
Abstract: We have developed software based on the 
Stevens landmark theory to extract features in 
utterances in and adjacent to voiced regions.  We then 
apply two statistical methods, closest-match (CM) and 
principal components analysis (PCA), to these 
features to classify utterances according to their 
emotional content.  Using a subset of samples from the 
Actual Stress portion of the SUSAS database as a 
reference set, we automatically classify the emotional 
state of other samples with 75% accuracy, using CM 
either alone or with PCA and CM together.  The 
accuracy apparently does not depend strongly on 
measurement errors or other small details of the 
present data, giving confidence that the results will be 
applicable to other data. 
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I. INTRODUCTION 

 
 If computers are to interact with humans in a natural 
way, they will need a speech interface that recognizes 
emotional as well as linguistic content of speech.  Scherer 
et al [1998] argue that modeling of speaker states and 
emotions can improve the quality of automatic speech 
recognition, speech synthesis, and speaker verification 
and that such emotion effects are relatively robust to 
changes in the phonetic context.  Imagine your computer 
responding with sympathy when you are sad, explaining 
things more simply when you are frustrated, or speaking 
calmly to you when you are stressed.   
 Speech scientists have been able to identify a number 
of acoustic speech parameters that correlate with the 
speaker's emotional state.  Johnstone & Scherer [6] report 
that analysis of glottal opening and closing characteristics 
proved useful in interpreting the emotion-dependent 
characteristics of the acoustic waveform.  Quast [10] 
identifies a number of parameters that appear to carry 
crucial information, e.g. location of the sentence foci, 
intensity values, relation of the fundamental frequencies 
(F0) at the focus and ends of the sentence, speech rate, 
and spectral histogram.   
 There have been few attempts and limited success at 
actually recognizing and classifying affect in speech.  
Roy and Pentland [11] used six acoustic measurements 
(F0 mean and variance, Energy variance and derivative, 
open quotient, and spectral tilt) to classify spoken 

sentences as approving or disapproving.  They achieved 
65% to 85% classification accuracy for speaker 
dependent, text independent data.  Their results suggest 
that energy and F0 statistics may be effectively used for 
automatic affect classification.  Stolcke et al. [14] used 
prosodic cues as part of a statistical approach to model 
dialogue acts in conversational speech.  They achieved a 
71% accuracy in labeling act-like units such as statement, 
question, agreement, disagreement, and apology.  
Dellaert et al. [1] applied several statistical pattern 
recognition techniques to classify utterances according to 
their emotional content.  For the purposes of 
classification they used only pitch information extracted 
from the utterances.  They also introduced a spline 
approximation of the pitch contour to extract features.  
Their best method resulted in a 20.5% error rate in 
classifying four emotions: happiness, sadness, anger, fear.  
Human performance at the same task resulted in an 18% 
error rate. 
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 We have had success in applying landmark detection 
coupled with Principal Component Analysis in detecting 
significant differences in the vocalizations of typically-
developing and at-risk infants [2, 3, 4] and in detecting 
fatigue in adult speech [8].  Here, they apply similar 
techniques to classifying stress in speech. 
 
 

II. THE DATA 
 

 We are using the Actual Speech Under Stress portion 
of the SUSAS (Speech Under Simulated and Actual 
Stress) database [5].  A common highly confusable 
vocabulary set of 35 aircraft communication words make 
up the database. All speech tokens were sampled using a 
16-bit A/D converter at a sample rate of 8kHz.  We are 
using samples recorded under four conditions: neutral - 
Neutral Speech, medst - low Dual-Tracking task stress, 
hist - high Dual-Tracking task stress, and scream - 
Scream Machine Roller Coaster stress.  We have 
restricted this study to the four male speakers: m1, m2, 
m4, who have a General USA Accent; and m3: who has a 
Southern USA Accent.   
 We formed a base of features for classification using 
only the first sample of each of the 35 words for each 
speaker in each emotional state whenever such samples 
were present.  Table 1 shows the number of words for 
each speaker/emotional-state used to create the base. 
 



