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Abstract

Spectral clustering is useful for a wide-ranging set of applications in areas such as
biological data analysis, image processing and data mining. However, the com-
putational and/or communication resources required by themethod in processing
large-scale data are often prohibitively high, and practitioners are often required to
perturb the original data in various ways (quantization, downsampling, etc) before
invoking a spectral algorithm. In this paper, we use stochastic perturbation theory
to study the effects of data perturbation on the performanceof spectral clustering.
We show that the error under perturbation of spectral clustering is closely related
to the perturbation of the eigenvectors of the Laplacian matrix. From this result
we derive approximate upper bounds on the clustering error.We show that this
bound is tight empirically across a wide range of problems, suggesting that it can
be used in practical settings to determine the amount of datareduction allowed in
order to meet a specification of permitted loss in clusteringperformance.

1 Introduction

A critical problem in machine learning is that of scaling: Algorithms should be effective compu-
tationally and statistically as various dimensions of a problem are scaled. One general tool for
approaching large-scale problems is that of clustering or partitioning, in essence an appeal to the
principle of divide-and-conquer. However, while the output of a clustering algorithm may yield a
set of smaller-scale problems that may be easier to tackle, clustering algorithms can themselves be
complex, and large-scale clustering often requires the kinds of preprocessing steps that are invoked
for other machine learning algorithms [1], including proto-clustering steps such as quantization,
downsampling and compression. Such preprocessing steps also arise in the distributed sensing and
distributed computing setting, where communication and storage limitations may preclude transmit-
ting the original data to centralized processors.

A number of recent works have begun to tackle the issue of determining the tradeoffs that arise
under various “perturbations” of data, including quantization and downsampling [2, 3, 4]. Most of
these analyses have been undertaken in the context of well-studied domains such as classification,
regression and density estimation, for which there are existing statistical analyses of the effect of
noise on performance. Although extrinsic noise differs conceptually from perturbations to data
imposed by a data analyst to cope with resource limitations,the mathematical issues arising in the
two cases are similar and the analyses of noise have provideda basis for the study of the tradeoffs
arising from perturbations.

In this paper we focus on spectral clustering, a class of clustering methods that are based on eigen-
decompositions of affinity, dissimilarity or kernel matrices [5, 6, 7, 8]. These algorithms often out-
perform traditional clustering algorithms such as the K-means algorithm or hierarchical clustering.
To date, however, their impact on real-world, large-scale problems has been limited; in particular,
a distributed or “in-network” version of spectral clustering has not yet appeared. Moreover, there
has been little work on the statistical analysis of spectralclustering, and thus there is little theory to
guide the design of distributed algorithms. There is an existing literature on numerical techniques for
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Procedure SpectralClustering(x1, . . . ,xn)
Input: n data samples{xi}

n
i=1,xi ∈ R

d

Output: BipartitionS andS̄ of the input data

1. Compute the similarity matrixK:

Kij = exp
“

−
‖xi−xj‖

2

2σ2
k

”

, ∀xi,xj

2. Compute the diagonal degree matrix D:
Di =

Pn

j=1
Kij

3. Compute the normalized Laplacian matrix:
L = I − D−1K

4. Find the second eigenvectorv2 of L
5. Obtain the two partitions usingv2:
6. S = {[i] : v2i > 0}, S̄ = {[i] : v2i ≤ 0}

Figure 1:A spectral bipartitioning algorithm.
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scaling spectral clustering (including downsampling [9, 10] and the relaxation of precision require-
ments for the eigenvector computation [7]), but this literature does not provide end-to-end, practical
bounds on error rates as a function of data perturbations.

In this paper we present the first end-to-end analysis of the effect of data perturbations on spectral
clustering. Our focus is quantization, but our analysis is general and can be used to treat other kinds
of data perturbation. Indeed, given that our approach is based on treating perturbations as random
variables, we believe that our methods will also prove useful in developing statistical analyses of
spectral clustering (although that is not our focus in this paper).

The paper is organized as follows. In Section 2, we provide a brief introduction to spectral clustering.
Section 3 contains the main results of the paper; specifically we introduce the mis-clustering rate
η, and present upper bounds onη due to data perturbations. In Section 4, we present an empirical
evaluation of our analyses. Finally, in Section 5 we presentour conclusions.

