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Abstract. This paper addresses the problem of specifying and pars-
ing the syntax of domain-specific languages (DSLs) in a modular, user-
friendly way. We want to enable the design of composable DSLs that
combine the natural syntax of external DSLs with the easy implemen-
tation of internal DSLs. The challenge in parsing these DSLs is that
the composition of several languages is likely to contain ambiguities. We
present the design of a system that uses a type-oriented variant of island
parsing to efficiently parse the syntax of composable DSLs. In particular,
we argue that the running time of type-oriented island parsing doesn’t
depend on the number of DSLs imported. We also show how to use our
tool to implement DSLs on top of a host language such as Typed Racket.

1 Introduction

Domain-specific languages (DSLs) provide high productivity for programmers
in many domains, such as computer systems, linear algebra, and other sciences.
However, a series of trade-offs face the prospective DSL designer today. On one
hand, many general-purpose languages include a host of tricks for implementing
internal, or embedded DSLs, e.g., templates in C++ [2], macros in Scheme [25],
and type classes in Haskell [11]. These features allow DSL designers to take
advantage of the underlying language and to enjoy an ease of implementation.
However, the resulting DSLs are often leaky abstractions, with a syntax that is
not quite right, compilation errors that expose the internals of the DSL, and a
lack of diagnostic tools that are aware of the DSL [21]. On the other hand, one
may choose to implement their language by hand or with parser generators à la
yacc. The resulting external DSLs achieve a natural syntax and often provide
more friendly diagnostics, but come at the cost of interoperability issues [3] and
an implementation that requires computer science expertise.

In this paper, we make progress towards combining the best of both worlds
into what we call composable DSLs. Since applications routinely use multiple
DSLs, our goal is to enable fine-grained mixing of languages with the natural
syntax of external DSLs and the interoperability of internal DSLs. At the core of
this effort is a parsing problem: although the grammar for each DSL in use may
be unambiguous, programs, such as the one in Figure 1, need to be parsed using
the union of their grammars, which is likely to contain ambiguities [14]. Instead
of relying on the grammar author to resolve them (as in the LALR tradition),
the parser for such an application must efficiently deal with ambiguities.
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Fig. 1. Our common case: an application using many DSLs.

We should emphasize that our goal is to create a parsing system that pro-
vides much more syntactic flexibility than is currently offered through operator
overloading in languages such as C++ and Haskell. However, we are not trying
to build a general purpose parser; that is, we are willing to place restrictions on
the allowable grammars, so long as those restrictions are easy to understand (for
our users) and do not interfere with composability.

As a motivating example, we consider an application that imports DSLs for
matrix algebra, sets, and regular expressions. Suppose the grammars for these
languages are written in the traditional style, including the following rules, with
associativity specified separately.

Expr ::= Expr "+" Expr | Expr "-" Expr
(Matrix DSL)

Expr ::= Expr "+" Expr | Expr "-" Expr
(Set DSL)

Expr ::= Expr "+"
(Regexp DSL)

The union of these individually unambiguous grammars is greatly ambiguous,
so importing them can increase the parse time by orders of magnitude without
otherwise changing programs containing expressions such as A + B + C. An ob-
vious fix is to merge the grammars and refactor to remove ambiguity. However,
that would require coordination between the DSL authors which is not scalable.

1.1 Type-Oriented Grammars

To address the problem of parsing composed DSLs, we observe that different
DSLs typically define different types. We suggest an alternate style of grammar
organization inspired by Sandberg [20] that we call type-oriented grammars. In
this style, a DSL author creates one nonterminal for each type in the DSL and
uses the most specific nonterminal/type for each operand in a grammar rule. For
example, the above Expr rules would instead be written

Matrix ::= Matrix "+" Matrix | Matrix "-" Matrix

Set ::= Set "+" Set | Set "-" Set Regexp ::= Regexp "+"



1.2 Type-based Disambiguation

While we can rewrite the DSLs for matrix algebra, regular expressions, and sets
to be type oriented, programs such as A + B + C · · · are still highly ambiguous
if the variables A, B, and C can each be parsed as either Matrix, Regexp, or
Set. Many prior systems [17, 5] use chart parsing [15] or GLR [26] to produce a
parse forest and then type check to filter out the ill-typed trees. This solves the
ambiguity problem, but these parsers are still inefficient on ambiguous grammars
because of the large number of parse trees in the forest (see Section 4).

