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Abstract. Suppose we are given a matrix that is formed by adding an unknown sparse matrix to an
unknown low-rank matrix. Our goal is to decompose the given matrix into its sparse and low-rank components.
Such a problem arises in a number of applications in model and system identification and is intractable to solve
in general. In this paper we consider a convex optimization formulation to splitting the specified matrix into its
components by minimizing a linear combination of the l1 norm and the nuclear norm of the components. We
develop a notion of rank-sparsity incoherence, expressed as an uncertainty principle between the sparsity pat-
tern of a matrix and its row and column spaces, and we use it to characterize both fundamental identifiability
as well as (deterministic) sufficient conditions for exact recovery. Our analysis is geometric in nature with the
tangent spaces to the algebraic varieties of sparse and low-rank matrices playing a prominent role. When the
sparse and low-rank matrices are drawn from certain natural random ensembles, we show that the sufficient
conditions for exact recovery are satisfied with high probability. We conclude with simulation results on
synthetic matrix decomposition problems.
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1. Introduction. Complex systems and models arise in a variety of problems in
science and engineering. In many applications such complex systems and models are
often composed of multiple simpler systems and models. Therefore, in order to better
understand the behavior and properties of a complex system, a natural approach is to
decompose the system into its simpler components. In this paper we consider matrix
representations of systems and statistical models in which our matrices are formed
by adding together sparse and low-rank matrices. We study the problem of recovering
the sparse and low-rank components given no prior knowledge about the sparsity pat-
tern of the sparse matrix or the rank of the low-rank matrix. We propose a tractable
convex program to recover these components and provide sufficient conditions under
which our procedure recovers the sparse and low-rank matrices exactly.

Such a decomposition problem arises in a number of settings, with the sparse and
low-rank matrices having different interpretations depending on the application. In a
statistical model selection setting, the sparse matrix can correspond to a Gaussian
graphical model [19], and the low-rank matrix can summarize the effect of latent,
unobserved variables. Decomposing a given model into these simpler components is use-
ful for developing efficient estimation and inference algorithms. In computational
complexity, the notion of matrix rigidity [31] captures the smallest number of entries
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of a matrix that must be changed in order to reduce the rank of the matrix below a
specified level (the changes can be of arbitrary magnitude). Bounds on the rigidity
of a matrix have several implications in complexity theory [21]. Similarly, in a system
identification setting the low-rank matrix represents a system with a small model order,
while the sparse matrix represents a system with a sparse impulse response. Decompos-
ing a system into such simpler components can be used to provide a simpler, more effi-
cient description.

1.1. Our results. Formally the decomposition problem in which we are interested
can be defined as follows.

Problem. Given C ¼ A� þ B�, where A� is an unknown sparse matrix and B� is an
unknown low-rank matrix, recoverA� andB� fromC using no additional information on
the sparsity pattern and/or the rank of the components.

In the absence of any further assumptions, this decomposition problem is fundamen-
tally ill-posed. Indeed, there are a number of scenarios in which a unique splitting of C
into “low-rank” and “sparse” parts may not exist; for example, the low-rank matrix may
itself be very sparse leading to identifiability issues. In order to characterize when a
unique decomposition is possible, we develop a notion of rank-sparsity incoherence,
an uncertainty principle between the sparsity pattern of a matrix and its row/column
spaces. This condition is based on quantities involving the tangent spaces to the alge-
braic variety of sparse matrices and the algebraic variety of low-rank matrices [17]. An-
other point of ambiguity in the problem statement is that one could subtract a nonzero
entry from A� and add it to B�; the sparsity level of A� is strictly improved, while the
rank of B� is increased by at most 1. Therefore it is in general unclear what the “true”
sparse and low-rank components are. We discuss this point in greater detail in
section 4.2, following the statement of the main theorem. In particular we describe
how our identifiability and recovery results for the decomposition problem are to be
interpreted.