2 Spectral clustering and data perturbation

2.1 Background on spectral clustering algorithms

Given a set of data points{xi}n
i=1,xi ∈ R

1×d and some notion of similarity between all pairs of data
pointsxi andxj , spectral clustering attempts to divide the data points into groups such that points in
the same group are similar and points in different groups aredissimilar. The point of departure of a
spectral clustering algorithm is a weightedsimilarity graphG(V,E), where the vertices correspond
to data points and the weights correspond to the pairwise similarities. Based on this weighted graph,
spectral clustering algorithms form the graph Laplacian and compute an eigendecomposition of this
Laplacian [5, 6, 7]. While some algorithms use multiple eigenvectors and find ak-way clustering
directly, the most widely studied algorithms form a bipartitioning of the data by thresholding the
second eigenvector of the Laplacian (the eigenvector with the second smallest eigenvalue). Larger
numbers of clusters are found by applying the bipartitioning algorithm recursively. We present a
specific example of a spectral bipartitioning algorithm in Fig. 1.

2.2 Input data perturbation

Let the data matrixX ∈ R
n×d be formed by stackingn data samples in rows. To this data matrix we

assume that perturbationW is applied, such that we obtain a perturbed versionX̃ of the original data
X. We assume that a spectral clustering algorithm is applied to X̃ and we wish to compare the results
of this clustering with respect to the spectral clustering of X. This analysis captures a number of data
perturbation methods, including data filtering, quantization, lossy compression and synopsis-based
data approximation [11]. The multi-scale clustering algorithms that use “representative” samples to
approximate the original data can be treated using our analysis as well [12].
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3 Mis-clustering rate and effects of data perturbation

Let K andL be the similarity and Laplacian matrix on the original dataX, and letK̃ andL̃ be those
on the perturbed data. We define themis-clustering rateη as the proportion of samples that have
different cluster memberships when computed on the two different versions of the data,X andX̃.
We wish to boundη in terms of the “magnitude” of the error matrixW = X̃ − X, which we now
define. We make the following general stochastic assumptionon the error matrixW :

A. All elements of the error matrixW are i.i.d. random variables with zero mean, bounded
varianceσ2 and bounded fourth central momentµ4; and are independent ofX.

Remark. (i) Note that we do not make i.i.d. assumptions on the elements of the similarity matrix;
rather, our assumption refers to the input data only. (ii) This assumption is distribution free, and
captures a wide variety of practical data collection and quantization schemes. (iii) Certain data
perturbation schemes may not satisfy the independence assumption. We have not yet conducted an
analysis of the robustness of our bounds to lack of independence, but in our empirical work we have
found that the bounds are robust to relatively small amountsof correlation.

We aim to produce practically useful bounds onη in terms ofσ and the data matrixX. The bounds
should be reasonably tight so that in practice they could be used to determine the degree of pertur-
bationσ given a desired level of clustering performance, or to provide a clustering error guarantee
on the original data even though we have access only to its approximate version.

Fig. 2 outlines the steps in our theoretical analysis. Briefly, when we perturb the input data (e.g., by
filtering, quantization or compression), we introduce a perturbationW to the data which is quan-
tified by σ2. This induces an errordK := K̃ − K in the similarity matrix, and in turn an error
dL := L̃ − L in the Laplacian matrix. This further yields an error in the second eigenvector of
the Laplacian matrix, which results in mis-clustering error. Overall, we establish an analytical re-
lationship between the mis-clustering rateη and the data perturbation errorσ2, whereη is usually
monotonically increasing withσ2. Our goal is to allow practitioners to specify a mis-clustering
rateη∗, and by inverting this relationship, to determine the rightmagnitude of the perturbationσ∗

allowed. That is, our work can provide a practical method to determine the tradeoff between data
perturbation and the loss of clustering accuracy due to the use ofX̃ instead ofX. When the data
perturbation can be related to computational or communications savings, then our analysis yields a
practical characterization of the overall resource/accuracy tradeoff.

Practical Applications Consider in particular a clustering task in a distributed networking system
that allows an application to specify a desired clustering error C∗ on the distributed data (which is
not available to the coordinator). Through a communicationprotocol similar to that in [4], the coor-
dinator (e.g., network operation center) gets access to theperturbed datãX for spectral clustering.
The coordinator can compute a clustering error boundC using our method. By settingC ≤ C∗, it
determines the tolerable data perturbation errorσ∗ and instructs distributed devices to use appropri-
ate numbers of bits to quantize their data. Thus we can provide guarantees on the achieved error,
C ≤ C∗, with respect to the original distributed data even with access only to the perturbed data.

