
Convex envelopes of complexity controlling penalties:
the case against premature envelopment

Vladimir Jojic Suchi Saria Daphne Koller
Stanford University Stanford University Stanford University

Abstract

Convex envelopes of the cardinality and rank
function, l1 and nuclear norm, have gained
immense popularity due to their sparsity in-
ducing properties. This has given rise to a
natural approach to building objectives with
sparse optima whereby such convex penal-
ties are added to another objective. Such a
heuristic approach to objective building does
not always work. For example, addition of
an L1 penalty to the KL-divergence fails to
induce any sparsity, as the L1 norm of any
vector in a simplex is a constant. However,
a convex envelope of KL and a cardinality
penalty can be obtained that indeed trades
off sparsity and KL-divergence.

We consider the cases of two composite
penalties, elastic net and fused lasso, which
combine multiple desiderata. In both of these
cases, we show that a hard objective relaxed
to obtain penalties can be more tightly ap-
proximated. Further, by construction, it is
impossible to get a better convex approx-
imation than the ones we derive. Thus,
constructing a joint envelope across different
parts of the objective provides a means to
trade off tightness and computational cost.

1 Introduction

Compact summarization of data succinctly describes
many tasks shared across areas such as statistics, ma-
chine learning, information theory, and computational
biology. The quality of a model is measured as a trade-
off between reconstruction error and the complexity of
the model’s parametrization. A number of costs exist
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that capture this trade-off: MDL (Barron et al., 1998),
BIC (Schwarz, 1978), AIC (Akaike, 1973), Bayes factor
(Kass and Raftery, 1995) and so on. These costs are
discontinuous and in some cases even their evaluation
(e.g., Bayes factors) can be challenging.

Recent work on discovering compact representations
of data has focused on combinations of convex losses,
mostly stemming from generalized linear models, and
convex sparsity promoting penalties. The uniqueness
of optima in these costs combined with parameter
sparsity makes them quite desirable. The joint sim-
plicity of generalized linear losses and sparsity of pa-
rameters makes the models easily interpretable, a crit-
ical feature when the results of such fits need to be
communicated across fields.

The sparsity inducing penalties have found applica-
tions across a variety of disciplines: `1, most commonly
under the guise of lasso(Tibshirani, 1996) and elastic
net (Zou and Hastie, 2005); nuclear norm within a vari-
ety of applications such as compressed sensing (Candes
et al., 2006); and recommender matrix reconstruction
(Candes and Recht, 2009).

However, the crucial observation that `1 is the tight-
est convex relaxation of cardinality and nuclear norm
for rank (Fazel, 2002) has not been leveraged. At the
same time, the family of lasso penalties continues to
grow via juxtaposition. The constituent weights of
these fragmented penalties are adjusted via cross vali-
dation posing serious computational problems, and at
the same time eroding interpretability. The goal of this
paper is to illustrate how the juxtaposition of convex
penalties corresponds to piecemeal relaxation of a hard
penalty and to show that the provably tightest convex
approximation can be constructed for hard penalties.

We also show that in some fairly common cases, elas-
tic net and fused lasso, tighter convex relaxations ex-
ist. In other cases, we show a dramatic failure of the
juxtaposition approach in inducing any change to the
objective: the sparsifying convex penalty fails to spar-
sify.

We show how an envelope can be computed and
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envelope-penalized losses can be optimized. We illus-
trate how these tasks can be accomplished both when
an envelope is available in closed form and in cases
where a closed form is not available.

In contrast to recent work on relationships between
submodular set functions, convex envelopes of these
functions, and sparsity inducing norms (Bach, 2010),
we focus on envelopes of composite penalties involving
cardinality. The key insight is that a joint envelope
over multiple hard penalties is tighter than envelop-
ment of each penalty in isolation.