Table 1: Number of words used to 
create the base for classification 

 neutral medst hist scream
m1 35 35 35 29 
m2 34 35 35 29 
m3 34 35 35 23 
m4 35 35 35 23 

 
 We then created test cases for classification using the 
second sample of each of the 35 words for each speaker 
in each emotional state whenever such samples were 
present.  Table 2 shows the number of words for each 
speaker/emotional-state test case. 

 
Table 2: Number of words per sample 
for the 16 test cases 

 neutral medst hist scream
m1 35 35 35 15 
m2 8 35 35 24 
m3 34 35 34 15 
m4 35 35 35 2 

 
 

III. METHODOLOGY 
 

 We listened to many words in the SUSAS Actual 
Stress database before attempting to perform automatic 
classification.  One subjective impression was that the 
vowels were longer, relative to word duration, in the 
medst and hist words than in the corresponding neutral 
words.  Another impression was that the consonants were 
clipped, shorter and less structured than their neutral 
correspondents.  To model these impressions, we needed 
to extract more than pitch information. 
 Using software that we have developed [2, 3, 4] based 
on the Stevens landmark detection theory [7, 13] for the 
recognition of phonetic features in speech, we extracted 
measurements on twenty-five features from the ~35-word 
sets of speech samples.  These served to summarize the 
speaker, state, and sample. 

 
From Syllables: 
Timing: 
mean duration, mean duration of voicing, mean voiced 
fraction (i.e. mean of voiced duration/total duration), 
maximum and mean voice onset time (VOT), maximum 
and mean offset time, mean rate (i.e. mean of 1/duration), 
mean voiced rate (i.e. mean of 1/voiced duration). 
Pitch (F0): 
median and mean F0, fraction of syllables in which the 
pitch rises (falls) during the first half (second half) of the 
syllable.  
Structure: 
mean, median, and maximum number of landmarks per 
syllable. 
 

From Words: 
Pitch: 
root mean square standard deviation of F0, relative range 
of pitch (see below), 10th,  50th, and 90th percentile value 
of the relative range, 10th,  50th, and 90th percentile value 
(over all the words) of the "central" F0 value, i.e., the 
value in the middle of the word. 
 
 The relative range of pitch is defined as the maximum 
(over each word) of the 90th percentile values of the pitch, 
minus the minimum of the 10th percentile values, divided 
by the median value (over the word).  Thus, it is a non-
negative number, and typically less than 1.  We divide by 
the median F0 so that the results are not strongly skewed 
for irrelevant reasons, such as a generally lower F0 for 
men than women.      
 For each state, we normalized the four speakers’ data 
by comparing their values for each of these features to the 
mean and standard deviation σ of all four in that state.  
Specifically, we subtracted the mean and then divided by 
a certain variability measure.  This measure consists of σ 
and an a priori estimate of measurement error, combined 
in RSS (root sum-of-squares) fashion.  Thus, for example, 
the squared measure for an F0-related feature consists of 
the sum of the observed four-subject value of that 
feature’s variance σ2 plus (5 Hz)2, because 5 Hz 
represents an estimate of the irreducible measurement 
uncertainty for F0.  Such irreducible measurement 
uncertainties depend primarily on the recording 
environment or computational details (for F0, at least). 
 Observe that this normalization process yields feature 
values of zero mean and approximately unit variance for 
the base cases.  As 25-element vectors, then, the 
normalized base-case summaries have norm (Euclidean 
length) ~ 25½. 

When comparing one speaker/state/sample summary 
to another, we simply evaluate the RSS of the vector of 
differences in feature values.  By construction, this also 
produces values ~ 25½ to 50½ when comparing two base 
cases, and we might anticipate similar or even smaller 
results when comparing two samples from the same 
speaker and state.  In fact, this was routinely observed. 