Two natural identifiability problems may arise. The first one occurs if the low-rank
matrix itself is very sparse. In order to avoid such a problem we impose certain condi-
tions on the row/column spaces of the low-rank matrix. Specifically, for a matrix M let
TðMÞ be the tangent space atM with respect to the variety of all matrices with rank less
than or equal to rankðM Þ. Operationally, TðMÞ is the span of all matrices with
row-space contained in the row-space of M or with column-space contained in the
column-space of M ; see (3.2) for a formal characterization. Let ξðM Þ be defined as
follows:

ξðM Þ ≜ max
N∈TðMÞ;kNk≤1

kNk∞:ð1:1Þ

Here k ⋅ k is the spectral norm (i.e., the largest singular value), and k ⋅ k∞ denotes the
largest entry in magnitude. Thus ξðMÞ being small implies that (appropriately scaled)
elements of the tangent space TðM Þ are “diffuse” (i.e., these elements are not too sparse);
as a result M cannot be very sparse. As shown in Proposition 4 (see section 4.3), a low-
rank matrixM with row/column spaces that are not closely aligned with the coordinate
axes has small ξðMÞ.

The other identifiability problem may arise if the sparse matrix has all its support
concentrated in one column; the entries in this column could negate the entries of the
corresponding low-rank matrix, thus leaving the rank and the column space of the low-
rank matrix unchanged. To avoid such a situation, we impose conditions on the sparsity
pattern of the sparse matrix so that its support is not too concentrated in any row/
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column. For a matrixM let ΩðMÞ be the tangent space atM with respect to the variety
of all matrices with the number of nonzero entries less than or equal to jsupportðM Þj.
The space ΩðM Þ is simply the set of all matrices that have support contained within the
support of M ; see (3.4). Let μðMÞ be defined as follows:

μðMÞ ≜ max
N∈ΩðMÞ;kNk∞≤1

kNk:ð1:2Þ

The quantity μðMÞ being small for a matrix implies that the spectrum of any element of
the tangent space ΩðMÞ is “diffuse”; i.e., the singular values of these elements are not too
large. We show in Proposition 3 (see section 4.3) that a sparse matrix M with “bounded
degree” (a small number of nonzeros per row/column) has small μðMÞ.

For a given matrix M , it is impossible for both quantities ξðM Þ and μðM Þ to be
simultaneously small. Indeed, we prove that for any matrix M ≠ 0 we must have that
ξðM ÞμðMÞ ≥ 1 (see Theorem 1 in section 3.3). Thus, this uncertainty principle asserts
that there is no nonzero matrix M with all elements in TðMÞ being diffuse and all
elements in ΩðMÞ having diffuse spectra. As we describe later, the quantities ξ and
μ are also used to characterize fundamental identifiability in the decomposition
problem.

In general solving the decomposition problem is intractable; this is due to the fact
that it is intractable in general to compute the rigidity of a matrix (see section 2.2),
which can be viewed as a special case of the sparse-plus-low-rank decomposition pro-
blem. Hence, we consider tractable approaches employing recently well-studied convex
relaxations. We formulate a convex optimization problem for decomposition using a
combination of the l1 norm and the nuclear norm. For any matrix M the l1 norm
is given by

kMk1 ¼
X
i;j

jMi;jj;

and the nuclear norm, which is the sum of the singular values, is given by

kMk� ¼
X
k

σkðM Þ;

where fσkðM Þg are the singular values of M . The l1 norm has been used as an effective
surrogate for the number of nonzero entries of a vector, and a number of results provide
conditions under which this heuristic recovers sparse solutions to ill-posed inverse pro-
blems [3], [11], [12]. More recently, the nuclear norm has been shown to be an effective
surrogate for the rank of a matrix [14]. This relaxation is a generalization of the pre-
viously studied trace-heuristic that was used to recover low-rank positive semidefinite
matrices [23]. Indeed, several papers demonstrate that the nuclear norm heuristic re-
covers low-rank matrices in various rank minimization problems [25], [4]. Based on these
results, we propose the following optimization formulation to recover A� and B�, given
C ¼ A� þ B�:

ðÂ; B̂Þ ¼ arg min
A;B

γkAk1 þ kBk�
s:t: Aþ B ¼ C:ð1:3Þ
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Here γ is a parameter that provides a trade-off between the low-rank and sparse com-
ponents. This optimization problem is convex and can in fact be rewritten as a semi-
definite program (SDP) [32] (see Appendix A).

