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Abstract

Spectral clustering is useful for a wide-ranging set of ejgpions in areas such as
biological data analysis, image processing and data mirtifmyvever, the com-
putational and/or communication resources required byrtbthod in processing
large-scale data are often prohibitively high, and prextérs are often required to
perturb the original data in various ways (quantizationyialeampling, etc) before
invoking a spectral algorithm. In this paper, we use staihasrturbation theory
to study the effects of data perturbation on the performafspectral clustering.
We show that the error under perturbation of spectral clungjes closely related
to the perturbation of the eigenvectors of the LaplaciarrimaFrom this result
we derive approximate upper bounds on the clustering ekfer.show that this
bound is tight empirically across a wide range of problermagggesting that it can
be used in practical settings to determine the amount ofrédtzction allowed in
order to meet a specification of permitted loss in clustep@dormance.

1 Introduction

A critical problem in machine learning is that of scaling:gatithms should be effective compu-
tationally and statistically as various dimensions of abjgm are scaled. One general tool for
approaching large-scale problems is that of clusteringaotitppning, in essence an appeal to the
principle of divide-and-conquer. However, while the outptia clustering algorithm may yield a
set of smaller-scale problems that may be easier to tadkistecing algorithms can themselves be
complex, and large-scale clustering often requires théskof preprocessing steps that are invoked
for other machine learning algorithms [1], including prafastering steps such as quantization,
downsampling and compression. Such preprocessing stepside in the distributed sensing and
distributed computing setting, where communication andbste limitations may preclude transmit-
ting the original data to centralized processors.

A number of recent works have begun to tackle the issue ofm@iang the tradeoffs that arise

under various “perturbations” of data, including quartiza and downsampling [2, 3, 4]. Most of

these analyses have been undertaken in the context of twdled domains such as classification,
regression and density estimation, for which there ardiagistatistical analyses of the effect of
noise on performance. Although extrinsic noise differscaptually from perturbations to data
imposed by a data analyst to cope with resource limitatitressmathematical issues arising in the
two cases are similar and the analyses of noise have progithedis for the study of the tradeoffs
arising from perturbations.

In this paper we focus on spectral clustering, a class otalumg methods that are based on eigen-
decompositions of affinity, dissimilarity or kernel magg[5, 6, 7, 8]. These algorithms often out-
perform traditional clustering algorithms such as the Kamsealgorithm or hierarchical clustering.
To date, however, their impact on real-world, large-scablems has been limited; in particular,
a distributed or “in-network” version of spectral clustegihas not yet appeared. Moreover, there
has been little work on the statistical analysis of specitatering, and thus there is little theory to
guide the design of distributed algorithms. There is antiexjditerature on numerical techniques for
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. Proposition 1
Procedure SpectralClusteringx, . . .,xx) rate
Input:  n data sample§x; }7_,, x; € R? ‘
Output: Bipartition S and.S of the input data Eigen error Eqn. (5), (6)
A
1. Compute the similarity matrix: 1
_ llxi—x;1? .. ' Lemma2 &
Kij = exp (* 207 >1VX15XJ Laplacian Eqn. (7)- (13)
2. Compute the diagonal degree matrix D: '
Di=%"_ K,
i j=1"%tj ) . Similarity
3. Compute the normalized Laplacian matrix: matrix efror temma 3 or4
L=I-D"'K :
4. Find the second eigenvectos of L ‘ )
5. Obtain the two partitions using: Data error Assumption A
6. S ={[i] :v2s >0}, S={[i] v <0}

Error propagation Perturbation analysis

Figure 1:A spectral bipartitioning algorithm. Figure 2:Perturbation analysis: from clustering
error to data perturbation error.

scaling spectral clustering (including downsampling [@] dnd the relaxation of precision require-
ments for the eigenvector computation [7]), but this litera does not provide end-to-end, practical
bounds on error rates as a function of data perturbations.

In this paper we present the first end-to-end analysis of fieeteof data perturbations on spectral
clustering. Our focus is quantization, but our analysiseisegal and can be used to treat other kinds
of data perturbation. Indeed, given that our approach iedas treating perturbations as random
variables, we believe that our methods will also prove Usefdeveloping statistical analyses of
spectral clustering (although that is not our focus in tlzipqr).