This is where our contribution comes in: island parsing with eager, type-
based disambiguation is able to efficiently parse programs that simultaneously
use many DSLs. We use a chart parsing strategy, called island parsing [23] (or
bidirectional bottom-up parsing [19]), that enables our algorithm to grow parse
trees outwards from what we call well-typed terminals. The statement

declare A:Matrix, B:Matrix, C:Matrix { . . . }
gives the variables A, B, and C the type Matrix and brings them into scope
for the region of code within the braces. We integrate type checking into the
parsing process to prune ill-typed parse trees before they have a chance to grow,
drawing inspiration from the field of natural language processing, where selection
restriction uses types to resolve ambiguity [13].

Our approach does not altogether prohibit grammar ambiguities; it strives
to remove ambiguities from the common case when composing DSLs so as to
enable efficient parsing.

1.3 Contributions

1. We present the first parsing algorithm, type-oriented island parsing (Sec-
tion 3), whose time complexity is constant with respect to (i.e., independent
of) the number of DSLs in use, so long as the nonterminals of each DSL are
largely disjoint (Section 4).

2. We present our extensible parsing system that adds several features to the
parsing algorithm to make it convenient to develop DSLs on top of a host
language such as Typed Racket [24] (Section 5).

3. We demonstrate the utility of our parsing system with examples (included
along with the implementation available on Racket’s PLaneT package repos-
itory) in which we embed syntax for DSLs in Typed Racket.

Section 2 introduces the basic definitions and notation used in the rest of
the paper. We discuss our contributions in relation to the prior literature and
conclude in Section 6.

2 Background

We review the definition of a grammar and parse tree and present a framework
for comparing parsing algorithms based on the parsing schemata of Sikkel [22].



2.1 Grammars and Parse Trees

A context-free grammar (CFG) is a 4-tuple G = (Σ,∆,P, S) where Σ is a finite
set of terminals, ∆ is a finite set of nonterminals, P is finite set of grammar
rules, and S is the start symbol. We use a, b, c, and d to range over terminals
and A,B,C, and D to range over nonterminals. The variables X,Y, Z range over
symbols, that is, terminals and nonterminals, and α, β, γ, δ range over sequences
of symbols. Grammar rules have the form A→ α. We write G ∪ (A→ α) as an
abbreviation for (Σ,∆,P ∪ (A→ α), S).

We are ultimately interested in parsing programs, that is, converting token
sequences into abstract syntax trees. So we are less concerned with the recogni-
tion problem and more concerned with determining the parse trees for a given
grammar and token sequence. The parse trees for a grammar G = (Σ,∆,P, S),
written T (G), are trees built according to the following rules.

1. If a ∈ Σ, then a is a parse tree labeled with a.
2. If t1, . . . , tn are parse trees labeled X1, . . . , Xn respectively, A ∈ ∆, and
A→ X1 . . . Xn ∈ P, then the following is a parse tree labeled with A.

A

t1 · · · tn

We sometimes use a horizontal notation A → t1 . . . tn for parse trees and we
often subscript parse trees with their labels, so tA is parse tree t whose root is
labeled with A. We use an overline to represent a sequence: t = t1 . . . tn.