The structure of the paper is as follows: first we state
results on Fenchel duality and envelopes and show the
main steps in deriving a convex envelope of cardinal-
ity. We then give two simple optimization algorithms
for cases where the closed-form of the envelope is not
available. The first algorithm numerically evaluates
an envelope. The second algorithm provide a gen-
eral blueprint for optimizing envelope penalized losses.
We proceed to illustrate how simple juxtaposition of
penalties, KL-divergence and `1 in this case, can fail
to produce any effect, but also show the existence of
sparsified KL-divergence. We then focus on the elastic
net penalty, composed of `2 and `1. For this penalty,
a relaxation of cardinality and `2, we show the tight-
est convex relaxation and compare the performance of
these two relaxations in the tasks of support recov-
ery. Given a closed-form solution of the envelope, we
show a simple coordinate descent method for a loss
penalized by this envelope. Finally, we look at an-
other example of a composite penalty, fused lasso, and
show that it also has a corresponding hard penalty,
related to its degrees of freedom, and use its envelope
to illustrate its benefits in the context of a biological
application of copy number variation analysis.

2 Convex envelope

Following Hiriart-Urruty and Lemarchal (1993) we will
assume that the functions that we aim to envelope are
not identically +∞ and can be minorized by an affine
function on a set of interest, for example box [−1, 1]n.
Here we restate the definition of a conjugate and the
theorem about the tightness of the envelope.

Definition The conjugate of a function f(x ∈ X ) is
the function

f∗(y) = sup
x∈X

〈y, x〉 − f(x). (1)

Theorem 2.1 For a function f(x ∈ X ) the envelope
(biconjugate)

f∗∗(z) = (f∗)∗(z) = sup
y
〈y, z〉 − f∗(y) (2)
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Figure 1: `1 is an envelope of card(·) only in the
[−1, 1] interval

is the pointwise supremum of all the affine functions
on Rn majorized by f .

Hence the envelope of f is the tightest convex under-
approximate of the function f .

2.1 An example of convex envelope
derivation: Cardinality to `1

We show the computation of the convex envelope for
card(·) as a prototype for such derivations (Boyd and
Vandenberghe, 2004). The penalty is given as

fλ(x ∈ [−1, 1]n) = λcard(x)

and its conjugate is by definition

f∗(y ∈ Rn) = sup
x∈[−1,1]n

〈x, y〉 − λcard(x).

We will assume an ordering σ of coordinates y such
that y2

σ(i) ≥ y2
σ(i−1) and introduce an auxiliary variable

r
f∗(y) = max

r
sup

x∈[−1,1]r

〈
x, yσ(1:r)

〉
− λr

Once r is fixed, the supremum is achieved when the
inner product is maximized and given a constraint that
x ∈ [−1, 1]n, that is xi = sgn (yi), hence

f∗(y) = max
r

r∑
i=1

(∣∣yσ(i)

∣∣− λ
)

=
n∑

i=1

(|yi| − λ)+ .

The biconjugate is

f∗∗(z ∈ [−1, 1]n) = sup
y∈Rn

〈z, y〉 −
n∑

i=1

(|yi| − λ)+

Since the above supremum is separable in coordinates,
we can reason about each coordinate in isolation and,
for each, consider cases when the positive part is zero
and non-negative. Elementary reasoning produced the
closed form solution of the supremum

n∑
i=1

λ |zi|
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Hence the biconjugate of λcard(·) on [−1, 1]n is λ ‖·‖1.
Figure 1 shows both the f and its envelope f∗∗. Note
that the envelope is only valid on the box [−C,C]n.
WLOG we will assume that C = 1 in the rest of the
paper. As the box boundaries grow, the envelope f∗∗

can be shown to tend to a constant. However, a change
in the box boundaries corresponds to scaling of the
penalty parameter λ.

3 Evaluating the envelope and
optimizing envelope-penalized losses

In this section we show numerical methods for two
common tasks: pointwise evaluation of the enve-
lope and optimization of the envelope-penalized losses.
Pointwise evaluation of the envelope is useful for ex-
ploring the behavior of the envelope, such as the level
sets’ shape. However, for the second task of minimiz-
ing penalized losses, explicit pointwise evaluation of
the envelope can be bypassed in the interest of effi-
cient optimization.