3.1 Upper bounding the mis-clustering rate

Little is currently known about the connection between clustering error and perturbations to the
Laplacian matrix in the spectral clustering setting. [5] presented an upper bound for the clustering
error, however this bound is usually quite loose and is not viable for practical applications. In this
section we propose a new approach based on a water-filling argument that yields a tighter, practical
bound. Letv2 andṽ2 be the unit-length second eigenvectors ofL andL̃, respectively. We derive a
relationship between the mis-clustering rateη andδ2 := ‖ṽ2 − v2‖2.

The intuition behind our derivation is suggested in Fig. 3. Leta andb denote the sets of components
in v2 corresponding to clusters of sizek1 andk2, respectively, and similarly fora′ andb′ in the case
of ṽ2. If v2 is changed tõv2 due to the perturbation, an incorrect clustering happens whenever a
component ofv2 in seta jumps to setb′, denoted asa → b′, or a component in setb jumps to seta′,
denoted asb → a′. The key observation is that each flipping of cluster membership in eithera → b′
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Figure 4:An example of the tightness of
the upper bound forη in Eq. (1).

or b → a′ contributes a fairly large amount to the value ofδ2, compared to the short-range drifts
in a → a′ or b → b′. Given a fixed value ofδ2, the maximum possible number of flippings (i.e.,
missed clusterings) is therefore constrained, and this translates into an upper bound forη.

We make the following assumptions on the dataX and its perturbation:

B1. The components ofv2 form two clusters (with respect to the spectral bipartitioning algo-
rithm in Fig. 1). The size of each cluster is comparable ton.

B2. The perturbation is small with the total number of mis-clusteringsm < min(k1, k2), and
the components of̃v2 form two clusters. The size of each cluster is comparable ton.

B3. The perturbation of individual components ofv2 in each set ofa → a′, a → b′, b → a′

andb → b′ have identical (not necessary independent) distributionswith bounded second
moments, respectively, and they are uncorrelated with the components inv2.

Our perturbation bound can now be stated as follows:

Proposition 1. Under assumptions B1, B2 and B3, the mis-clustering rateη of the spectral biparti-
tioning algorithm under the perturbation satisfiesη ≤ δ2 = ‖ṽ2 − v2‖2. If we further assume that
all components of̃v2 − v2 are independent, then

η ≤ (1 + op(1))E‖ṽ2 − v2‖2. (1)

The proof of the proposition is provided in the Appendix.

Remarks. (i) Assumption B3 was motivated by our empirical work. Although it is difficult to
establish general necessary and sufficient conditions for B3 to hold, in the Appendix we present
some special cases that allow B3 to be verified a priori. It is also worth noting that B3 appears
to hold (approximately) across a range of experiments presented in Section 4. (ii) If we assume
piecewise constancy forv2, then we can relax the uncorrelated assumption in B3. (iii) Our bound
has a different flavor than that obtained in [5]. Although thebound in Theorem 4.3 in [5] works for
k-way clustering, it assumes a block-diagonal Laplacian matrix and requires the gap between the
kth and(k + 1)th eigenvalues to be greater than1/2, which is unrealistic in many data sets. In the
setting of 2-way spectral clustering and a small perturbation, our bound is much tighter than that
derived in [5]; see Fig. 4 in particular.

3.2 Perturbation on the second eigenvector of Laplacian matrix

We now turn to the relationship between the perturbation of eigenvectors with that of its matrix.
One approach is to simply draw on the classical domain of matrix perturbation theory; in particular,
applying Theorem V.2.8 from [13], we have the following bound on the (small) perturbation of the
second eigenvector:

‖ṽ2 − v2‖ ≤ ‖4dL‖F

ν −
√

2‖dL‖F

, (2)

whereν is the gap between the second and the third eigenvalue. However, in our experimental
evaluation we found thatν can be quite small in some data sets, and in these cases the right-hand
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Figure 5: Experimental examples of the fidelity of the approximation in Eq. (5). We add i.i.d. zero mean
Gaussian noise to the input data with differentσ, and we see that the right-hand side (RHS) of (5) approximately
upper bounds the left-hand side (LHS).

side of (2) can be quite large even for a small perturbation. Thus the bound given by (2) is often not
useful in practical applications.