The yield of a parse tree is the concatenation of the labels on its leaves:

yield(a) = a

yield([A→ t1 . . . tn]) = yield(t1) . . . yield(tn)

Definition 2.1. The set of parse trees for a CFG G = (Σ,∆,P, S) and input
w, written T (G, w), is defined as follows

T (G, w) = {tS | tS ∈ T (G) and yield(tS) = w}

2.2 Parsing Algorithms

We wish to compare the essential characteristics of several parsing algorithms
without getting distracted by implementation details. Sikkel [22] introduces a
high-level formalism for presenting and comparing parsing algorithms, called
parsing schemata, that presents each algorithm as a deductive system. We loosely
follow his approach, but make some minor changes to better suit our needs.

Each parsing algorithm corresponds to a deductive system with judgments
of the form H ` ξ, where ξ is an item and H is a set of items. An item has the
form [p, i, j] where p is either a parse tree or a partial parse tree and the integers
i and j mark the left and right extents of what has been parsed so far.



(BU)

(Fnsh)

(BU)

(Hyp)
[A, 0, 1] ∈ H

H ` [A, 0, 1] E→ A ∈ P
H ` [E→ .A., 0, 1]

H ` [E→ A, 0, 1] E→ E+E ∈ P
H ` [E→ .[E→ A]. + E, 0, 1]

Fig. 2. A partial (bottom-up Earley) derivation of the parse tree for "A + B", having
parsed "A " but not yet "+ B".

The set of partial parse trees is defined by the following rule: if A→ αβγ ∈ P,
then A→ α.tβ.γ is a partial parse tree labeled with A, where markers surround
a sequence of parse trees for β, while α and γ remain to be parsed. We reserve
the variables s and t for parse trees, not partial parse trees. A complete parse of
an input w of length n is a derivation of H0(w) ` [tS , 0, n], where H0(w) is the
initial set of items that represent the result of tokenizing the input w.

H0(w) = {[wi, i, i+ 1] | 0 ≤ i < |w|}

Definition 2.2. A bottom-up variation [22] of the Earley algorithm [8] applied
to a grammar G = (Σ,∆,P, S) is defined by the following deductive rules.

(Hyp)
ξ ∈ H
H ` ξ (Fnsh)

H ` [A→ .tα., i, j]

H ` [A→ tα, i, j]

(BU)
H ` [tX , i, j] A→ Xβ ∈ P

H ` [A→ .tX .β, i, j]

(Compl)
H ` [A→ .sα.Xβ, i, j] H ` [tX , j, k]

H ` [A→ .sαtX .β, i, k]}
Example 2.1. Figure 2 shows the beginning of the bottom-up Earley derivation
of a parse tree for A + B with the grammar:

E ::= E "+" E | "A" | "B"

3 Type-Oriented Island Parsing

The essential ingredients of our parsing algorithm are type-based disambiguation
and island parsing. In Section 4, we show that an algorithm based on these two
ideas parses with time complexity that is independent of the number of DSLs
in use, so long as the nonterminals of the DSLs are largely disjoint. (We also
make this claim more precise.) But first, in this section we introduce our type-
oriented island parsing algorithm (TIP) as an extension of the bottom-up Earley
algorithm (Definition 2.2).



Island parsing [23] is a bidirectional, bottom-up parsing algorithm that was
developed in the context of speech recognition. In that domain, some tokens can
be identified with a higher confidence than others. The idea of island parsing is
to begin the parsing process at the high confidence tokens, the so-called islands,
and expand the parse trees outward from there.

Our main insight is that if our parser can be made aware of variable decla-
rations, and if a variable’s type corresponds to a nonterminal in the grammar,
then each occurrence of a variable can be treated as an island. We introduce the
following special form for declaring a variable a of type A that may be referred
to inside the curly brackets.

declare a : A {. . .}

Specifically, if tX ∈ T (G ∪ {A→ a}), then the following is a parse tree in T (G).

X → declare a : A {tX}

To enable temporarily extending the grammar during parsing, we augment the
judgments of our deductive system with an explicit parameter for the grammar.
So judgments now have the form

G;H ` ξ

This adjustment also enables the import of grammars from different modules.
We define the parsing rule for the declare form as follows.