3.1 Pointwise evaluation of the envelope

We focus on envelopes of functions that do not have
a closed form solution but turn out to be numeri-
cally tractable. The requirement in this scheme is
that pointwise computation of the conjugate f∗(y) =
supx 〈y, x〉− f(x) is tractable. Given this assumption,
we can find an x∗y that achieves the supremum, where
the subscript is used to indicate dependence on y. The
envelope is given as

f∗∗(z) = supy h(y, z), h(y, z) = 〈y, z〉 − f∗(y).
(3)

If the conjugate has a closed form then ∇yh(y, z)
can be computed symbolically. Alternatively, we can
apply Danskin’s theorem (Bertsekas, 1999) to obtain
∇yh(y, z). For this, we need to define the set Xy that
contains all x such that they achieve the supremum of
〈y, x〉 − f(x). Thus,

∇yh(y, z) = {z − x∗ : x∗ ∈ Xy} . (4)

In either case, we can evaluate the envelope using
the standard subgradient method, for example Algo-
rithm 1. We note that the form of the envelope prob-
lem makes it amenable to the smoothing methods of
(Nesterov, 2005).

However, the conjugate is not always tractable. An
example of such a function is

f(β) = ‖D −Mβ‖2
2 + λcard(β)

a linear regression problem with target variable D ∈
Rm and predictor matrix M ∈ Rm×n. Evaluating

Algorithm 1 A subgradient method for computing
envelope f∗∗(z)
Input: z
Output: f∗∗(z)

for k = 1 to MAXITER do
yk+1 = yk + (1/k)∇h(y, z)

end for
return

〈
yMAXITER+1, z

〉
− f∗(yMAXITER+1)

f∗(y) = supβ 〈β, y〉−λf(β) in this case is just as hard
as the original problem, subset selection. This is not
surprising as the tightness of the convex envelope im-
plies that it touches the global minimum of the func-
tion. Hence, envelopment does not erase the hardness
of the original problem.

3.2 The variational inequality approach to
minimizing envelope-penalized losses

Minimization of an envelope-penalized loss

PLoss(z) = Loss(z) + f∗∗(z) (5)

seems to require pointwise-evaluation of the envelope.
When a closed-form envelope is available, this does
not pose a problem. In the previous section, we have
shown a method for evaluating a convex envelope nu-
merically. It would seem that in order to minimize
Eq.5 we would need to wrap an outer loop optimizing
z around an inner loop computing the envelope. To
further complicate matters, the approximate nature of
the inner loop would then necessitate an appeal to ap-
proximate subgradient schemes such as (Solodov and
Svaiter, 2000). We bypass these considerations by re-
casting the optimization problem as a variational in-
equality problem.

The problem of minimizing the cost in Eq. 5 can be
written as a saddle problem

inf
z

sup
y

Loss(z) + h(y, z) (6)

which is equivalent to finding V =
[

y
z

]
such that

〈F (V ),W − V 〉 ≥ 0, ∀W ∈ V

where

F

([
y
z

])
=

[
−∇yh(y, z)

∇zLoss(z) + y

]
(7)

and V = Rn × B, with B denoting the set on
which f∗∗ is defined, for example box [−1, 1]n. Algo-
rithm 2 solves the variational inequality problem (Ne-
mirovski, 2005; Tseng, 2008). One choice for D(V,W )
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is (1/2) ‖V −W‖2
2, but other distance terms can be

used, especially on coordinates that correspond to set
B. Finally, L denotes the Lipschitz constant of F and
is influenced primarily by the Loss function.

Algorithm 2 Proximal point algorithm for a VIP
for k = 1 to MAXITER do

W k = argminV ∈V
{〈

V, F (V k)
〉

+ L ·D(V, V k)
}

V k+1 = argminV ∈V
{〈

V, F (W k)
〉

+ L ·D(V, V k)
}

end for
return V MAXITER+1

z

This numerical algorithm requires O(L/ε) iterations to
achieve an ε-approximate solution (Nemirovski, 2005;
Tseng, 2008). This complexity still compares favor-
ably to projected subgradients optimizing a closed
form cost, which in general require O(1/ε2) iterations
for a solution of the same quality.

4 Sparsified KL-divergence

KL-divergence’s use is ubiquitous in machine learning,
and more recent work has investigated incorporating
penalties and constraints with the divergence (Graça
et al., 2007). Obtaining sparse multinomials has been
attempted by using a negative-weight Dirichlet prior
(Bicego et al., 2007), as well as by inducing sparsity
in sufficient statistics for mixture proportions via l∞
norm (Graca et al., 2009). The approach of using L1

norm to induce sparsity has served well in sparsifying
objectives. However, in the case of KL this augmen-
tation fails immediately and obviously as soon as the
optimization problem is written

minimize
〈
q, log q

p

〉
+ λ ‖q‖1

subject to qi ≥ 0,∀i∑
i qi = 1,

since the q is constrained to be in a simplex, its L1

norm is always 1, thus the penalty is a constant. Of
course, this does not mean that sparsification of KL
divergence is impossible.