The paper is organized as follows. In Section 2, we providgéed introduction to spectral clustering.
Section 3 contains the main results of the paper; specifived| introduce the mis-clustering rate
7, and present upper bounds grue to data perturbations. In Section 4, we present an ezapiri
evaluation of our analyses. Finally, in Section 5 we presentonclusions.

2 Spectral clustering and data perturbation

2.1 Background on spectral clustering algorithms

Given a set of data poin{; }7*_;, x; € R4 and some notion of similarity between all pairs of data
pointsx; andx;, spectral clustering attempts to divide the data pointsgnbups such that points in
the same group are similar and points in different groupsies®milar. The point of departure of a
spectral clustering algorithm is a weightsidhilarity graphG(V, E), where the vertices correspond
to data points and the weights correspond to the pairwisesities. Based on this weighted graph,
spectral clustering algorithms form the graph Laplaciath@mpute an eigendecomposition of this
Laplacian [5, 6, 7]. While some algorithms use multiple eigmtors and find &-way clustering
directly, the most widely studied algorithms form a bip@wtiing of the data by thresholding the
second eigenvector of the Laplacian (the eigenvector wighsecond smallest eigenvalue). Larger
numbers of clusters are found by applying the bipartitigragorithm recursively. We present a
specific example of a spectral bipartitioning algorithm ig.H.

2.2 Input data perturbation

Let the data matrixX € R"*“ be formed by stacking data samples in rows. To this data matrix we
assume that perturbatiéfi is applied, such that we obtain a perturbed versioof the original data

X. We assume that a spectral clustering algorithm is appdiédand we wish to compare the results
of this clustering with respect to the spectral clusterihg’o This analysis captures a number of data
perturbation methods, including data filtering, quantaatlossy compression and synopsis-based
data approximation [11]. The multi-scale clustering alfons that use “representative” samples to
approximate the original data can be treated using our sisedg well [12].



3 Mis-clustering rate and effects of data perturbation

Let K andL be the similarity and Laplacian matrix on the original dataand letX” andL be those
on the perturbed data. We define thés-clustering rate; as the proportion of samples that have
different cluster memberships when computed on the twerdifft versions of the dat&; and X..
We wish to bound; in terms of the “magnitude” of the error matri¥ = X — X, which we now
define. We make the following general stochastic assumpticihe error matrixy’:

A. All elements of the error matri¥)” are i.i.d. random variables with zero mean, bounded
variances? and bounded fourth central momerit, and are independent of.

Remark. (i) Note that we do not make i.i.d. assumptions on the elesefithe similarity matrix;
rather, our assumption refers to the input data only. (iilsT@ssumption is distribution free, and
captures a wide variety of practical data collection andntjgation schemes. (iii) Certain data
perturbation schemes may not satisfy the independencenpisn. We have not yet conducted an
analysis of the robustness of our bounds to lack of indepa®jdut in our empirical work we have
found that the bounds are robust to relatively small amoohterrelation.

We aim to produce practically useful boundspim terms ofc and the data matriX'. The bounds
should be reasonably tight so that in practice they coulddeel to determine the degree of pertur-
bationo given a desired level of clustering performance, or to gte\a clustering error guarantee
on the original data even though we have access only to it©rippate version.

Fig. 2 outlines the steps in our theoretical analysis. Brigfhen we perturb the input data (e.g., by
filtering, quantization or compression), we introduce auyreation to the data which is quan-
tified by 2. This induces an errafK := K — K in the similarity matrix, and in turn an error
dL := L — L in the Laplacian matrix. This further yields an error in tleeend eigenvector of
the Laplacian matrix, which results in mis-clustering erroverall, we establish an analytical re-
lationship between the mis-clustering ratend the data perturbation erref, wherer is usually
monotonically increasing witle2. Our goal is to allow practitioners to specify a mis-clustgr
raten*, and by inverting this relationship, to determine the rigtaignitude of the perturbatiori*
allowed. That is, our work can provide a practical methodetedmine the tradeoff between data
perturbation and the loss of clustering accuracy due to seeofiX instead ofX. When the data
perturbation can be related to computational or commuieicgitsavings, then our analysis yields a
practical characterization of the overall resource/aacytradeoff.