(Decl)
G ∪ (A→ a);H ` [tX , i+ 5, j]

G;H ` [X → declare a : A {tX}, i, j + 1]

Note the i+ 5 accounts for “declare a : A {” and j + 1 for “}”.
Next we replace the bottom-up rule (BU) with the following (BU-Islnd)

rule. The (BU-Islnd) rule is no different than the (BU) rule when X ∈ ∆,
except that X can now appear anywhere on the right-hand side. When X ∈ Σ,
however, we require that α and β are both sequences of terminals.

(BU-Islnd)

G;H ` [tX , i, j]
A→ αXβ ∈ P G = (Σ,∆,P, S)
X ∈ Σ =⇒ ¬∃k. αk ∈ ∆ ∨ βk ∈ ∆

G;H ` [A→ α.tX .β, i, j]

This restriction ensures that when X ∈ Σ, the (BU-Islnd) rule only trig-
gers the formation of an island using grammar rules that arise from variable
declarations and literals (constants) defined in a DSL; by allowing α and β to
be nonempty, we support literals defined by more than one token. For example,
the (BU-Islnd) rule doesn’t apply when X = "+" in E ::= E "+" E. In this
case, the grammar rule is not defining a variable declaration or constant, and
only the E’s on either side of the "+" give type information, so we shouldn’t start
parsing from "+". We motivate and discuss this rule further in Section 4.



Finally, because islands appear in the middle of the input string, we need
both left and right-facing versions of the (Compl) rule.

(RCompl)
G;H ` [A→ α.sβ.Xγ, i, j] G;H ` [tX , j, k]

G;H ` [A→ α.sβtX .γ, i, k]}

(LCompl)
G;H ` [tX , i, j] G;H ` [A→ αX.sβ.γ, j, k]

G;H ` [A→ α.tXsβ.γ, i, k]}

Definition 3.1. The type-oriented island parsing algorithm is defined as the
deductive system comprised of the rules (Hyp), (Fnsh), (Decl), (BU-Islnd),
(RCompl), and (LCompl).

The TIP algorithm is correct in that it can derive a tree for an input string
if and only if there is a valid parse tree whose yield is the input string.

Theorem 3.1. For some i and j, G;H0(yield(tX)) ` [tX , i, j] iff tX ∈ T (G).

Proof. By induction on derivations (soundness) and trees (completeness).

The implementation of our algorithm explores derivations in order of most
specific first, which enables parsing of languages with overloading (and parame-
terized rules, as in Section 5.2). For example, consider the following rules with
an overloaded + operator.

Float ::= Float "+" Float | Int Int ::= Int "+" Int

The program 1 + 2 can be parsed at least three different ways: with zero, one,
or two coercions from Int to Float. Our algorithm returns the parse with no
coercions, which we call most specific: Int→ [Int→ 1] + [Int→ 2]

Definition 3.2. If B → A ∈ P, then we say A is at least as specific as B,
written A ≥ B, where ≥ is the reflexive and transitive closure of this relation.
We extend this ordering to terminals and sequences by defining a ≥ b iff a = b,
α ≥ β iff |α| = |β|, and αi ≥ βi for i ∈ {1, . . . , |α|}. A parse tree A → sα is at
least as specific as another parse tree B → tβ iff A ≥ B and sα ≥ tβ .

We implement this strategy by comparing the parse trees for a part of the
input (e.g., from i to j) and pursuing only the most-specific tree. We save the
others on a stack, instead of discarding them as we would for associativity or
precedence conflicts (Section 5.1); if the current most-specific parse eventually
fails, we pop the stack and resume parsing one of the earlier attempts.

4 Experimental Evaluation

In this section we evaluate the performance of type-oriented island parsing.
Specifically, we are interested in the performance of the algorithm for programs
that are held constant while the size of the grammar increases.