We prove that ðÂ; B̂Þ ¼ ðA�; B�Þ is the unique optimum of (1.3) for a range of γ if
μðA�ÞξðB�Þ < 1

6 (see Theorem 2 in section 4.2). Thus, the conditions for exact recovery
of the sparse and low-rank components via the convex program (1.3) involve the tan-
gent-space-based quantities defined in (1.1) and (1.2). Essentially these conditions spe-
cify that each element of ΩðA�Þ must have a diffuse spectrum, and every element of
TðB�Þ must be diffuse. In a sense that will be made precise later, the condition
μðA�ÞξðB�Þ < 1

6 required for the convex program (1.3) to provide exact recovery is
slightly tighter than that required for fundamental identifiability in the decomposition
problem. An important feature of our result is that it provides a simple deterministic
condition for exact recovery. In addition, note that the conditions depend only on the
row/column spaces of the low-rank matrix B� and the support of the sparse matrix A�

and not the magnitudes of the nonzero singular values of B� or the nonzero entries ofA�.
The reason for this is that the magnitudes of the nonzero entries of A� and the nonzero
singular values of B� play no role in the subgradient conditions with respect to the l1

norm and the nuclear norm.
In what follows we discuss concrete classes of sparse and low-rank matrices that

have small μ and ξ, respectively. We also show that when the sparse and low-rank ma-
trices A� and B� are drawn from certain natural random ensembles, then the sufficient
conditions of Theorem 2 are satisfied with high probability; consequently, (1.3) provides
exact recovery with high probability for such matrices.

1.2. Previous work using incoherence. The concept of incoherence was studied
in the context of recovering sparse representations of vectors from a so-called “overcom-
plete dictionary” [10]. More concretely consider a situation in which one is given a vector
formed by a sparse linear combination of a few elements from a combined time-frequency
dictionary (i.e., a vector formed by adding a few sinusoids and a few “spikes”); the goal is
to recover the spikes and sinusoids that compose the vector from the infinitely many
possible solutions. Based on a notion of time-frequency incoherence, the l1 heuristic
was shown to succeed in recovering sparse solutions [9]. Incoherence is also a concept
that is used in recent work under the title of compressed sensing, which aims to recover
“low-dimensional” objects such as sparse vectors [3], [12] and low-rank matrices [25], [4]
given incomplete observations. Our work is closer in spirit to that in [10] and can
be viewed as a method to recover the “simplest explanation” of a matrix given an
“overcomplete dictionary” of sparse and low-rank matrix atoms.

1.3. Outline. In section 2 we elaborate on the applications mentioned previously
and discuss the implications of our results for each of these applications. Section 3
formally describes conditions for fundamental identifiability in the decomposition
problem based on the quantities ξ and μ defined in (1.1) and (1.2). We also provide
a proof of the rank-sparsity uncertainty principle of Theorem 1. We prove Theorem 2
in section 4, and we also provide concrete classes of sparse and low-rank matrices that
satisfy the sufficient conditions of Theorem 2. Section 5 describes the results of simula-
tions of our approach applied to synthetic matrix decomposition problems. We conclude
with a discussion in section 6. Appendices A and B provide additional details and
proofs.

2. Applications. In this section we describe several applications that involve
decomposing a matrix into sparse and low-rank components.
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2.1. Graphical modeling with latent variables. We begin with a problem in
statistical model selection. In many applications large covariance matrices are approxi-
mated as low-rankmatrices based on the assumption that a small number of latent factors
explainmost of the observed statistics (e.g., principal component analysis). Another well-
studied class ofmodels are those described by graphicalmodels [19] inwhich the inverse of
the covariancematrix (also called the precision or concentration or informationmatrix) is
assumed to be sparse (typically this sparsity is with respect to some graph).We describe a
model selection problem involving graphical models with latent variables. Let the covar-
iance matrix of a collection of jointly Gaussian variables be denoted by Σðo hÞ, where o
represents observed variables and h represents unobserved, hidden variables. The mar-
ginal statistics corresponding to the observed variables o are given by the marginal cov-
ariance matrix Σo, which is simply a submatrix of the full covariance matrix Σðo hÞ.
Suppose, however, that we parameterize our model by the information matrix given
by K ðo hÞ ¼ Σ−1

ðo hÞ (such a parameterization reveals the connection to graphical models).
In such a parameterization, themarginal informationmatrix corresponding to the inverse
Σ−1
o is given by the Schur complement with respect to the block Kh:

K̂o ¼ Σ−1
o ¼ Ko −Ko;hK

−1
h Kh;o:ð2:1Þ

Thus if we observe only the variables o, we have access to only Σo (or K̂o). A simple ex-
planation of the statistical structure underlying these variables involves recognizing the
presence of the latent, unobserved variables h. However, (2.1) has the interesting struc-
turewhereKo is often sparse due to graphical structure amongst the observed variables o,
while Ko;hK

−1
h Kh;o has low-rank if the number of latent, unobserved variables h is small

relative to the number of observed variables o (the rank is equal to the number of latent
variables h). Therefore, decomposing K̂o into these sparse and low-rank components re-
veals the graphical structure in the observed variables as well as the effect due to (and the
number of) the unobserved latent variables.We discuss this application inmore detail in a
separate report [7].

2.2. Matrix rigidity. The rigidity of a matrix M , denoted by RM ðkÞ, is the smal-
lest number of entries that need to be changed in order to reduce the rank ofM below k.
Obtaining bounds on rigidity has a number of implications in complexity theory [21],
such as the trade-offs between size and depth in arithmetic circuits. However, computing
the rigidity of a matrix is intractable in general [22], [8]. For anyM ∈ Rn×n one can check
that RM ðkÞ ≤ ðn− kÞ2 (this follows directly from a Schur complement argument). Gen-
erically everyM ∈ Rn×n is very rigid, i.e.,RM ðkÞ ¼ ðn− kÞ2 [31], although special classes
of matrices may be less rigid. We show that the SDP (1.3) can be used to compute ri-
gidity for certain matrices with sufficiently small rigidity (see section 4.4 for more de-
tails). Indeed, this convex program (1.3) also provides a certificate of the sparse and low-
rank components that form such low-rigidity matrices; that is, the SDP (1.3) not only
enables us to compute the rigidity for certain matrices but additionally provides the
changes required in order to realize a matrix of lower rank.

2.3. Composite system identification. A decomposition problem can also be
posed in the system identification setting. Linear time-invariant (LTI) systems can
be represented by Hankel matrices, where the matrix represents the input-output rela-
tionship of the system [29]. Thus, a sparse Hankel matrix corresponds to an LTI system
with a sparse impulse response. A low-rank Hankel matrix corresponds to a system with
small model order and provides a minimal realization for a system [15]. Given an LTI
system H as follows,

576 CHANDRASEKARAN, SANGHAVI, PARRILO, AND WILLSKY

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



H ¼ Hs þ Hlr;

where Hs is sparse and Hlr is low-rank, obtaining a simple description of H requires
decomposing it into its simpler sparse and low-rank components. One can obtain these
components by solving our rank-sparsity decomposition problem. Note that in practice
one can impose in (1.3) the additional constraint that the sparse and low-rank matrices
have Hankel structure.

2.4. Partially coherent decomposition in optical systems We outline an op-
tics application that is described in greater detail in [13]. Optical imaging systems are
commonly modeled using the Hopkins integral [16], which gives the output intensity at a
point as a function of the input transmission via a quadratic form. In many applications
the operator in this quadratic form can be well-approximated by a (finite) positive semi-
definite matrix. Optical systems described by a low-pass filter are called coherent
imaging systems, and the corresponding system matrices have small rank. For systems
that are not perfectly coherent, various methods have been proposed to find an optimal
coherent decomposition [24], and these essentially identify the best approximation of the
systemmatrix by a matrix of lower rank. At the other end are incoherent optical systems
that allow some high frequencies and are characterized by system matrices that are di-
agonal. As most real-world imaging systems are some combination of coherent and in-
coherent, it was suggested in [13] that optical systems are better described by a sum of
coherent and incoherent systems rather than by the best coherent (i.e., low-rank)
approximation as in [24]. Thus, decomposing an imaging system into coherent and in-
coherent components involves splitting the optical system matrix into low-rank and di-
agonal components. Identifying these simpler components have important applications
in tasks such as optical microlithography [24], [16].

3. Rank-sparsity incoherence. Throughout this paper, we restrict ourselves to
square n× n matrices to avoid cluttered notation. All our analysis extends to rectan-
gular n1 × n2 matrices if we simply replace n by maxðn1; n2Þ.

