ordered by their relevance to the original query
terms. For example, we can index all “sentences,”
the entity names contained within the span of these
sentences, and other syntactic phrases (typically verb
phrases) expressing biological functions of interest.
This allows us to form queries on structures more
closely approximating certain types of relations, such
as protein-protein interactions.

For example, the following query, expressed in XML
tags, will find sentences that contain keywords an-
notated as “proteins” and syntactic phrases that con-
tain keywords annotated as “biological function”
(typically verb phrases like “binds to” or “inhibits”):

�Sentence�

�Protein�SRV2�/Protein�

�Function��/Function�
�Protein��/Protein�

�/Sentence�

In this query, the user wants to see MEDLINE abstracts
that contain sentences with a specific protein
“SRV2,” any other protein, and terms and phrases
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that have been annotated by BioTeKS as “biolog-
ical functions.” The specific annotator used for an-
notating sentences in this way is the Dictionary
Lookup annotator (see Table 1), using dictionaries
of protein names and biological function terms. This
query does not ensure that the abstracts which are
found will contain an actual protein-protein inter-
action, but pending evaluation, we believe such que-
ries will greatly increase the likelihood of finding this
combination of semantically annotated terms, and
hence find actual interactions of interest.

Document clustering. Document clustering is a way
to organize document collections (such as those de-
rived from search results) in topical clusters. Clus-
tering can complement text search or any other func-
tion that compiles collections of documents as part
of an analytic process. We previously discussed an
example of document clustering in the context of the
Bio-Dictionary tool12 (shown in Figure 2). The role
of BioTeKS, as we indicated, is to extract text fea-
tures, such as noun phrases, for input to the clus-
tering-engine algorithm. These noun phrases are ex-
tracted using the shallow linguistic parser, and this
annotator in turn uses tokenization and POS tagging
annotators.

There are numerous clustering methods and tools,
and we have experimented with several approaches
in BioTeKS for different purposes. The clustering
engine in Figure 2 uses a so-called subspace projec-
tion clustering method.57 We also have used this clus-
tering engine to organize the results of the text search
engine described in the previous section. Other clus-
tering methods available in BioTeKS include a mod-
el-based hierarchical clustering tool58 and a cluster
tool called “SearchEssence,”59 which create a con-
cept hierarchy from the collection of results returned
by a search and label the clusters using the names
of entities extracted by other annotators.

Association mining using MedTAKMI. MedTAKMI
(Medical Text Analysis and Knowledge Manage-
ment) is a version of the TAKMI* (Text Analysis and
Knowledge Mining) system for mining relations and
trends among different categories of named entities
in a text collection based on search.13 Users select
a collection of documents (e.g., MEDLINE abstracts)
and one or more categories or subcategories of en-
tity in an ontology, such as MeSH, and then invoke
an analysis of associations between these categories
of entities. Association analysis can be presented to
end users as a spreadsheet table. For example, a user
might want to view associations between two selected

term categories like “membrane proteins” and “or-
gans and diseases.” Cells in the table corresponding
to terms that co-occur relatively more frequently than
some background value are highlighted. Links can
be provided from a cell to documents with the cor-
responding associations. Association mining and
other MedTAKMI text-mining functions, including
trend analysis, term distribution analysis, and so on,
are described more fully in the paper by Uramoto
et al. in this issue.60