Chart parsing algorithms have a general worst-case running time of O(|G|n3)
for a grammar G and string of length n. In our setting, G is the union of the
grammars for the k DSLs that are in use within a given scope, that is G =⋃k
i=1 Gi, where Gi is the grammar for DSL i. We claim that the total size of the

grammar G is not a factor for type-oriented island parsing, and instead the time
complexity is O(mn3) where m = max{|Gi| | 1 ≤ i ≤ k}. This claim deserves
considerable explanation to be made precise.

Technically, we assume that G is sparse, which we define as follows.

Definition 4.1. Form a Boolean matrix with a row for each nonterminal and a
column for each production rule in a grammar G. A matrix element (i, j) is true
if the nonterminal i appears on the right-hand side of the rule j, and it is false
otherwise. We say that G is sparse if its corresponding matrix is sparse, that is,
if the number of nonzero elements is on the order of m+n for an m×n matrix.

We conjecture that, in the common case, the union of many type-oriented gram-
mars (or DSLs) is sparse.

To verify that both the type-oriented style of grammar and the island parsing
algorithm are necessary for this result, we show that removing either of these
ingredients results in parse times that are dependent on the size of the entire
grammar. We consider the performance of the top-down and bottom-up Earley
algorithms, in addition to island parsing, with respect to untyped, semi-typed,
and type-oriented grammars, which we explain in the following subsections.

We implemented all three algorithms using a chart parsing algorithm, which
efficiently memoizes duplicate items. The chart parser continues until it has
generated all items that can be derived from the input string. (It does not stop
at the first complete parse because it needs to continue to check whether the
input string is ambiguous, which means the input would be in error.1) Also, we
should note that our system currently employs a fixed tokenizer, but that we
plan to look into scannerless parsing.

To capture the essential, asymptotic behavior of the parsing algorithms, we
count the number of items generated during the parsing of a program with
untyped, semi-typed, and typed grammars. For this experiment, the program is
the expression --A.

4.1 Untyped Grammar Scaling

In the untyped scenario, all grammar rules are defined in terms of an expression
nonterminal (E), and variables are simply parsed as identifiers (Id).

E ::= "-" E | Id

The results for parsing --A after importing k copies of the grammar, for in-
creasing k, are shown in Figure 3(a). The y-axis is the number of items generated

1 While ambiguous input is allowed if there is a single most-specific parse tree, there
may be more than one since the ≥ relation is not necessarily a total order.
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Fig. 3. Comparison of Earley and island parsing with two styles of grammars.

by each parsing algorithm and the x-axis is the total number of grammar rules at
each k. In the untyped scenario, the size of the grammar affects the performance
of each algorithm, with each generating O(k2) items.

We note that the two Earley algorithms generate about half as many items
as the island parser because they are unidirectional (left-to-right) instead of
bidirectional.

4.2 Semi-typed Grammar Scaling

In the semi-typed scenario, the grammars are nearly type-oriented: rules are
defined in terms of V (for vector) and M (for matrix); however, variables are
again parsed as identifiers. We call this scenario semi-typed because it doesn’t
use variable declarations to provide type-based disambiguation.

E ::= V | Mi V ::= "-" V | Id Mi ::= "-" Mi | Id

The results for parsing --A after importing the V rules followed by k copies of
the M rules (i.e., M1 ::= "-" M1, M2 ::= "-" M2, . . . ) are shown in Figure 3(b).
The lines for bottom-up Earley and island parsing coincide. Each algorithm gen-
erates O(k) items, so we see that type-oriented grammars are not, by themselves,
enough to achieve constant scaling with respect to grammar size.

We note that the top-down Earley algorithm generates almost twice as many
items as the bottom-up algorithms: the alternatives for the start symbol E grow
with the input length n, which affects the top-down strategy more than the
bottom-up strategy.