Recalling that the L1 norm is the tightest convex re-
laxation (envelope) of card(·), the de-facto sparsifying
penalty, we can pose a different problem

minimize f(q) =
〈
q, log q

p

〉
+ λcard(q)

subject to qi ≥ 0,∀i∑
i qi = 1,

and seek the convex envelope of f on the n-dimensional
simplex ∆n. We obtain the conjugate

f∗(y) = max
r∈{1,..,n}

{
log

{
r∑

i=1

exp
{
yσ(i)

}
pσ(i)

}
− λr

}
(8)
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Figure 2: a) KL(p||Unif) + 0.33card(p) and its con-
vex envelope in 2d simplex. b) contours of the convex
envelope of KL(p||Unif) + 0.33card(p) in 3d simplex.
The contours become closer to straight lines closer to
low complexity solutions, the corners and sides of the
simplex. This shape of contours is reminiscent of `1’s
contours. The switch to entropy-like curved contours
occurs towards the middle of the simplex.

where σ is an order such that

exp
{
yσ(i)

}
pσ(i) ≥ exp

{
yσ(i+1)

}
pσ(i+1),∀i.

The derivation of the envelope can proceed from this
point by conjugating f∗(y). Here we opt to use the
scheme proposed in Sec. 3 to numerically evaluate the
envelope. The requirements for application of that
scheme were that we can compute the conjugate and
its gradient efficiently. Exact computation of f∗(y)
requires sorting of a vector of length n to obtain the
order σ, and a pass through the logarithm of cumula-
tive sums to obtain an r∗ that maximizes Eq. 8. We
can plug in f∗ into the definition of h(y, z) in Eq. 3
and obtain a subgradient ∇yh(y, z)

∂h(y, z)
∂yσ(i)

=

{
zσ(i), σ(i) > r∗

zσ(i) −
exp{yσ(i)pσ(i)}Pr∗

j=1 exp{yσ(j)pσ(j)} , σ(i) ≤ r∗

Figure 2 shows a convex envelope of KL(p||Unif) +
0.33card(p) in 2d simplex as well as its contour plots
in 3d simplex. Here we can conclude that a joint en-
velope of the KL-divergence and cardinality yields a
sparsifying objective, whereas a separate envelope of
the objective parts yields only KL-divergence. Not
only does the simple addition of penalties yield a loose
convex approximation of the desired objective, but in
some cases it fails completely to produce any effect.
Thus, a joint envelope of all parts of the objective is
preferable when computationally feasible.

5 Envelope of cardinality and `2

Elastic net penalty (Zou and Hastie, 2005) consists of a
sum of `2 and `1. These two penalties induce a group-
ing effect, i.e. joint selection of correlated predictors,
and sparsity in regression weights. Considering again
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`1 as a convex relaxation of cardinality, we can ask
if jointly enveloping a penalty that combines `2 and
cardinality would yield a different convex penalty. In-
deed, it does, and the resulting penalty is the “Berhu”
penalty (Owen, 2006). The intuition behind the in-
troduction of this penalty was the desire to produce a
robust ridge regression estimator, and the form of the
penalty was arrived at by rearranging parts of the Hu-
ber penalty. Our construction shows that this penalty
is the tightest convex relaxation of cardinality and `2.

Envelope of `2 + card(·) The penalty is

f(x) =
κ

2
‖x‖2

2 + λcard(x) (9)

where x ∈ Bn = [−1, 1]n and

card(x) =
n∑

i=1

[xi 6= 0]. (10)

We can extend f on the whole Rn so that the conju-
gate is well defined

fλ(x) =
{

∞, x /∈ Bn
κ
2 ‖x‖

2
2 + λcard(x), x ∈ Bn

(11)

However, this does not affect computation of the con-
jugate, so we can focus on the x ∈ Bn.