To identify a state from a test set of 
speaker/state/sample, we hypothesize a state, normalize 
the corresponding summary using the mean and 
variability parameters for that state, and compare to each 
of the base cases of the state.  Across all speakers and 
states defining the base, 16 summaries in all, the lowest 
RSS difference identifies the closest-matching, or CM, 
state (and, in principle, speaker). 
 An important refinement is available.  Of the 16 sub-
ject/state normalized feature vectors that define the base, 
some linear combinations may be redundant.  Eliminating 
these would improve the robustness of the results, 
because the redundant components would otherwise tend 
to model inappropriately small details of the data, i.e., 



“noise”.  Principal Components Analysis (PCA: 
equivalently, singular value decomposition, SVD) 
determines the extent to which this occurs among the set 
of vectors.  In this case, the first three PC’s accounted for 
99% of the total variance, suggesting both a high degree 
of linear dependence and a high degree of linear 
predictability. 
 
 

IV. SOFTWARE AND ALGORITHMS 
 

 Our landmark detector is based on Stevens' acoustic 
model of speech production [13]. Central to this theory 
are landmarks, points of abrupt spectral change in an 
utterance around which listeners extract information 
about the underlying distinctive features. They mark 
perceptual foci and articulatory targets.  Our program 
detects three types of landmarks:  
 

glottis (+g, -g): marks the time when the vocal folds 
start  and stop vibrating;  

sonorant (+s, -s): marks sonorant consonantal 
closures and releases; 

burst (+b, -b): aspiration/frication ends due to stop 
closures. 

 
Our analysis is based on a low-resolution 

spectrogram.  The SUSAS signals are sampled at 8 kHz 
and analyzed into a small number, nominally 32, of 
separate, frequency intervals of ~256 Hz each.  An 8 kHz 
rate provides information only up to 4 kHz, but this is 
sufficiently high to include at least 3-4 formants for an 
adult and to show the distinction between voicing and 
other speech sounds: fricatives, stop releases, bursts, etc. 
(See Fig. 1.)   

 

 
Figure 1: Waveform and Landmarks (top) 
and Spectrogram (bottom)of “eighty” as 
spoken by male 2 in high stress 
conditions. 

 
To locate the landmarks, spectral intervals are 

grouped into six broad bands.  An energy waveform is 

constructed in each of the six bands, the time derivative 
of the energy is computed, and peaks in the derivative are 
detected.  These peaks thus represent times of abrupt 
spectral change in the six bands. Energy in bands 2 (1200 
- 2500 Hz.) and 3 (1800 - 3500 Hz), e.g., provides 
evidence of voicing or, in some cases, of bursts.  The 
distinction between these is readily made in the time 
domain (voicing persists much longer than bursts) as well 
as by appeal to information in the other spectral bands:  
voicing provides a power spectrum that decays with 
frequency approximately as 1/frequency2, whereas most 
other speech sounds have flatter spectra. 

 
 

V. RESULTS AND DISCUSSION 
 

 Our small study with sixteen test cases, as seen in 
Table 3, resulted in a 25% error rate.  
 
Table 3: Results of the CM (closest- 
match) comparison. Boldfaced values represent 
correct identification of speaker state.  *The listed states 
had nearly equally small distances. 
 neutral medst hist scream 
m1 neutral neutral neutral scream 
m2 neutral medst neutral scream 
m3 neutral hist* 

neutral 
hist scream 

m4 neutral medst hist scream 

 
 

 To test the stability of the results, we performed a 
Principal Components Analysis (PCA, or, equivalently, 
singular value decomposition, SVD [9]).  This permitted 
us to discard several of the principal components (PCs) 
that described only noise-level variations in the data.  
Retaining eight of the original 16 PCs, accounting for 
95% of the variance, produced only small variations in 
the results, and no overall degradation in accuracy. 
 
Table 4: Results of the PCA/CM 
comparison. Boldfaced values represent correct 
identification of speaker state.  *The listed states had 
nearly equally small distances. 
 neutral medst hist scream 
m1 neutral neutral neut

hist* 
ral scream 

m2 neutral medst neutral scream 
m3 neutral hist* 

neutral 
hist scream 

m4 neutral
hist* 

medst hist scream 

 



 Inspection of the Tables reveals that the classification 
has no errors for the neutral or scream states.  
Furthermore, most errors occurring in the other states are 
manifest as neutral, that is, the closest-match algorithm 
selects the “conservative” interpretation that the data 
represent no departure from the neutral state. 