To derive a more practically useful bound, we begin with a well-known first-order Taylor expansion
to compute the perturbation on the second eigenvector of a Laplacian matrix as follows:

ṽ2 − v2 =

n
∑

j=1,j 6=2

v
T
j dLv2

λ2 − λj
vj + O(dL2) ≈

n
∑

j=1,j 6=2

vj

λ2 − λj

n
∑

p=1

n
∑

q=1

vpjvq2dLpq

=

n
∑

p=1





(

n
∑

q=1

vq2dLpq

)

·





n
∑

j=1,j 6=2

vpj · vj

λ2 − λj







 =

n
∑

p=1

βpup, (3)

whereβp =
∑n

q=1 vq2dLpq is a random variable determined by the effect of the perturbation on

the Laplacian matrixL, and the vectorup =
∑n

j=1,j 6=2

(

vpjvj

λ2−λj

)

is a constant determined by the

eigendecomposition of the Laplacian matrixL. Then we have

E‖ṽ2 − v2‖2 ≈ E

∥

∥

∥

∥

∥

n
∑

p=1

βpup

∥

∥

∥

∥

∥

2

=

n
∑

p=1

E‖βpup‖2 + 2

n
∑

i=1

n
∑

j=i+1

E
(

βiui · βju
T
j

)

. (4)

In our experimental work we have found that fori 6= j, βiui is either very weakly correlated with
βjuj (i.e., the total sum of all cross terms is typically one or twoorders of magnitude less than that
of squared term), or negatively correlated withβjuj (i.e., the total sum of all cross terms is less than
zero). This empirical evidence suggests the following approximate bound:

E‖ṽ2 − v2‖2 .

n
∑

p=1

Eβ2
p · ‖up‖2. (5)

Examples of the fidelity of this approximation for particular data sets are shown in Fig. 5.

Finally, Eβ2
p is related todLpq, and can be upper bounded by

Eβ2
p = E

(

n
∑

q=1

vq2dLpq

)2

≤
n
∑

i=1

n
∑

j=1

[vi2vj2 · E (dLpi) E (dLpj) + |vi2vj2|σpiσpj ] , (6)

whereσpi is the variance ofdLpi.

Remark. Through Eqs. (5) and (6), we can bound the squared norm of the perturbation on the
second eigenvector in expectation, which in turn bounds themis-clustering rate. To compute the
bound, we need to estimate the first two moments ofdL, which we discuss next.

3.3 Perturbation on the Laplacian matrix

Let D be the diagonal matrix withDi =
∑

j Kij . We define the normalized Laplacian matrix as

L = I −D−1K. Letting∆ = D̃ −D anddK = K̃ −K, we have the following approximation for
dL = L̃ − L:
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Lemma 2. If perturbationdK is small compared toK, then

dL = (1 + o(1)) ∆D−2K − D−1dK. (7)

Then, element-wise, the first two moments ofdL can be estimated as

E(dL) ≈ E(∆)D−2K − D−1E(dK) (8)

E(dL2) ≈ E
(

∆D−2K ◦ ∆D−2K − 2D−1dK ◦ ∆D−2K + D−1dK ◦ D−1dK
)

= E
(

∆2
)

D−4K2 + D−2E
(

dK2
)

− 2E(∆dK)D−3 ◦ K, (9)

where◦ denotes element-wise product. The quantities needed to estimateE(dL) andE(dL2) can
be obtained from moments and correlations among the elements of the similarity matrixK̃ij . In
particular, we have

E(dKij) = E
(

K̃ij

)

− Kij , E(dKij)
2 = EK̃2

ij − 2KijE
(

K̃ij

)

+ K2
ij (10)

E∆i = ED̃i − Di, ED̃i =

n
∑

j=1

E
(

K̃ij

)

, E∆2
i = ED̃2

i − 2Di · ED̃i + D2
i (11)

ED̃2
i = E





n
∑

j=1

K̃ij





2

=
n
∑

j=1

EK̃2
ij + 2

n
∑

j=1

n
∑

q=j+1

(

EK̃ijEK̃iq + ρk
ijqσ

k
ijσ

k
iq

)

(12)

E(∆dK)ij = E(D̃i − Di)(K̃ij − Kij) = E
(

D̃iK̃ij

)

− DiEK̃ij − KijE∆i

= E



K̃2
ij + K̃ij





n
∑

q=1,q 6=j

K̃iq







− DiEK̃ij − KijE∆i

= EK̃2
ij +

n
∑

q=1,q 6=j

(

EK̃ijEK̃iq + ρk
ijqσ

k
ijσ

k
iq

)