Analyzing mutual co-occurrences among terms us-
ing lexical networks. Lexical networks are visualiza-
tions of the unnamed relations between extracted
terms which we described earlier.40 Nodes in a net-
work graph represent the names of entities (e.g., pro-
teins), and the links represent relatively strong sta-
tistical correlations between these entities within a
sentence or paragraph (e.g., protein-protein inter-
actions). Lexical networks allow pair-wise term re-
lations computed in documents to be compiled into
longer sequences that span multiple documents. The
meaning of these longer sequences is not always clear
and must be treated cautiously, but the links do pro-
vide clues to possible interesting connections. In
some cases, these connections are genuine discov-
eries. For example, we replicated Swanson�s discov-
ery of a connection between “Raynaud�s disease” and
“fish oils” using lexical networks,61–64 and we have
explored the use of lexical networks in life-science
demonstration prototypes. Figure 7 shows two ex-
amples of lexical networks. Term-to-term relations
are generated from text-analysis data, which is ex-
tracted using BioTeKS text annotators. Numbers are
strengths of associations. One network shows con-
nections between a set of protein interactions ex-
tracted from a set of 600 MEDLINE documents. For
example, “TIP20” is linked to “Sec20P” with an as-
sociation strength of 65. The latter in turn is linked
to “Sec22.” Other biomedical phrases, such as “Golgi
complex,” also co-occur with these protein names
in MEDLINE abstracts. The second network shows
terms that co-occur with the drug name “tamoxifen”
in the context of a collection of documents retrieved
from a text search engine using the query “breast
cancer.” The connection between “tamoxifen” and
“EGF” (“epidermal growth factor,” circled in red)
is of special interest.

In BioTeKS, mutual co-occurrence computations are
based on text annotators that extract terms (e.g., pro-
tein names like “TIP20” and chemical names like
“tamoxifen”) and their location in documents. CAS
consumers index these extracted terms for each MED-
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LINE document in a relational database. Mutual co-
occurrence is a text-mining method applied to a col-
lection of MEDLINE documents and implemented as
a database query on the text data stored in the da-
tabase for this collection.40 These computations can
be performed for predefined collections or subcol-
lections of documents and on the unnamed relations
also stored in a relational database for later access
by an application.

Analyzing gene clustering using the MedMeSH
Summarizer. MedMeSH is an application prototype
that takes as input a cluster of gene names derived

from a micro-array expression analysis, retrieves
MEDLINE abstracts that contain those genes, and clus-
ters MeSH terms extracted from those abstracts in
ways intended to suggest the functions associated
with these genes, at least insofar as these have been
expressed in the literature as MeSH keywords. The
idea is to organize MeSH keywords into topical clus-
ters that can help to explain why these genes react
collectively.65 Figure 8 shows a sample screen shot
of a MedMeSH Summarizer cluster analysis. The
gene cluster is derived from gene expression data
obtained from micro-array experiments. Keywords

Figure 7 Lexical networks showing terms and relations derived from a collection of text documents
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in the TERMS window are MeSH terms extracted and
clustered from MEDLINE abstracts containing the
gene names in the cluster. The figure shows that
terms like “glucose,” “yeast,” and “hexokinase” are
associated with the given set of genes. These terms
indicate that these genes are involved in glycolysis,
the process by which glucose is broken down in the
cells of all higher animals.

The input genes are shown as the nodes of a graph.
The input gene cluster for this example is a group
of yeast genes encoding the enzymes involved in gly-
colysis. If the similarity between two genes is greater
than the threshold (which can be specified by the end
user), an edge is drawn between the nodes. Clicking
on an edge shows the terms common to the genes,
as expressed in MEDLINE abstracts that refer to the

genes in the graph. For example, the terms common
between TDH1 and TDH2 are shown in the popup
window when you click on the link shown in red.

Building applications using BioTeKS. The applica-
tion prototypes we have described all have a similar
general design. Each application has one or more
functions, such as document search, document clus-
tering, or text mining of associations or statistical co-
occurrences between terms across a collection of doc-
uments. Each function requires structured text data
as input and computes new information based on it.
The input text data is extracted using one or more
text annotation methods executed by BioTeKS. Typ-
ically, text-mining methods apply to text data for a
collection of documents, and therefore, text data
must be accumulated across documents in a collec-

Figure 8 Sample results of cluster analysis by MedMeSH Summarizer
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tion and stored in a persistent form. The role of
BioTeKS is to apply a sequence of text annotators
(orchestrated in the “Text Analysis Engine” in Fig-
ure 3) to documents in a collection, and to provide
the translation methods (CAS consumers) to create
text data formats (e.g., database load files) to index
the text data in a form that allows it to be easily ac-
cessed by upstream text-search and text-mining appli-
cations, such as MedTAKMI or document clustering.