4.3 Typed Grammar Scaling

The typed scenario is identical to semi-typed except that it no longer includes
the Id nonterminal. Instead, programs must declare their own typed variables.

E ::= V | Mi V ::= "-" V Mi ::= "-" Mi
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Fig. 4. Comparison of Earley and island parsing with type-oriented grammars.

In this scenario, the grammars are sparse and the terminal V is well-typed.
The results for parsing --A, after declaring A:V and importing the V rules followed
by k copies of the M rules, are shown in Figure 4. The island parsing algorithm
generates a constant number of items as the size of the grammar increases,
while the Earley algorithms remain linear. Thus, the combination of type-based
disambiguation, type-oriented grammars, and island parsing provides a scalable
approach to parsing programs that use many DSLs.

4.4 Discussion

The reason type-oriented island parsing scales is that it is more conservative
with respect to prediction than either top-down or bottom up, so grammar rules
from other DSLs that are irrelevant to the program fragment being parsed are
never used to generate items.

In top-down Earley parsing, any grammar rule that produces the nonterminal
B, regardless of which DSL it resides in, will be entered into the chart via a top-
down prediction rule. Such items have a zero-length extent which indicates that
the algorithm does not yet have a reason to believe that this item will be able
to complete.

Looking at the (BU) rule of bottom-up Earley parsing, we see that all it
takes for a rule (from any DSL) to be used is that it starts with a terminal
that occurs in the program. However, it is quite likely that different DSLs will
have rules with some terminals in common. Thus, the bottom-up algorithm also
introduces items from irrelevant DSLs.

Finally, consider the (BU-Islnd) rule of our island parser. The difference
between this rule and (BU) is that it doesn’t apply to a terminal on the right-
hand side of a grammar rule when it could apply to some other nonterminal
(which corresponds to a type) instead. For example, by avoiding the "-" in the
above grammars, the (BU-Islnd) rule proceeds directly to the rule for V without
introducing items from DSLs with only Mi terms that could not complete.



5 A System for Extensible Syntax

In this section we describe the parsing system that we have built as a front
end to the Racket programming language. In particular, we describe how we
implement four features that are needed in a practical extensible parsing system:
associativity and precedence, parameterized grammar rules, grammar rules with
variable binders and scope, and rule-action pairs, which combine the notions of
semantic actions, function definitions, and macros. We also extend type-oriented
grammars so that nonterminals can represent structural types.

Users may define DSLs by writing grammar rules inside a module block;
the input to our tool consists of programs written in the language of the DSLs
that they import. For example, one might write

module MatrixAlgebra {
Matrix ::= Matrix "+" Matrix

...
...

}
and then import MatrixAlgebra in a program using the matrix algebra DSL.

An implementation containing all the features described below is available
on Racket’s PLaneT package repository. To install, start the Racket interpreter
and enter (require (planet esilkensen/esc)).

5.1 Associativity and Precedence

Our treatment of associativity and precedence is largely based on that of Visser
[27], although we treat this as a semantic issue instead of an optimization issue.
From the user perspective, we extend rules (and similarly parse trees) to have
the form A →`,p α where ` ∈ {left, right, non,⊥} indicates the associativity and
p ∈ N⊥ indicates the precedence. Concretely, we annotate rules with associativity
and precedence inside square brackets in the following way.

Matrix ::= Matrix "+" Matrix [left,1]

The change to the island parsing algorithm to handle precedence and associa-
tivity is straightforward. We simply make sure that a partial parse tree does not
violate an associativity or precedence rule before converting it into a (complete)
parse tree. We replace the (Fnsh) rule with the following.

(FnshP)
G;H ` [A→`,p .tα., i, j] ¬conflict(A→`,p tα)

G;H ` [A→`,p tα, i, j]

Definition 5.1. We say that a parse tree t has a root priority conflict, written
conflict(t), if one of the following holds.