Practical Applications Consider in particular a clustering task in a distributetivoeking system
that allows an application to specify a desired clusterimgre_* on the distributed data (which is
not available to the coordinator). Through a communicapiaiocol similar to that in [4], the coor-
dinator (e.g., network operation center) gets access tpaherbed dat&X for spectral clustering.
The coordinator can compute a clustering error botnasing our method. By setting < C*, it
determines the tolerable data perturbation estoand instructs distributed devices to use appropri-
ate numbers of bits to quantize their data. Thus we can peayitirantees on the achieved error,
C < C*, with respect to the original distributed data even withessconly to the perturbed data.

3.1 Upper bounding the mis-clustering rate

Little is currently known about the connection between t&ting error and perturbations to the
Laplacian matrix in the spectral clustering setting. [53g@nted an upper bound for the clustering
error, however this bound is usually quite loose and is nalbhei for practical applications. In this
section we propose a new approach based on a water-fillingremngt that yields a tighter, practical
bound. Letvy, andv, be the unit-length second eigenvectord.adind L, respectively. We derive a
relationship between the mis-clustering ratends? := ||[vo — v» 2.

The intuition behind our derivation is suggested in Fig. 8td.andb denote the sets of components
in vo corresponding to clusters of size andk,, respectively, and similarly far’ andd’ in the case
of vo. If vo is changed tor, due to the perturbation, an incorrect clustering happerenever a
component ol in seta jumps to set’, denoted as — b/, or a component in sétjumps to set’,
denoted a$ — a’. The key observation is that each flipping of cluster mentbpiis eithera — b’
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Figure 3: The second eigenvectar, and its per-  Figure 4:An example of the tightness of
turbed counterpar; (denoted by dashed lines). the upper bound fon in Eq. (1).

orb — a’ contributes a fairly large amount to the valuesdf compared to the short-range drifts
ina — a’ orb — . Given a fixed value 062, the maximum possible number of flippings (i.e.,
missed clusterings) is therefore constrained, and thiskages into an upper bound for

We make the following assumptions on the datand its perturbation:

B1l. The components of, form two clusters (with respect to the spectral bipartitignalgo-
rithm in Fig. 1). The size of each cluster is comparable.to

B2. The perturbation is small with the total number of migstéringsn < min(ky, k2), and
the components of; form two clusters. The size of each cluster is comparable to

B3. The perturbation of individual componentswf in each set ofi — a/,a — V', b — d
andb — b’ have identical (not necessary independent) distributiaitts bounded second
moments, respectively, and they are uncorrelated withdhgonents inv,.

Our perturbation bound can now be stated as follows:

Proposition 1. Under assumptions B1, B2 and B3, the mis-clusteringwai&the spectral biparti-
tioning algorithm under the perturbation satisfigs< §2 = ||vo — v|?. If we further assume that
all components of, — v, are independent, then

1 < (14 0p(1))E[[v2 — v2*. (@
The proof of the proposition is provided in the Appendix.

Remarks. (i) Assumption B3 was motivated by our empirical work. Altigh it is difficult to
establish general necessary and sufficient conditions 3otoBhold, in the Appendix we present
some special cases that allow B3 to be verified a priori. Ii$e avorth noting that B3 appears
to hold (approximately) across a range of experiments pteden Section 4. (ii) If we assume
piecewise constancy fary, then we can relax the uncorrelated assumption in B3. (iiij) tbund
has a different flavor than that obtained in [5]. Although loeind in Theorem 4.3 in [5] works for
k-way clustering, it assumes a block-diagonal Laplaciarrimand requires the gap between the
k" and(k + 1)t" eigenvalues to be greater thaf2, which is unrealistic in many data sets. In the
setting of 2-way spectral clustering and a small pertudpatour bound is much tighter than that
derived in [5]; see Fig. 4 in particular.

3.2 Perturbation on the second eigenvector of Laplacian matrix

We now turn to the relationship between the perturbationigéresectors with that of its matrix.
One approach is to simply draw on the classical domain ofiryaérturbation theory; in particular,
applying Theorem V.2.8 from [13], we have the following bdum the (small) perturbation of the
second eigenvector:

[4dL|
v—2|dL|F’

wherev is the gap between the second and the third eigenvalue. Howievour experimental
evaluation we found that can be quite small in some data sets, and in these cases livaigd

[V2 — val| <

)
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Figure 5: Experimental examples of the fidelity of the approximation in Eq. (5). W idd. zero mean
Gaussian noise to the input data with differepand we see that the right-hand side (RHS) of (5) approximately
upper bounds the left-hand side (LHS).

side of (2) can be quite large even for a small perturbatidrusithe bound given by (2) is often not
useful in practical applications.