3.1. Identifiability issues. As described in the introduction, the matrix decom-
position problem can be fundamentally ill-posed. We describe two situations in which
identifiability issues arise. These examples suggest the kinds of additional conditions
that are required in order to ensure that there exists a unique decomposition into sparse
and low-rank matrices.

First, let A� be any sparse matrix and let B� ¼ eie
T
j , where ei represents the ith

standard basis vector. In this case, the low-rank matrix B� is also very sparse, and a
valid sparse-plus-low-rank decomposition might be Â ¼ A� þ eie

T
j and B̂ ¼ 0. Thus,

we need conditions that ensure that the low-rank matrix is not too sparse. One way
to accomplish this is to require that the quantity ξðB�Þ be small. As will be discussed
in section 4.3, if the row and column spaces of B� are “incoherent” with respect to the
standard basis, i.e., the row/column spaces are not aligned closely with any of the
coordinate axes, then ξðB�Þ is small.

Next, consider the scenario in which B� is any low-rank matrix andA� ¼ −veT1 with
v being the first column of B�. Thus, C ¼ A� þ B� has zeros in the first column,
rankðCÞ ≤ rankðB�Þ, and C has the same column space as B�. Therefore, a reasonable
sparse-plus-low-rank decomposition in this case might be B̂ ¼ B� þ A� and Â ¼ 0. Here
rankðB̂Þ ¼ rankðB�Þ. Requiring that a sparse matrix A� have small μðA�Þ avoids such
identifiability issues. Indeed we show in section 4.3 that sparse matrices with “bounded
degree” (i.e., few nonzero entries per row/column) have small μ.
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3.2. Tangent-space identifiability. We begin by describing the sets of sparse
and low-rank matrices. These sets can be considered either as differentiable manifolds
(away from their singularities) or as algebraic varieties; we emphasize the latter
viewpoint here. Recall that an algebraic variety is defined as the zero set of a system
of polynomial equations [17]. The variety of rank-constrained matrices is defined as

PðkÞ ≜ fM ∈ Rn×n ∣ rankðMÞ ≤ kg:ð3:1Þ

This is an algebraic variety since it can be defined through the vanishing of all ðkþ 1Þ×
ðkþ 1Þ minors of the matrix M . The dimension of this variety is kð2n− kÞ, and it is
nonsingular everywhere except at those matrices with rank less than or equal to
k− 1. For any matrix M ∈ Rn×n, the tangent space TðM Þ with respect to
PðrankðM ÞÞ at M is the span of all matrices with either the same row-space as M
or the same column-space asM . Specifically, letM ¼ UΣVT be a singular value decom-
position (SVD) of M with U;V ∈ Rn×k, where rankðM Þ ¼ k. Then we have that

TðMÞ ¼ fUXT þ YVT ∣ X;Y ∈ Rn×kg:ð3:2Þ

If rankðM Þ ¼ k, the dimension of TðMÞ is kð2n− kÞ. Note that we always have
M ∈ TðM Þ. In the rest of this paper we view TðM Þ as a subspace in Rn×n.

Next we consider the set of all matrices that are constrained by the size of their
support. Such sparse matrices can also be viewed as algebraic varieties:

SðmÞ ≜ fM ∈ Rn×n ∣ jsupportðMÞj ≤ mg:ð3:3Þ

The dimension of this variety is m, and it is nonsingular everywhere except at those
matrices with support size less than or equal to m− 1. In fact SðmÞ can be thought
of as a union of ðn2

mÞ subspaces, with each subspace being aligned with m of the n2 co-
ordinate axes. For any matrix M ∈ Rn×n, the tangent space ΩðMÞ with respect to
SðjsupportðM ÞjÞ at M is given by

ΩðMÞ ¼ fN ∈ Rn×n ∣ supportðNÞ ⊆ supportðM Þg:ð3:4Þ

If jsupportðMÞj ¼ m, the dimension of ΩðM Þ is m. Note again that we always have
M ∈ ΩðMÞ. As with TðM Þ, we view ΩðMÞ as a subspace in Rn×n. Since both TðMÞ
and ΩðMÞ are subspaces of Rn×n, we can compare vectors in these subspaces.