Conjugate The conjugate of f is given by

f∗(y) = sup
x∈Bn

〈x, y〉 − κ

2
‖x‖2

2 − λcard(x) (12)

and rewriting

f∗(y) =
1
2κ

‖y‖2
2 + sup

x∈Bn

−κ

2

∥∥∥∥x− 1
κ

y

∥∥∥∥2

2

− λcard(x)

(13)
The conjugate simplifies into a coordinate-wise repre-
sentation:

f∗i (y) =

 0 y2
i ≤ 2λκ

1
2κy2

i − λ, 2λκ ≤ y2
i ≤ κ2

|yi| − λ− κ
2 , κ2 ≤ y2

i

(14)

Biconjugate We form the biconjugate which also
remains in coordinate-wise form:

f∗∗(z ∈ Bn) = sup
y∈Rn

∑
i

yizi − f∗i (y) (15)

Since the supremum is separable, we can express it in
a pointwise manner

f∗∗i (zi) = sup
yi

 ziyi, y2
i ≤ 2λκ

ziyi − 1
2κy2

i + λ, 2λκ ≤ y2
i ≤ κ2

ziyi + κ
2 − |yi|+ λ, κ2 ≤ y2

i

(16)
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Figure 3: Two relaxations of 0.2card(x) + 0.5`2(x)
on the [−1, 1]2 box. The convex envelope (left) and
elastic net penalty 0.2`1(x) + 0.5`2(x) (right). The
level sets of the convex envelope for the same value of
penalty are smaller as a consequence of the tightness
of the envelope compared to elastic net. Note that
the contours of the convex envelope close to low com-
plexity solutions are composed of straight lines, with
an `1-like diamond for small coordinates. The regime
switch to the curved, `2-like curves occurs with larger
coordinates.

We note that the function under the supremum is
continuous at the boundaries of the conditions above
y2

i = 2λκ and y2
i = κ2. Computing optima for each

of the three conditions, we obtain the envelope below.
Note that the third condition in Eq. 16 is never active.

f∗∗i (zi) =

 |zi|
√

2λκ, |zi| ≤
√

2λ
κ

κ
2 z2

i + λ, |zi| ≥
√

2λ
κ

(17)

and
f∗∗(z) =

∑
i

f∗∗i (zi)

Optimizing penalty and loss jointly We can now
take the envelope f∗∗ of the target function f and add
it to the loss to obtain a penalized loss PL(z). WLOG,
we assume that all predictors are standardized, i.e.∑

j Xi,j = 0 and XT
i Xi = 1.

PL(z) = (1/2) ‖Y −Xz‖2
2+

∑
i

 |zi|
√

2λκ, |zi| ≤
√

2λ
κ

κ
2 z2

i + λ, |zi| ≥
√

2λ
κ

This problem can be optimized by coordinate descent.
To derive the update equations, we will use the follow-
ing notation: Y−i = Y −

∑
j 6=i Xjzj .

Hence coordinate descent iterates the following up-
date, with Z−i = Y T

−iXi

zi =


0, |Z−i| ≤

√
2λκ

Z−i − sgn (Z−i)
√

2λκ, |Z−i|
1+κ ≤

√
2λ
κ

1
1+κZ−i,

|Z−i|
1+κ ≥

√
2λ
κ
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Elastic net

Figure 4: Comparison of elastic net and the convex
envelope of `2+card(·) on a synthetic support recovery
task. The data was generated from a linear model
with 5000 predictors with true support consisting of
125 predictors. The support consisted of 25 groups of
5 correlated predictors, with correlation bounded from
below by 0.9. For both methods, λ1 corresponded to a
penalty associated with a sparsity component and λ2

corresponded to squared `2 components. We scanned
a grid of values for both λ1 and λ2 ranging from -15
to 0 in log domain, in increments of 1. The optimal
penalties are chosen via 5-fold cross-validation. We
show an ROC curve on the task of support recovery for
the best performing choice of λs for each penalty. The
false positive range is truncated at 2.5%, reflecting the
imbalance between the sizes of the true positive and
the true negative sets in this task.