To derive a more practically useful bound, we begin with akebwn first-order Taylor expansion
to compute the perturbation on the second eigenvector opkatimn matrix as follows:

" vTdLvy n n
Vo —vVy = Z %ij +0(dL?) ~ Z Um”q2deq
J=1j7#2 J j:L#Z J p=1g=1
n SV n
- | (Swetn) [ 3 ) <D, ®
p=1 q=1 j=1g#2 2 p=1

where, = > 7, vgedL,, is a random variable determined by the effect of the pertighan

the Laplacian matrix., and the vecton, = 37, ., ( - AJ ) is a constant determined by the
eigendecomposition of the Laplacian matfix Then we have

Zﬁpup ZEHBPUP||2+2Z Z E 52“1 Bju ) (4)
p=1

i=1 j=i+1
In our experimental work we have found that fof j, 5;u; is either very weakly correlated with
Bju; (i.e., the total sum of all cross terms is typically one or tvders of magnitude less than that
of squared term), or negatively correlated withu; (i.e., the total sum of all cross terms is less than
zero). This empirical evidence suggests the following apipnate bound:

E|v2 — vo|? = E

E[[vs — vo|* S Y EB; - uy*. )
p=1
Examples of the fidelity of this approximation for particuttata sets are shown in Fig. 5.

Finally, Eﬂg is related taiL,,q, and can be upper bounded by

n

n 2 n
Eﬁ}% =E (Z Uququ> < ZZ V;i2V;52 - E dez) (dej) + |’Ui2Uj2|0'piO'pj} y (6)
q=1

i=1 j=1
whereo,,; is the variance oflL,;.

Remark. Through Egs. (5) and (6), we can bound the squared norm oféharpation on the
second eigenvector in expectation, which in turn boundgrileeclustering rate. To compute the
bound, we need to estimate the first two momentgiafwhich we discuss next.

3.3 Perturbation on the Laplacian matrix

Let D be the diagonal matrix wittD; = Zj K;;. We define the normalized Laplacian matrix as

L=1-D7'K.LettingA = D — D anddK = K — K, we have the following approximation for
dL =L — L:



Lemma 2. If perturbationd K is small compared td(, then
dL = (1+0(1)) AD™2K — D dK. (7

Then, element-wise, the first two momentsidf can be estimated as

E(dL) ~ E(A)D?K — D™ 'E(dK) (8)
E(dL?) ~ E(AD?KoAD?K —2D'dK oADK + D™'dK o D™'dK)
E (A%) D™K? 4+ D7?E (dK?) — 2E(AdK)D ? o K, 9)

whereo denotes element-wise product. The quantities neededitoaget(dL) andE(de) can

be obtained from moments and correlations among the elsnoérthe similarity matrix#’;;. In
particular, we have

E(dK;) = E (K ) ~ Ky, B(dK;)® =EK? - 2K,E (f(j) + K2, (10)

EA; = ED,-D;, ED;=Y E (Kj) , EA2=ED? 2D, -ED; + D? (11)

j=1
2
ED? = E(Y Ky| =S ERZ+23 % (EKijEKiq n pquafjafq) (12)
=1 =1 J=1q=j+1
B(AdK); = B(D;— D) (Ki; — Kij) =F ([)if(ij) — DiEK;; — KijEA,
= E|K;+K;| Y Kil||-DEK;—K;EA,
q=1,q#j

— BRE+ Y (BKGEK, + ply,0lok ) - DiEKy; - KyEA;, (19)
q=1,q#]

whereafj is the standard deviation &, ij and—1 < pqu < 1isthe correlation coefficient between
f{ij andf{iq. Estimating allpqu/s would require an intensive effort. For simplicity, we colet
p;, to1in Eq. (12) and to-1in Eq. (13), and obtain an upper bound f/L?). This bound could
optionally be tightened by using a simulation method toneste the values f'jq. However, in our
experimental work we have found that our results are infeagp the values obqu, and setting
pqu = 0.5 usually achieves good results.

Remark. Egs. (8)—(13) allow us to estimate (i.e., to upper bound)fitlsé two moments ofiL
using those ofl K, which are computed using Eq. (15) or (16) in Section 3.4.

3.4 Perturbation on the similarity matrix

The similarity matrix’” on perturbed dat& is

~ X .2
K” = exp <|){Z X] Tt €& EJH ) , (14)

whereoy, is the kernel bandwidth. Then, given d&fathe first two moments ofK;; = f(ij — Kij,
the error in the similarity matrix, can be determined by ohthe following lemmas.