Before analyzing whether ðA�; B�Þ can be recovered in general (for example, using
the SDP (1.3)), we ask a simpler question. Suppose that we had prior information about
the tangent spaces ΩðA�Þ and TðB�Þ, in addition to being given C ¼ A� þ B�. Can we
then uniquely recover ðA�; B�Þ from C? Assuming such prior knowledge of the tangent
spaces is unrealistic in practice; however, we obtain useful insight into the kinds of con-
ditions required on sparse and low-rank matrices for exact decomposition. A necessary
and sufficient condition for unique identifiability of ðA�; B�Þ with respect to the tangent
spaces ΩðA�Þ and TðB�Þ is that these spaces intersect transversally:

ΩðA�Þ ∩ TðB�Þ ¼ f0g:

That is, the subspaces ΩðA�Þ and TðB�Þ have a trivial intersection. The sufficiency of
this condition for unique decomposition is easily seen. For the necessity part, suppose
for the sake of a contradiction that a nonzero matrix M belongs to ΩðA�Þ ∩ TðB�Þ;
one can add and subtract M from A� and B�, respectively, while still having a valid
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decomposition, which violates the uniqueness requirement. Therefore tangent space
transversality is equivalent to a “linearized” identifiability condition around ðA�; B�Þ.
Note that tangent space transversality is also a sufficient condition for local identifia-
bility around ðA�; B�Þ with respect to the sparse and low-rank matrix varieties, based on
the inverse function theorem. The transversality condition does not, however, imply
global identifiability with respect to the sparse and low-rank matrix varieties. The
following proposition, proved in Appendix B, provides a simple condition in terms of
the quantities μðA�Þ and ξðB�Þ for the tangent spaces ΩðA�Þ and TðB�Þ to intersect
transversally.

PROPOSITION 1. Given any two matrices A� and B�, we have that

μðA�ÞξðB�Þ < 1 ⇒ ΩðA�Þ ∩ TðB�Þ ¼ f0g;

where ξðB�Þ and μðA�Þ are defined in (1.1) and (1.2) and the tangent spaces ΩðA�Þ and
TðB�Þ are defined in (3.4) and (3.2).

Thus, both μðA�Þ and ξðB�Þ being small implies that the tangent spaces ΩðA�Þ and
TðB�Þ intersect transversally; consequently, we can exactly recover ðA�; B�Þ given
ΩðA�Þ and TðB�Þ. As we shall see, the condition required in Theorem 2 (see section 4.2)
for exact recovery using the convex program (1.3) will be simply a mild tightening of the
condition required above for unique decomposition given the tangent spaces.

3.3. Rank-sparsity uncertainty principle. Another important consequence of
Proposition 1 is that we have an elementary proof of the following rank-sparsity uncer-
tainty principle.

THEOREM 1. For any matrix M ≠ 0, we have that

ξðMÞμðMÞ ≥ 1;

where ξðMÞ and μðM Þ are as defined in (1.1) and (1.2), respectively.
Proof. Given anyM ≠ 0 it is clear thatM ∈ ΩðM Þ ∩ TðMÞ; i.e.,M is an element of

both tangent spaces. However, μðMÞξðMÞ < 1 would imply from Proposition 1 that
ΩðMÞ ∩ TðM Þ ¼ f0g, which is a contradiction. Consequently, we must have that
μðMÞξðMÞ ≥ 1. ▯

Hence, for anymatrixM ≠ 0 both μðMÞ and ξðMÞ cannot be simultaneously small.
Note that Proposition 1 is an assertion involving μ and ξ for (in general) different ma-
trices, while Theorem 1 is a statement aboutμ and ξ for the samematrix. Essentially the
uncertainty principle asserts that no matrix can be too sparse while having “diffuse” row
and column spaces. An extreme example is the matrix eie

T
j , which has the property

that μðeieTj ÞξðeieTj Þ ¼ 1.

4. Exact decomposition using semidefinite programming. We begin this
section by studying the optimality conditions of the convex program (1.3), after which
we provide a proof of Theorem 2 with simple conditions that guarantee exact decom-
position. Next we discuss concrete classes of sparse and low-rank matrices that satisfy
the conditions of Theorem 2 and can thus be uniquely decomposed using (1.3).