 
 

VII. CONCLUSION 
 
We have shown that a simple knowledge-based analysis 
of American English speech and some measures of F0 can 
classify a speaker’s emotional state among four choices 
moderately well.  We achieve 75% accuracy when 
comparing new data from a speaker that is already 
represented among the base cases.  PCA indicates that 
this result does not depend sensitively on small details 
such as noise level.  We are currently investigating the 
performance when the speaker is not so represented. 

 
ACKNOWLEDGEMENTS 

 
 This work was supported in part by National Science 
Foundation grant SGER 0206940. 

 
REFERENCES 

 
[1] F. Dellaert, T. Polzin, and A. Waibel, “Recognizing 

Emotion in Speech,”  Proc. ICSLP, 1996. 
[2] H.J. Fell, L.J. Ferrier, D. Sneider, and Z. Mooraj, 

“EVA, An early vocalization analyzer: an empirical 
validity study of computer categorization,” Assets 
‘96,  pp. 57-61, 1996. 

[3] H.J. Fell, J. MacAuslan, L.J. Ferrier, K. Chenausky, 
“Automatic Babble Recognition for Early Detection 
of Speech Related Disorders,” J. Behaviour & Inf. 
Tech.,  18, no. 1, pp. 56-63, 1999. 

[4] H.J. Fell, J. MacAuslan, L.J. Ferrier, S.G.  Worst, and 
K. Chenausky, “Vocalization Age as a Clinical 
Tool,” Electronic Proc. ICSLP (Int. Conf. on Speech 
& Language Processing), Denver, 2002. 

[5] J.H.L. Hansen, “SUSAS -Speech Under Simulated 
and Actual Stress,” Robust Speech Processing Lab., 
http://www.ee.duke.edu/Research/Speech/, 1997 

[6] T. Johnstone, and K.R. Scherer, "The effects of 
emotions on voice quality", Proc. XIVth Int. 
Congress of Phonetic Sci, 1999. 

[7] S. Liu, “Landmark detection of distinctive feature-
based speech recognition,” J. Acc. Soc. Amer., 96, 5, 
Part 2, p. 3227, 1994. 

[8] J. MacAuslan “Speech Analysis for Fatigue 
Assessment”, US Air Force Final Report, 2002. 

[9] Press, W., S. Teukolsky, W. Vetterling, & B. 
Flannery. (1992). Numerical Recipes in C, 59-70. 
New York: Cambridge University Press. 

[10] H. Quast, “Robust Machine Perception of Nonverbal 
Speech,”  

 http://ergo.ucsd.edu/~holcus/Speech.html, 2000. 
[11] D. Roy & A. Pentlland, “Automatic Spoken Affect 

Classification and Analysis,”  Pro Second Int. Conf. 
Automatic Face & Gesture Recognition, pp. 363—
367, 1996. 

[12] K.R. Scherer, T. Johnstone, and J.Sangsue, “L'état 
émotionnel du locuteur: facteur négligé mais non 
négligeable pour la technologie de la parole,” Actes 
des XXIIèmes Journées d'Etudes sur la Parole, 
Martigny, 1998. 

[13] K.N. Stevens, S. Manuel, S. Shattuck-Hufnegel, and 
S. Liu, “Implementation of a model for lexical access 
based on features,” Proc. Int’l. Conf. Spoken 
Language Processing, Banff, Alberta, 1, 499-502, 
1992. 

[14] A. Stolcke, K. Ries, N. Coccaro, E. Shriberg, R. 
Bates, D. Jurafsky, P. Taylor, R. Martin, C. Van Ess-
Dykema, and M. Meteer, "Dialogue Act Modeling 
for Automatic Tagging and Recognition of 
Conversational Speech", Computational Linguistics 
26(3), pp. 339-373, 2000. 


	VII. Conclusion