Lemma 3. GivenX, if all components of; ande; are i.i.d. GaussianV (0, c?), then

B (k)= (-%). B(R3) =0 <%f:) (15)

k

whereM;; () = [exp ( Nigt )/(1 - 2t)d/2], and;; = (|Jx: — x;|2/202).

1-2t

6
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Figure 6:Synthetic data sets illustrated in two dimensions.

Lemma 4. Under Assumptio\, given X and for large values of the dimensiafy the first two
moments of<;; can be computed approximately as follows:

E(Ky) = My (—2;) . B(RKE) =My <—0_1]%> : (16)

k
WhereMij (t) = exp [()\U + 2d02) t+ (dﬂ4 + d04 + 402)\12]) tQ], andAZ’j = ||X1 — Xj||2.

Remark. (i) Given data perturbation errer, kernel bandwidtlr;, and dataX, the first two mo-
ments ofdK;; can be estimated directly using (15) or (16). (i) ThrougrsE{)-(16), we have
established a relationship between the mis-clusterirggrand the data perturbation magnitusle
By inverting this relationship (e.g., using binary searet® can determine @ for a givenn*.

4 Evaluation

In this section we present an empirical evaluation of ouhyaaon 3 synthetic data sets (see Fig. 6)
and 6 real data sets from the UCI repository [14]. The dataadesnare diverse, including im-
age, medicine, agriculture, etc., and the different datsisgpose different difficulty levels on the
underlying spectral clustering algorithm, demonstratimgwide applicability of our analysis.

In the experiments, we use data quantization as the petimmischeme to evaluate the upper bound
provided by our analysis on the clustering error. Fig. 7ptbe mis-clustering rate and the upper
bound for data sets subject to varying degrees of quardizatAs expected, the mis-clustering
rate increases as one decreases the number of quantizasioiMe find that the error bounds are
remarkably tight, which validate the assumptions we makiaénanalysis. It is also interesting to
note that even when using as few as 3-4 bits, the clusterigipdes very little in both real error and
as assessed by our bound. The effectiveness of our bountdi stlow the practitioner to determine
the right amount of quantization given a permitted loss urstdring performance.

5 Conclusion

In this paper, we proposed a theoretical analysis of theeatling error for spectral clustering in the

face of stochastic perturbations. Our experimental evi@unédas provided support for the assump-
tions made in the analysis, showing that the bound is tigdeunonditions of practical interest. We

believe that our work, which provides an analytical relasioip between the mis-clustering rate and
the variance of the perturbation, constitutes a critioap gbwards enabling a large class of appli-
cations that seek to perform clustering of objects, machidata, etc in a distributed environment.
Many networks are bandwidth constrained, and our methadgueie the process of data thinning

so as to limit the amount of data transmitted through the otfor the purpose of clustering.
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6 Appendix

In this Appendix we provide more detailed analyses and priwdit are omited in the main body of
the paper due to space limitation.

Some heuristics on assumption B3 It is difficult to show that assumption B3 is valid under very
general conditions. To gain insight, we here show its vglia the case where the original similarity
matrix has the following block-diagonal structure (assugrthere are two clusters with sizesind

q, respectively):
1 0
P, = DXP PXq ] ,
0 [ Ogxp  lgxq
wherel,,,, 1,x, denote matrices with all elements and0,,.,, 0,x, denote matrices with all

elementd). This is the case where points in the same cluster have paiffetdty and points from
different clusters have no affinity.

We further assume the perturbed similarity matrix is givgn b

p_ Lpxp U(0,¢€)
T UO0,0T  1gxq |

whereU (0, ¢) denotes @ x ¢ matrix with elements generated i.i.d. according to somgildigion

P (e.g., uniform distribution) on intervad, €], with € being a small constant. This model has been
studied recently in [15], which obtains the following redor the unnormalized second eigenvector
vy of the Laplacian matrix oP.:

Proposition 5. Assuming all elements; in matrix P. are i.i.d. uniform over interval0, ¢] for
some constant = o(%q), and®? — a for some constant whenp andg grow. Then whep andgq
grow, the following holds

1 - (]‘ + 7)p2[p—€‘—k€k z Epj‘lﬁ.L] + Rk,p,q k - 1’ ”"p - 1
- L= (1+7)(p- 1)[p+pgp, - Epfgl‘] + Rpp.q k=p
() = € (k—p € _
o v+ A+ NCIFE B+ Repg k=p+1,.,p+qg—1

i Ul 1)[qig.q —EfH ]+ Rorgpa F=p+4

whered,;, denotes thé! component of eigenvectds, v is a constantg; = 23:1 €j,i=1,..,p,
ande ; = >0, €;,5 =1,...,q, Ry p ¢S are remainders withnaxi <j<ptq | Rk p.q| = 0p(1).