4.1. Optimality conditions. The orthogonal projection onto the space ΩðA�Þ is
denoted PΩðA�Þ, which simply sets to zero those entries with support not inside
supportðA�Þ. The subspace orthogonal to ΩðA�Þ is denoted ΩðA�Þc, and it consists
of matrices with complementary support, i.e., supported on supportðA�Þc. The projec-
tion onto ΩðA�Þc is denoted PΩðA�Þc .
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Similarly the orthogonal projection onto the space TðB�Þ is denoted PTðB�Þ. Letting
B� ¼ UΣVT be the SVD of B�, we have the following explicit relation for PTðB�Þ:

PTðB�ÞðMÞ ¼ PUM þMPV − PUMPV :ð4:1Þ

Here PU ¼ UUT and PV ¼ VVT . The space orthogonal to TðB�Þ is denoted TðB�Þ⊥,
and the corresponding projection is denoted PTðB�Þ⊥ðMÞ. The space TðB�Þ⊥ consists of
matrices with row-space orthogonal to the row-space ofB� and column-space orthogonal
to the column-space of B�. We have that

PTðB�Þ⊥ðMÞ ¼ ðI n×n − PU ÞMðI n×n − PV Þ;ð4:2Þ

where I n×n is the n× n identity matrix.
Following standard notation in convex analysis [27], we denote the subdifferential of

a convex function f at a point x̂ in its domain by ∂fðx̂Þ. The subdifferential ∂fðx̂Þ consists
of all y such that

f ðxÞ ≥ fðx̂Þ þ hy; x− x̂i ∀ x:

From the optimality conditions for a convex program [1], we have that ðA�; B�Þ is an
optimum of (1.3) if and only if there exists a dual Q ∈ Rn×n such that

Q ∈ γ∂kA�k1 andQ ∈ ∂kB�k�:ð4:3Þ

From the characterization of the subdifferential of the l1 norm, we have that
Q ∈ γ∂kA�k1 if and only if

PΩðA�ÞðQÞ ¼ γsignðA�Þ; kPΩðA�ÞcðQÞk∞ ≤ γ:ð4:4Þ

Here signðA�
i;jÞ equals þ1 if A�

i;j > 0, −1 if A�
i;j < 0, and 0 if A�

i;j ¼ 0. We also have that
Q ∈ ∂kB�k� if and only if [33]

PTðB�ÞðQÞ ¼ UV  0; kPTðB�Þ⊥ðQÞk ≤ 1:ð4:5Þ

Note that these are necessary and sufficient conditions for ðA�; B�Þ to be an optimum of
(1.3). The following proposition provides sufficient conditions for ðA�; B�Þ to be the un-
ique optimum of (1.3), and it involves a slight tightening of the conditions (4.3), (4.4),
and (4.5).

PROPOSITION 2. Suppose that C ¼ A� þ B�. Then ðÂ; B̂Þ ¼ ðA�; B�Þ is the unique
optimizer of (1.3) if the following conditions are satisfied:

1. ΩðA�Þ ∩ TðB�Þ ¼ f0g.
2. There exists a dual Q ∈ Rn×n such that
(a)PTðB�ÞðQÞ ¼ UV  0,
(b)PΩðA�ÞðQÞ ¼ γsignðA�Þ,
(c)kPTðB�Þ⊥ðQÞk < 1,
(d)kPΩðA�ÞcðQÞk∞ < γ.
The proof of the proposition can be found in Appendix B. Figure 4.1 provides a

visual representation of these conditions. In particular, we see that the spaces ΩðA�Þ
and TðB�Þ intersect transversely (part (1) of Proposition 2). One can also intuitively
see that guaranteeing the existence of a dual Q with the requisite conditions (part (2)
of Proposition 2) is perhaps easier if the intersection between ΩðA�Þ and TðB�Þ is more
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transverse. Note that condition (1) of this proposition essentially requires identifiability
with respect to the tangent spaces, as discussed in section 3.2.

4.2. Sufficient conditions based on μ�A�� and ξ�B��. Next we provide simple
sufficient conditions onA� and B� that guarantee the existence of an appropriate dualQ
(as required by Proposition 2). Given matrices A� and B� withμðA�ÞξðB�Þ < 1, we have
from Proposition 1 that ΩðA�Þ ∩ TðB�Þ ¼ f0g; i.e., condition (1) of Proposition 2 is
satisfied. We prove that if a slightly stronger condition holds, there exists a dual Q that
satisfies the requirements of condition (2) of Proposition 2.