− DiEK̃ij − KijE∆i, (13)

whereσk
ij is the standard deviation of̃Kij and−1 ≤ ρk

ijq ≤ 1 is the correlation coefficient between

K̃ij andK̃iq. Estimating allρk
ijq

′
s would require an intensive effort. For simplicity, we couldset

ρk
ijq to 1 in Eq. (12) and to−1 in Eq. (13), and obtain an upper bound forE(dL2). This bound could

optionally be tightened by using a simulation method to estimate the values ofρk
ijq. However, in our

experimental work we have found that our results are insensitive to the values ofρk
ijq, and setting

ρk
ijq = 0.5 usually achieves good results.

Remark. Eqs. (8)–(13) allow us to estimate (i.e., to upper bound) thefirst two moments ofdL
using those ofdK, which are computed using Eq. (15) or (16) in Section 3.4.

3.4 Perturbation on the similarity matrix

The similarity matrixK̃ on perturbed datãX is

K̃ij = exp

(

−||xi − xj + ǫi − ǫj ||2
2σ2

k

)

, (14)

whereσk is the kernel bandwidth. Then, given dataX, the first two moments ofdKij = K̃ij −Kij ,
the error in the similarity matrix, can be determined by one of the following lemmas.

Lemma 3. GivenX, if all components ofǫi andǫj are i.i.d. GaussianN(0, σ2), then

E
(

K̃ij

)

= Mij

(

−σ2

σ2
k

)

, E
(

K̃2
ij

)

= Mij

(

−2σ2

σ2
k

)

, (15)

whereMij(t) =
[

exp
(

λijt
1−2t

)

/(1 − 2t)
d/2
]

, andλij =
(

||xi − xj ||2/2σ2
)

.
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Figure 6:Synthetic data sets illustrated in two dimensions.

Lemma 4. Under AssumptionA, givenX and for large values of the dimensiond, the first two
moments of̃Kij can be computed approximately as follows:

E
(

K̃ij

)

= Mij

(

− 1

2σ2
k

)

, E
(

K̃2
ij

)

= Mij

(

− 1

σ2
k

)

, (16)

whereMij(t) = exp
[(

λij + 2dσ2
)

t +
(

dµ4 + dσ4 + 4σ2λ2
ij

)

t2
]

, andλij = ||xi − xj ||2.

Remark. (i) Given data perturbation errorσ, kernel bandwidthσk and dataX, the first two mo-
ments ofdKij can be estimated directly using (15) or (16). (ii) Through Eqs. (1)–(16), we have
established a relationship between the mis-clustering rate η and the data perturbation magnitudeσ.
By inverting this relationship (e.g., using binary search), we can determine aσ∗ for a givenη∗.

4 Evaluation

In this section we present an empirical evaluation of our analysis on 3 synthetic data sets (see Fig. 6)
and 6 real data sets from the UCI repository [14]. The data domains are diverse, including im-
age, medicine, agriculture, etc., and the different data sets impose different difficulty levels on the
underlying spectral clustering algorithm, demonstratingthe wide applicability of our analysis.

In the experiments, we use data quantization as the perturbation scheme to evaluate the upper bound
provided by our analysis on the clustering error. Fig. 7 plots the mis-clustering rate and the upper
bound for data sets subject to varying degrees of quantization. As expected, the mis-clustering
rate increases as one decreases the number of quantization bits. We find that the error bounds are
remarkably tight, which validate the assumptions we make inthe analysis. It is also interesting to
note that even when using as few as 3-4 bits, the clustering degrades very little in both real error and
as assessed by our bound. The effectiveness of our bound should allow the practitioner to determine
the right amount of quantization given a permitted loss in clustering performance.