From Proposition 5, we can easily see that excludingth@nd the(p + ¢)!" components, all other
components i, that belong to the same clusters follow the same distributip to a first order
approximation (in the sense of the general matrix pertishdheory). Moreover, since the second
eigenvectow, of the Laplacian matrix of?, is piecewise constant, it immediately follows that the
individual perturbations are uncorrelated with theirialivalues.

Proof of Proposition 1 We use the notation introduced earlier in Section 3.1, atrddnce ad-
ditional notation in Fig. 8. Recall that andb denote the sets of elementsvig corresponding to
two clusters under consideration, and similarlydoandd’ in v,. Letm denote the total number of
missed clusteringsn = m_ + m., wherem_ denotes the number of cluster flippingswof- ¥/,
andm_. the number of flippings of — a’. As an abuse of notation, we also us#, «’, b’ to denote
the mean of element values in the corresponding setiand vy, respectively. Referring to the
value 62 as the “energy,” we aim to determine the maximum number opifligsm (i.e., missed
clusterings) for any (randomly) given enerds this yields an upper bound fa:

Let Ay,..., A, andBy,..., By, denote the zero mean fluctuations arounahdb, respectively,
and letUy, ..., Uy, —y_ andVi,..., Vi, ., denote the zero mean fluctuations arounénd?’,
respectively. Let variablek;, ..., Y,, > 0 denote the long-range (random) jumps fraro &’ for



Values

AT

V'V
ol i
a/’ ZJ’
Indices
Yi b
B A\ A
V'V y
v i ,,,,,,,,,,

Figure 8:Notation in the Proof of Proposition 1.

maximize m =my +m_

subject to:
k1 k1
dla+ A+ (b+Bj)’ =1 17)
i=1 j=1
ki—m_ ko—my m_ my
S @HUP+ D WM +ViP+) (a+ A -Y)P+ ) (b+Bj+2Z;)° =1 (18)
i=1 j=1 i=1 j=1
ki—m_ ko—m g m_ m
Yolat+Ai—d —U)+ > (b+B; -V -V)?+> Y2+ > 7z} =0 (19)
i—1 j=1 =1 J=1
Figure 9: The optimization problem for mis-clustering rate
elements in sei — ¥, and letZy,...,Z,, > 0for elements in sei — a’; Apparently, we have

Zj = a +U; —b— B;. We have the optimization problem described in Fig. 9 forrtreximum
number of mis-clusterings. In the constraints, Egs. (17) and (18) refer to the unittleingv, and
Vo, respectively; and Eq. (19) refers to the total energy cairt

Without loss of generality we consider the case describeelgn8 witha,a’ > 0,00’ < 0, and
(@' — b)? < (a — b')2. Due to symmetry, the same argument follows when we consigeother
cases. According to assumption B3, we h&l¢ = « — ¥’ andEZ; = o’ — b, for all i andj. By
working with expectations, we have

1
EY?+..+EY2 > m—(EYl + .. +EY, P =m_(a—V)?

1
EZ{ +..+EZ;,, > m—+(Ezl+...+EZmZz+)2:m+(agb)2.

Summing and substituting into Eq. (19), we get

m— my
mi(d =b?+m_(a—V)><EY Y?+E» 77 <¢° (20)
i=1 j=1

To maximize the objective functiom = m_ +m_ given (20) and giveria’ — b)? < (a —b')?, we
should setn_ = 0 andm = m... This turns (20) inton(a’ — b)? < 62, under whichm achieves
its maximum wherb = 0.
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Let 0% denote the variance (ﬂ;, which may depend om or n. The following arguments allow us
to assume that'? = b2+ EV? — 0% — EB?. The resultd = 0 andm = m. simplify Eq. (18) into