As a consequence of Theorem 2.1 the derived penalty
is the tightest convex relaxation of card(·) + `2. Fig-
ure 3 illustrates the differences between the elastic net
penalty and the envelope of card(·) + `2. The enve-
lope has smaller level sets for the same penalty levels,
which is a direct consequence of its tightness compared
to elastic net. Further, the envelope smoothly transi-
tions from the `1-like diamond contours for small coor-
dinates to `2-like round curves for larger coordinates.

In Figure 4 we are showing a comparison of perfomance
of the two penalties in the task of support recovery.
The penalty constants λ1 and λ2 corresponding to the
sparsity and `2 portions were sought on the grid of
values, independently for the two methods. The ROC
curves illustrate the best recovery rates achieved us-
ing the two penalties with their respective parameters
set by 5-fold cross-validation. The convex envelope
penalty recovers higher a proportion of the support
compared to the elastic net penalty.

6 Envelope of non-zero-block penalty

The fused lasso penalty proposed in (Tibshirani et al.,
2005) is meant to combine sparsity and smoothness.

Sparsity in a vector of values is induced by `1 on the
coordinates. Smoothness is induced by `1 on the dif-
ference between subsequent coordinate values. This
penalty, in the case of a neighborhood relationship in-
duced by a chain, is∑

i

λ1 |xi|+
∑

i

λ2 |xi − xi−1|

combined with a squared error loss∑
i

‖y − x‖2
2 (18)

where y (the data vector) and x are both column vec-
tors. The combination of this squared loss and fused
lasso penalty yields the fused lasso signal approxima-
tor.

One characterization of the complexity of the fused
lasso fit is given by the number of distinct non zero
blocks (Eq. 13 (Tibshirani et al., 2005)). While op-
tima of the fused lasso cost exhibit a “blocky” struc-
ture, the penalty can deviate significantly from simply
counting the number of non-zero blocks. Here we show
how the convex envelope of the non-zero-block count
function can be optimized, even if the closed form is
not available.

6.1 Conjugate of degrees of freedom

The complexity measure of a fused lasso fit, degrees-
of-freedom, stated in Equation 13 (Tibshirani et al.,
2005), is the cardinality of the complement of the set
{i : xi 6= 0} ∪ {i : xi − xi−1 = 0, xj , xj−1 6= 0} which is
exactly {i : xi 6= 0, xi = xi−1}. Hence we can formu-
late the hard penalty relaxed by the fused lasso as

card(〈x 6= 0, x 6= xπ〉) = λ
∑

i

(xi 6= 0, xi 6= xi−1)

where xπ denotes neighbors of x. We define the
nonzero-block penalty as

fnzb(x) = λ 〈x 6= 0, x 6= xπ〉 .

The conjugate is then given by

f∗nzb(y) = sup
x∈[−1,1]N

〈x, y〉 − λ 〈x 6= 0, x 6= xπ〉 . (19)

Next, we show that the optimization of the supre-
mum can be achieved by a Viterbi-like algorithm over
a small number of hidden states, by characterizing the
optimal assignments to x.

Proposition 6.1 The supremum of h(x) = 〈x, y〉 −
λ 〈x 6= 0, x 6= xπ〉 where x ∈ Bn can be achieved by
x ∈ Sn = {−1, 0, 1}n.
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Proof Assume that there exists a maximizing assign-
ment for x∗ ∈ [−1, 1]N . The assignment x∗ can be bro-
ken down into blocks of consecutive indices I1, . . . Im

such that x∗Ij
= aj , a slight abuse of notation, and

aj−1 6= aj and at least one aj /∈ {−1, 0, 1}. We can
now write the function h(x∗) =

∑m
j=1 hj(xIj ) where

hj(xIj ) =
〈
xIj , yIj

〉
− λ. We now proceed to con-

struct x′ such that h(x′) ≥ h(x∗). For each block
Ij , such that aj ∈ {−1, 0, 1}, we keep the same val-
ues x′Ij

= aj , hence hj(x′Ij
) ≥ hj(x∗Ij

). For blocks
such that aj /∈ {−1, 0, 1} and yIj = 0 setting x′Ij

=

sgn
(∑

l∈Ij
yl

)
achieves hj(x′Ij

) ≥ hj(x∗). Hence, we
can obtain an x′ from x∗ such that h(x′) ≥ h(x∗) where
x′ ∈ {−1, 0, 1}N since x∗ achieves a supremum so does
x′.