5 Conclusion

In this paper, we proposed a theoretical analysis of the clustering error for spectral clustering in the
face of stochastic perturbations. Our experimental evaluation has provided support for the assump-
tions made in the analysis, showing that the bound is tight under conditions of practical interest. We
believe that our work, which provides an analytical relationship between the mis-clustering rate and
the variance of the perturbation, constitutes a critical step towards enabling a large class of appli-
cations that seek to perform clustering of objects, machines, data, etc in a distributed environment.
Many networks are bandwidth constrained, and our methods can guide the process of data thinning
so as to limit the amount of data transmitted through the network for the purpose of clustering.
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Figure 7:Upper bounds of clustering error on approximate data obtained from quantization as a function of
the number of bits. (a–c) Simulated data sets (1000 sample size, 2, 2, 10 features, respectively); (d) Statlog
image segmentation data (2310 sample size, 19 features); (e) Handwritten digits data (10992 sample size, 16
features); (f) Wine data (178 sample size, 13 features); (g) Iris data(150 sample size, 4 features). (h) Wisconsin
breast cancer data (569 sample size, 30 features); (i) Waveform data (5000 sample size, 21 features). Thex-axis
shows the number of quantization bits and (above the axis) the corresponding data perturbation errorσ. Error
bars are derived from 25 replications. In the experiments, all data values are normalized in range[0, 1]. For
data sets with more than two clusters, we choose two of them for the experiments.
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6 Appendix

In this Appendix we provide more detailed analyses and proofs that are omited in the main body of
the paper due to space limitation.

Some heuristics on assumption B3 It is difficult to show that assumption B3 is valid under very
general conditions. To gain insight, we here show its validity in the case where the original similarity
matrix has the following block-diagonal structure (assuming there are two clusters with sizesp and
q, respectively):

P0 =

[

1p×p 0p×q

0q×p 1q×q

]

,

where1p×p, 1q×q denote matrices with all elements1, and0p×q, 0q×p denote matrices with all
elements0. This is the case where points in the same cluster have perfect affinity and points from
different clusters have no affinity.

We further assume the perturbed similarity matrix is given by

Pǫ =

[

1p×p U(0̃, ǫ)
U(0̃, ǫ)T 1q×q

]

,

whereU(0̃, ǫ) denotes ap × q matrix with elements generated i.i.d. according to some distribution
P (e.g., uniform distribution) on interval[0, ǫ], with ǫ being a small constant. This model has been
studied recently in [15], which obtains the following result for the unnormalized second eigenvector
ṽ2 of the Laplacian matrix ofPǫ:

Proposition 5. Assuming all elementsǫij in matrix Pǫ are i.i.d. uniform over interval[0, ǫ] for
some constantǫ = o( 1

p+q ), and p
q → α for some constantα whenp andq grow. Then whenp andq

grow, the following holds

ṽ2k =



















1 − (1 + γ)p2[ ǫk.

p+ǫk.
− E

ǫ1.

p+ǫ1.
] + Rk,p,q k = 1, ..., p − 1

1 − (1 + γ)(p − 1)[
ǫp.

p+ǫp.
− E

ǫ1.

p+ǫ1.
] + Rp,p,q k = p

−γ + (1 + γ)q2[
ǫ.(k−p)

q+ǫ.(k−p)
− E

ǫ.1

q+ǫ.1
] + Rk,p,q k = p + 1, ..., p + q − 1

−γ + (1 + γ)(q − 1)[
ǫ.q

q+ǫ.q
− E

ǫ.1

q+ǫ.1
] + Rp+q,p,q k = p + q

whereṽ2k denotes thekth component of eigenvectorṽ2, γ is a constant,ǫi. =
∑q

j=1 ǫij , i = 1, ..., p,
andǫ.j =

∑p
i=1 ǫij , j = 1, ..., q, Rk,p,q ’s are remainders withmax1≤k≤p+q |Rk,p,q| = op(1).

From Proposition 5, we can easily see that excluding thepth and the(p+ q)th components, all other
components iñv2 that belong to the same clusters follow the same distribution, up to a first order
approximation (in the sense of the general matrix perturbation theory). Moreover, since the second
eigenvectorv2 of the Laplacian matrix ofP0 is piecewise constant, it immediately follows that the
individual perturbations are uncorrelated with their initial values.

Proof of Proposition 1 We use the notation introduced earlier in Section 3.1, and introduce ad-
ditional notation in Fig. 8. Recall thata andb denote the sets of elements inv2 corresponding to
two clusters under consideration, and similarly fora′ andb′ in ṽ2. Letm denote the total number of
missed clusterings:m = m− + m+, wherem− denotes the number of cluster flippings ofa → b′,
andm+ the number of flippings ofb → a′. As an abuse of notation, we also usea, b, a′, b′ to denote
the mean of element values in the corresponding set inv2 and ṽ2, respectively. Referring to the
valueδ2 as the “energy,” we aim to determine the maximum number of flippingsm (i.e., missed
clusterings) for any (randomly) given energyδ2; this yields an upper bound forη.