k] kz—m m

S +U)+ D W +V)T+D (B +Z)) (21)
J

i=1 j=1 =1
Taking expectation on both sides and using the assumpti@ighelU; are identically distributed
with zero mean, as are thé, we get

kia"? 4+ ki EUZ 4 (kg — m)b? 4 (ks — m)EVZ + m(d? +0%) =1, (22)
which implies thatr? < -L. Hence we can assume they = % for some0 < g < 1. Setting
V% = a”? — EVZ + 02 + EB? in Eq. (22) effectively disables this constraint fer, and Eq. (22)
becomes:

kia"? + ki BU? 4 ko + ko EVE = 1.
Substituting? = o’ — EV? + 0% + EB? into this equation, we obtain
kya? + k\EUE + ka(a’? — BV + 0%) + keEV? = na'? + keo% + ki EUT = 1,
from which we obtain

=1-kEU2 - % — koEB2. (23)

Usingb = 0 andm = m_. also simplifies Eq. (19), which becomes:
k1 ko—m

Sa+A—a —U)*+ > (B =V =V;)?+ Y (d - B +U;)* =62

i=1 j=1 J=1
Taking expectation on both sides yields
ki1((a —a')? + EA?) + kiEU? + koEBE + (ko — m) (b + EV?) +m(a” + EU?) = 462,
implying

k\EU? + k,EB? < 6% — B —ma”? (24)
—m)(8* — )
_ 2 < (n —m)( _
(n—m)a™ < - (25)
Substituting (24) into (23) and combining with (25), we get

(n—m)(é* - f)

1752+57@6 < (n—m)a? <
m m

Rearranging terms we have
62 — nf + ko < no®

52 = ||\~’2 - V2||2.

IN

m
m

IN

’]’I:
n

When||v, —v» || is small, and if we further assume that all component&,of v, are independent,
then||v, — v ||? is highly concentrated around its mean asymptotically énrthmber of data points.
In this case we obtain < (1 + 0,(1))E|[v2 — vo|2.

Proof of Lemma 2 For the perturbation on the Laplacian matrix, we have
dL=1—-(D+A)"YK+dK)-1+D 'K (26)

Because the perturbatialk is small comparing td¢, so isA comparing taD, andAD~! is small.
Using Taylor expansion for functiod(X) = (I + X)~! aroundX = 0,,,, we have

(I+AD Y t=T—-AD ' +0((AD™1)?).
Substituting it into Eq. (26), we get
dL = —[I-AD'+0((AD) 3D Y (K +dK)+ D 'K
= —-D YK +dK)+AD %K +dK)—-O((AD)?)D YK +dK) + D 'K
= (1+0(1))AD?K — D" 'dK.
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Proof of Lemma3 LetS;; := ||x; — x; + € — ¢;||>. Fori = j, the result holds trivially. For
i # j and givenX, (S;;/20?) follows a non-central chi-square distribution with paraenéd, \;;),
where);; = (||x; — x,|[*/20?). The mean igl + \,;, the variance ig(d + 2);;), and the moment

fjgt)/(l - 2t)d/2} . K;; is an exponential function of the

non-central chi-square random variabi; /2¢%), so the first two moments df; can be computed
using the moment generating functiaf;; (¢), which gives the results in Eq.(15) in the main paper.

generating function i8Z;; (t) = {exp (

Proof of Lemma 4 LetS;; := ||x; — xj + € — ¢;||>. Fori = j, the result holds trivially.
Fori # j, Si; is the sum ofd (the dimension ofX) independent variables, and approximately
follows a Gaussian distribution for large We only need to work out its mean and variance. Let
Xij == ||x; — x;||%. Given input dataX, we have

d

ES; = Elxi—xj+ea—glP=> [(Xfm ~ X2y 202] = \ij + 2do”
p=1
d d ) 5
ESEJ- _ ZZE [Xi(p) _ Xj(p) 4 6517) _ 6§P)} ) {Xi(q) -~ X](_q) i 61(}1) -~ 6§q>
p=1qg=1
= M. +4(d® — d)ot + d(2ut + 60%) + 802N\, + 4do?)\Z,
) ) )
Var(S;;) = ESZ — (ES;;)? = 2dp" + 2do* + 80727,

So using the moment-generating function, we obtain thewetlg asymptotic results [16]:
~ Si; B 1
() = #(oo(-34)) -2 ()
~ Sii 1
2 a7/ I N Y
o) = e (51)) =2 ()

which completes the proof.
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