Hence, we can reformulate computation of the conju-
gate as optimization in this smaller discrete set:

f∗nzb(y) = max
x∈Sn

〈x, y〉 − λ 〈x 6= 0, x 6= xπ〉 (20)

and highlight the applicability of a Viterbi-like algo-
rithm in computing the conjugate

f∗nzb(y) = maxx1∈S1 x1y1 − λ(x1 6= 0)+
maxx2∈S1 x2y2 − λ(x2 6= 0, x2 6= x1) + ...
maxxn∈S1 xnyn − λ(xn 6= 0, xn 6= xn−1).

(21)
Given a maximizing assignment x∗ and using Eq. 4, we
can compute a subgradient of ∇yh(y, z) = z − x∗ and
use it in Algorithm 1, specialized to the problem of
the envelope of the non-zero-block penalty. The com-
plexity of the Viterbi pass is linear in the length of the
data vector and hence computation of the subgradient
is linear.

6.2 Optimization of a squared loss penalized
by the envelope of non-zero-block count

We now specialize the two updates in Algorithm 2 to
the problem of optimizing the loss from Eq. 18 penal-
ized by the envelope of non-zero-block count

(1/2) ‖y − z‖2
2 + λf∗∗nzb(z). (22)

Adopting notation Viterbi(·, ·) to indicate Viterbi de-
coding for the cost given in Eq. 21 we can specify the
updates inside the loop of Algorithm 2

W k
y = V k

y − 1
L

(
−V k(z) + Viterbi(V k

y , λ)
)

W k
z = ΠBn

[
V k

z − 1
L

(
V k(z)− d

)
+ V k

y

]
V k+1

y = V k
y − 1

L

(
−W k(z) + Viterbi(W k

y , λ)
)

V k+1
z = ΠBn

[
W k

z − 1
L

(
W k(z)− d

)
+ V k

y

]
.

The complexity of an iteration of this algorithm is lin-
ear in the size of the data sample.

6.3 Comparison to fused lasso

For purposes of comparison, we use the loss from
Eq.18,

L(z) = (1/2) ‖y − z‖2
2

and compare the performance of the two penalties,
fused lasso and the envelope of non-zero-block counter
f∗∗nzb.

From the HapMap CNV Project we obtained copy
number estimates for chromosomes 12,13,15 and 18 of
individual NA10855. For both methods we perform
pathwise fit, controlling for the number of degrees-
of-freedom and plotting the best reconstruction error
for a model of that complexity, see Figure 5 . This
regime corresponds to a purely unsupervised task of
compression. In these examples, envelope penalized
squared-error loss can yield models that capture more
of the data variance with a smaller number of degrees-
of-freedom. Notably, these examples have significant
amounts of structure. In cases of simpler signals, near
constant or with a small number of switching points,
the two penalties do not recover noticeably different
models.

7 Conclusion

Convex envelopes of cardinality offer a direct way to
capture parameter complexity and have yielded two
very useful penalties, `1 and nuclear norm. In spite
of the introduction of novel lasso style penalties, the
principled approach to combining these penalties has
not been put forward. We illustrated the hazards of
simple composition of penalties on the example of KL-
divergence and `1. In that case, we show that intro-
duction of the sparsifying penalty fails to yield any
sparsity. However, the joint convex envelope of KL-
divergence and cardinality yields the desired sparsi-
fied objective. Further, we show that two well known
penalties, elastic net and fused lasso, can be viewed as
relaxations of hard penalties and that those penalties
can in turn be enveloped to yield even tighter convex
relaxations. We also show two simple algorithms for
envelope evaluation and optimization of envelope pe-
nalized losses. We suggest that convex envelopes with
guarantees on tightness provide a powerful approach
to combining penalties, explicitly trading off computa-
tional costs, and investigating novel hybrid penalties.
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Figure 5: Model fits to copy number variation data
from the HapMap project. The data is shown on the
right. The measurements span four chromosomes from
individual NA10855. The plot shows the reconstruc-
tion error for varying complexity of models. In the
plot, FL denotes fused lasso penalized loss and NZB
denotes loss penalized by the envelope of non-zero-
block counts.
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