Let A1, . . . , Ak1
andB1, . . . , Bk2

denote the zero mean fluctuations arounda andb, respectively,
and letU1, . . . , Uk1−m

−

andV1, . . . , Vk2−m+
denote the zero mean fluctuations arounda′ andb′,

respectively. Let variablesY1, . . . , Ym
−

≥ 0 denote the long-range (random) jumps froma to b′ for
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Values

Indices

Bj

Vj

Ai

a

Yi

Ui

Zja′

b′

b

Figure 8:Notation in the Proof of Proposition 1.

maximize m = m+ + m−

subject to:
k1
∑

i=1

(a + Ai)
2 +

k1
∑

j=1

(b + Bj)
2 = 1 (17)

k1−m
−

∑

i=1

(a′ + Ui)
2 +

k2−m+
∑

j=1

(b′ + Vj)
2 +

m
−

∑

i=1

(a + Ai − Yi)
2 +

m+
∑

j=1

(b + Bj + Zj)
2 = 1 (18)

k1−m
−

∑

i=1

(a + Ai − a′ − Ui)
2 +

k2−m+
∑

j=1

(b + Bj − b′ − Vj)
2 +

m
−

∑

i=1

Y 2
i +

m+
∑

j=1

Z2
j = δ2 (19)

Figure 9: The optimization problem for mis-clustering rate.

elements in seta → b′, and letZ1, . . . , Zm+
≥ 0 for elements in setb → a′; Apparently, we have

Zj = a′ + Uj − b − Bj . We have the optimization problem described in Fig. 9 for themaximum
number of mis-clusteringsm. In the constraints, Eqs. (17) and (18) refer to the unit length of v2 and
ṽ2, respectively; and Eq. (19) refers to the total energy constraint.

Without loss of generality we consider the case described inFig. 8 with a, a′ > 0, b, b′ ≤ 0, and
(a′ − b)2 < (a − b′)2. Due to symmetry, the same argument follows when we considerthe other
cases. According to assumption B3, we haveEYi = a − b′ andEZj = a′ − b, for all i andj. By
working with expectations, we have

EY 2
1 + ... + EY 2

m
−

≥ 1

m−

(EY1 + ... + EYm
−

)2 = m−(a − b′)2

EZ2
1 + ... + EZ2

m+
≥ 1

m+
(EZ1 + ... + EZmZZ+)2 = m+(a′ − b)2.

Summing and substituting into Eq. (19), we get

m+(a′ − b)2 + m−(a − b′)2 ≤ E

m
−

∑

i=1

Y 2
i + E

m+
∑

j=1

Z2
j ≤ δ2 (20)

To maximize the objective functionm = m− + m− given (20) and given(a′ − b)2 < (a− b′)2, we
should setm− = 0 andm = m+. This turns (20) intom(a′ − b)2 ≤ δ2, under whichm achieves
its maximum whenb = 0.
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Let σ2
Z denote the variance ofZi, which may depend onm or n. The following arguments allow us

to assume thata′2 = b′2 +EV 2
1 −σ2

Z −EB2
1 . The resultsb = 0 andm = m+ simplify Eq. (18) into

k1
∑

i=1

(a′ + Ui)
2 +

k2−m
∑

j=1

(b′ + Vj)
2 +

m
∑

j=1

(Bj + Zj)
2 = 1. (21)

Taking expectation on both sides and using the assumptions that theUi are identically distributed
with zero mean, as are theVj , we get

k1a
′2 + k1EU2

1 + (k2 − m)b′2 + (k2 − m)EV 2
1 + m(a′2 + σ2

Z) = 1, (22)

which implies thatσ2
Z ≤ 1

m . Hence we can assume thatσ2
Z = β

m for some0 ≤ β ≤ 1. Setting
b′2 = a′2 − EV 2

1 + σ2
Z + EB2

1 in Eq. (22) effectively disables this constraint form, and Eq. (22)
becomes:

k1a
′2 + k1EU2

1 + k2b
′2 + k2EV 2

1 = 1.

Substitutingb′2 = a′2 − EV 2
1 + σ2

Z + EB2
1 into this equation, we obtain

k1a
′2 + k1EU2

1 + k2(a
′2 − EV 2

1 + σ2
Z) + k2EV 2

1 = na′2 + k2σ
2
Z + k1EU2

1 = 1,

from which we obtain

na′2 = 1 − k1EU2
1 − k2β

m
− k2EB2

1 . (23)

Usingb = 0 andm = m+ also simplifies Eq. (19), which becomes:
k1
∑

i=1

(a + Ai − a′ − Ui)
2 +

k2−m
∑

j=1

(Bj − b′ − Vj)
2 +

m
∑

j=1

(a′ − Bj + Uj)
2 = δ2.