In this sense, BioTeKS is a middleware system that
can be used to build applications and that can be used
for many application-level tasks. Many important de-
tails of how BioTeKS is used will vary with different
target application requirements. For example, dif-
ferent sets of annotators will be needed for different
application-level functions. We also anticipate that
text annotators built for BioTeKS will need to be cus-
tomized or extended for specific research or poten-
tial customer applications. We know, for example,
that pharmaceutical companies have internal knowl-
edge resources including document collections and
thesauri of terms and concepts proprietary to how
these companies conduct research and development.
Using BioTeKS to solve specific problems would re-
quire incorporating additional resources (dictionar-
ies, etc.) into the BioTeKS annotators.

The value of BioTeKS in this applied setting is two-
fold. Firstly, it casts each application scenario into
a similar sequence of application-design consider-
ations—each application implies one or more types
of documents (we have focused on MEDLINE ab-
stracts), one or more types of text data, a configura-
tion of one or more text annotators that can extract
relevant types of text data, and one or more CAS con-
sumers for translating annotations into persistent
forms for convenient access by upstream applica-
tions. The database model implied for the text-min-
ing applications discussed earlier may or may not be
useful for other applications. Secondly, the value of
BioTeKS is in the quality of its specific text anno-
tation methods. The development and refinement
of these methods is an ongoing process, involving
both software engineering and basic research.

Conclusions
BioTeKS is a significant technical initiative within
the IBM Research laboratories to integrate and cus-
tomize a broad suite of text-analysis projects and
technologies targeting problems in the domain of
biomedical text analysis. The goal of the BioTeKS
text-analysis methods is to convert initially unstruc-

tured text information into structured text data, com-
mensurate with structured data derived from sources
other than text (e.g., gene names in micro-array ex-
periments, or drug, treatment, and disease references
in clinical records). The domain of text-analysis prob-
lems that BioTeKS addresses is very broad, and many
problems are the subject of basic research initiatives
in industry and academic institutions.

Accordingly, both BioTeKS and UIMA are works in
progress. Future work will focus on research issues
and on solving real-world problems. Research will
focus on improving the quality of BioTeKS anno-
tators for both biomedical entities and the facts and
relations associated with them. We need to better
exploit emerging biomedical ontology resources in
the process of IE. In addition, we believe machine
learning techniques hold great promise for improv-
ing the quality of IE. Improving text-analysis quality
also requires the development of, or access to, test
beds or “gold standards” for correct identification
of biomedical entities and relations. Lack of such test
beds is a problem in the bioinformatics research com-
munity, as we noted earlier (see Reference 10), and
it is equally problematic in analyzing clinical records
and patents. Finally, a key requirement for making
progress is the use of text analysis for the kinds of
real-world drug-discovery and biomedical-discovery
tasks surveyed in the introduction. The domain of
potential IE problems is very large, and progress will
require focus and feedback that we believe implies
significant collaboration with domain experts (and
problem solvers) in biomedical research and devel-
opment organizations in both academia and industry.

In this context, BioTeKS has two key advantages that
make it a useful platform for pursuing research in
biomedical text analysis. First and foremost,
BioTeKS is implemented using the UIMA framework.
This means that BioTeKS can support serious ex-
perimentation in the development of text-analysis
methods. Second, IBM Research has invested in core
text-analysis technologies, including machine learn-
ing approaches. Combined with the UIMA frame-
work, BioTeKS provides a broad-based platform for
tackling all the key text-analysis problems, whose so-
lutions are essential to progress in life-science re-
search and development.
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