1. It violates the right, left or non-associativity rules, that is, t has the form
– A→`,p (A→`,p tAα)sα where ` = right or ` = non; or
– A→`,p sα(A→`,p tαA) where ` = left or ` = non.

2. It violates the precedence rule, that is, t has the form:

t = A→`,p s(B →`′,p′ t)s′ where p′ < p.



5.2 Parameterized Rules

With the move to type-oriented grammars, the need for parameterized rules
immediately arises. For example, consider how one might translate the following
grammar rule for conditional expressions into a type-oriented rule.

Expr ::= "if" Expr "then" Expr "else" Expr

By extending grammar rules to enable the parameterization of nonterminals, we
can write the following, where T stands for any type/nonterminal.

forall T. T ::= "if" Bool "then" T "else" T

Parameterized rules have the form ∀x.A → α, where x is a sequence of
variables (containing no duplicates). We wish to implicitly instantiate parame-
terized rules, that is, automatically determine which nonterminals to substitute
for the parameters. Towards this end, we define a partial function named match
that compares two symbols with respect to a substitution σ and a sequence of
variables and produces a new substitution σ′ (if the match is successful). We
augment partial parse trees with substitutions to incrementally accumulate the
matches, giving them the form ∀x.A→σ α.tβ.γ.

Using these definitions, we can implement parameterized rules with a few
changes to the base island parser, such as (PRCompl) below.

(PRCompl)

G;H ` [∀x.A→σ1 α.sβ.X
′γ, i, j]

G;H ` [tX , j, k] match(X ′, X, σ1, x) = σ2

G;H ` [∀x.A→σ2 α.sβtX .γ, i, k]}

5.3 Grammar Rules with Variable Binders

Consider what would be needed to define a type-oriented grammar rule to parse a
let expression such as the following, with n in scope between the curly brackets.

let n = 7 { n * n }
We need a way for the rule to refer to the parse tree for Id and to say that the
identifier has type T1 inside the brackets. To facilitate such binding forms, we
add labeled symbols [12] and a scoping construct [7] to our system.

For example, the let rule below binds the variable x to the identifier with
x:Id; the unquoted brackets mark the scoping construct, and x:T1 says x should
have type T1 inside the brackets (any nonempty sequence of bindings may appear
before the semicolon):

forall T1 T2. T2 ::= "let" x:Id "=" T1 { x:T1; T2 }
We implement these rules by parsing in phases, where initially, all regions

enclosed in curly brackets are ignored. Once enough surrounding text has been
parsed, a region is “opened” and the next phase of parsing begins with an ex-
tended grammar. In the let example, the grammar is extended with the rule
T1→ x (with T1 instantiated and x replaced by its associated string).



5.4 Rule-Action Pairs

Sandberg [20] introduces the notion of a rule-action pair, which pairs a grammar
rule with a semantic action that provides code to give semantics to the syntax.
In his paper, rule-action pairs behave like macros; we provide ones that behave
like functions as well (with call-by-value semantics). Thus users of our system
can embed their DSLs in Typed Racket with two kinds of rule-action pairs.

The ⇒ operator defines a rule-function: we compile these rules to functions
whose parameters are the variables bound on the right-hand side, and whose
body is the Typed Racket code after the arrow. Below is an example adapted
from Sandberg’s paper giving syntax for computing the absolute value of an
integer.

Integer ::= "|" i:Integer "|" ⇒ (abs i)

Similarly, the = operator defines a rule-macro: we simply compile a rule-
macro to a macro instead of a function. Macros are necessary in some situations.
For example, we need a macro to embed the let rule, which we can do as follows.

forall T1 T2. T2 ::= "let" x:Id "=" e1:T1 { x:T1; e2:T2 } =
(let: ([x : T1 e1]) e2)

We translate DSLs to Typed Racket by generating the appropriate function
or macro call for parsed instances of rule-action pairs.