Taking expectation on both sides yields

k1((a − a′)2 + EA2
1) + k1EU2

1 + k2EB2
1 + (k2 − m)(b′2 + EV 2

1 ) + m(a′2 + EU2
1 ) = δ2,

implying

k1EU2
1 + k2EB2

1 ≤ δ2 − β − ma′2 (24)

(n − m)a′2 ≤ (n − m)(δ2 − β)

m
. (25)

Substituting (24) into (23) and combining with (25), we get

1 − δ2 + β − k2

m
β ≤ (n − m)a′2 ≤ (n − m)(δ2 − β)

m
Rearranging terms we have

m ≤ nδ2 − nβ + k2β ≤ nδ2

η =
m

n
≤ δ2 = ‖ṽ2 − v2‖2.

When‖ṽ2−v2‖2 is small, and if we further assume that all components ofṽ2−v2 are independent,
then‖ṽ2−v2‖2 is highly concentrated around its mean asymptotically in the number of data points.
In this case we obtainη ≤ (1 + op(1))E‖ṽ2 − v2‖2.

Proof of Lemma 2 For the perturbation on the Laplacian matrix, we have

dL = I − (D + ∆)−1(K + dK) − I + D−1K (26)

Because the perturbationdK is small comparing toK, so is∆ comparing toD, and∆D−1 is small.
Using Taylor expansion for functionG(X) = (I + X)−1 aroundX = 0̃n×n, we have

(I + ∆D−1)−1 = I − ∆D−1 + O((∆D−1)2).

Substituting it into Eq. (26), we get

dL = −[I − ∆D−1 + O((∆D)−2)]D−1(K + dK) + D−1K

= −D−1(K + dK) + ∆D−2(K + dK) − O((∆D)−2)D−1(K + dK) + D−1K

= (1 + o(1)) ∆D−2K − D−1dK.
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Proof of Lemma 3 Let Sij := ||xi − xj + ǫi − ǫj ||2. For i = j, the result holds trivially. For
i 6= j and givenX,

(

Sij/2σ2
)

follows a non-central chi-square distribution with parameter (d, λij),
whereλij =

(

||xi − xj ||2/2σ2
)

. The mean isd + λij , the variance is2(d + 2λij), and the moment

generating function isMij(t) =
[

exp
(

λijt
1−2t

)

/(1 − 2t)
d/2
]

. K̃ij is an exponential function of the

non-central chi-square random variable
(

Sij/2σ2
)

, so the first two moments of̃Kij can be computed
using the moment generating functionMij(t), which gives the results in Eq.(15) in the main paper.

Proof of Lemma 4 Let Sij := ||xi − xj + ǫi − ǫj ||2. For i = j, the result holds trivially.
For i 6= j, Sij is the sum ofd (the dimension ofX) independent variables, and approximately
follows a Gaussian distribution for larged. We only need to work out its mean and variance. Let
λij := ||xi − xj ||2. Given input dataX, we have

ESij = E||xi − xj + ǫi − ǫj ||2 =

d
∑

p=1

[

(X
(p)
i − X

(p)
j )2 + 2σ2

]

= λij + 2dσ2

ES2
ij =

d
∑

p=1

d
∑

q=1

E
[

X
(p)
i − X

(p)
j + ǫ

(p)
i − ǫ

(p)
j

]2

·
[

X
(q)
i − X

(q)
j + ǫ

(q)
i − ǫ

(q)
j

]2

= λ4
ij + 4(d2 − d)σ4 + d(2µ4 + 6σ4) + 8σ2λ2

ij + 4dσ2λ2
ij

Var(Sij) = ES2
ij − (ESij)

2
= 2dµ4 + 2dσ4 + 8σ2λ2

ij .

So using the moment-generating function, we obtain the following asymptotic results [16]:

E
(

K̃ij

)

= E

(

exp

(

− Sij

2σ2
k

))

= Mij

(

− 1

2σ2
k

)

E
(

K̃2
ij

)

= E

(

exp

(

−Sij

σ2
k

))

= Mij

(

− 1

σ2
k

)

,

which completes the proof.
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