5.5 Structural Nonterminals

We support representations of structural types in type-oriented grammars by
enabling the definition of structural nonterminals. In our system, the reserved
symbol Type gives the syntax of types/nonterminals, and the ≡ operator maps
parse trees to Typed Racket types.

Users may define structural nonterminals, as long as they are mapped to
Typed Racket types, by writing new rules for Type inside a types block. For
example, consider the following rule for a product type.

Type ::= T1:Type "×" T2:Type ≡ (Pairof T1 T2)

We can then use this syntax in any grammar rules inside the module; for example,
we could write the rule below for accessing the first element of a pair.

forall T1 T2. T1 ::= p:(T1× T2) "." "fst" ⇒ (car p)

5.6 Examples

Our implementation includes concrete examples of using the features from this
section to embed DSLs in the host language Typed Racket. We show how to
give ML-like syntax to several operators and forms of Typed Racket, and how
to combine this DSL with literal syntax for set and vector operations.2

2 To access the examples, enter raco docs at the command line and look under “Pars-
ing Libraries” for the documentation.



6 Related Work and Conclusions

There have been numerous approaches to extensible syntax for programming
languages. In this section, we summarize the approaches and discuss how they
relate to our work. We organize this discussion in a roughly chronological order.

Aasa et al. [1] augments the ML language with extensible syntax for dealing
with algebraic data types. They develop a generalization of the Earley algorithm
that performs Hindley-Milner type inference during parsing. However, Petters-
son and Fritzson [18] report that the algorithm was too inefficient in practice.
Pettersson and Fritzson [18] build a more efficient system based on LR(1) pars-
ing. Of course, LR(1) parsing is not suitable for our purposes because LR(1) is
not closed under union, which we need to compose DSLs. Several later works also
integrate type inference into the Earley algorithm [16, 28]. It may be possible to
integrate these ideas with our approach to handle languages with type inference.

Several extensible parsing systems use Ford’s Parsing Expression Grammar
(PEG) formalism [9]. PEGs are stylistically similar to CFGs; however, PEGs
avoid ambiguity by introducing a prioritized choice operator for rule alternatives
and PEGs disallow left-recursive rules. We claim that these two restrictions are
not appropriate for composing DSLs. The order in which DSLs are imported
should not matter and DSL authors should be free to use left recursion if that
is the most natural way to express their grammar.

The MetaBorg [5] system provides extensible syntax in support of embed-
ding DSLs in general purpose languages. MetaBorg is built on the Stratego/XT
toolset which in turn used the syntax definition framework SDF [10]. SDF uses
scannerless GLR to parse arbitrary CFGs. The MetaBorg system performs type-
based disambiguation after parsing to prune ill-typed parse trees from the re-
sulting parse forest. Thus, the performance of MetaBorg degrades where there is
considerable ambiguity. Our treatment of precedence and associativity is based
on their notion of disambiguation filter [4]. We plan to explore the scannerless
approach in the future. Bravenboer and Visser [6] look into the problem of com-
posing DSLs and investigate methods for composing parse tables. We currently
do not create parse tables, but we may use these ideas in the future to further
optimize the efficiency of our algorithm.

In this paper we presented a new parsing algorithm, type-oriented island
parsing, that is the first parsing algorithm to be constant time with respect to
the size of the grammar under the assumption that the grammar is sparse. (Most
parsing algorithms are linear with respect to the size of the grammar.)

We have developed an extensible parsing system that provides a front-end
to Typed Racket, enabling the definition of macros and functions together with
grammar rules that provide syntactic sugar. Our implementation provides fea-
tures such as parameterized grammar rules and grammar rules with variable
binders and scope.

In the future we plan to both analytically evaluate the performance of our
algorithm and to continue testing our hypothesis about the sparsity of the union
of several type-oriented DSLs in practice, with larger and more real-world gram-
mars. In our implementation we plan to provide diagnostics for helping pro-



grammers resolve remaining ambiguities that are not addressed by typed-based
disambiguation.
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