THEOREM 2. Given C ¼ A� þ B� with

μðA�ÞξðB�Þ < 1

6
;

the unique optimum ðÂ; B̂Þ of (1.3) is ðA�; B�Þ for the following range of γ:

γ ∈
�

ξðB�Þ
1− 4μðA�ÞξðB�Þ ;

1− 3μðA�ÞξðB�Þ
μðA�Þ

�
:

Specifically γ ¼ ð3ξðB�ÞÞp
ð2μðA�ÞÞ1−p for any choice of p ∈ ½0; 1� is always inside the above range and

thus guarantees exact recovery of ðA�; B�Þ. For example γ ¼
ffiffiffiffiffiffiffiffiffiffiffi
3ξðB�Þ
2μðA�Þ

q
always guarantees

exact recovery of ðA�; B�Þ.
Recall from the discussion in section 3.2 and from Proposition 1 that μðA�ÞξðB�Þ <

1 is sufficient to ensure that the tangent spaces ΩðA�Þ and TðB�Þ have a transverse
intersection, which implies that ðA�; B�Þ are locally identifiable and can be recovered
given C ¼ A� þ B� along with side information about the tangent spaces ΩðA�Þ and
TðB�Þ. Theorem 2 asserts that if μðA�ÞξðB�Þ < 1

6, i.e., if the tangent spaces ΩðA�Þ
and TðB�Þ are sufficiently transverse, then the SDP (1.3) succeeds in recovering
ðA�; B�Þ without any information about the tangent spaces.

The proof of this theorem can be found in Appendix B. The main idea behind the
proof is that we consider only candidates for the dual Q that lie in the direct

FIG. 4.1. Geometric representation of optimality conditions: existence of a dual Q. The arrows denote
orthogonal projections—every projection must satisfy a condition (according to Proposition 2), which is de-
scribed next to each arrow.
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sum ΩðA�ÞLTðB�Þ of the tangent spaces. Since μðA�ÞξðB�Þ < 1
6, we have from

Proposition 1 that the tangent spaces ΩðA�Þ and TðB�Þ have a transverse intersection,
i.e., ΩðA�Þ ∩ TðB�Þ ¼ f0g. Therefore, there exists a unique element Q̂ ∈ ΩðA�ÞL
TðB�Þ that satisfies PTðB�ÞðQ̂Þ ¼ UV  0 and PΩðA�ÞðQ̂Þ ¼ γsignðA�Þ. The proof proceeds
by showing that if μðA�ÞξðB�Þ < 1

6, then the projections of this Q̂ onto the orthogonal
spaces ΩðA�Þc and TðB�Þ⊥ are small, thus satisfying condition (2) of Proposition 2.

Remarks. We discuss here the manner in which our results are to be interpreted.
Given a matrix C ¼ A� þ B� with A� sparse and B� low-rank, there are a number of
alternative decompositions of C into “sparse” and “low-rank” components. For example,
one could subtract one of the nonzero entries from the matrix A� and add it to B�; thus,
the sparsity level of A� is strictly improved, while the rank of the modified B� increases
by at most 1. In fact one could construct many such alternative decompositions. There-
fore, it may a priori be unclear which of these many decompositions is the “correct” one.

To clarify this issue consider a matrix C ¼ A� þ B� that is composed of the sum of a
sparse A� with small μðA�Þ and a low-rank B� with small ξðB�Þ. Recall that a sparse
matrix having a small μ implies that the sparsity pattern of the matrix is “diffuse”; i.e.,
no row/column contains too many nonzeros (see Proposition 3 in section 4.3 for a precise
characterization). Similarly, a low-rank matrix with small ξ has “diffuse” row/column
spaces; i.e., the row/column spaces are not aligned with any of the coordinate axes and
as a result do not contain sparse vectors (see Proposition 4 in section 4.3 for a precise
characterization). Now let C ¼ Aþ B be an alternative decomposition with some of the
entries of A� moved to B�. Although the new A has a smaller support contained strictly
within the support of A� (and consequently a smaller μðAÞ), the new low-rank matrix B
has sparse vectors in its row and column spaces. Consequently we have that ξðBÞ ≫
ξðB�Þ. Thus, while ðA;BÞ is also a sparse-plus-low-rank decomposition, it is not a
diffuse sparse-plus-low-rank decomposition, in that both the sparse matrix A and the
low-rank matrix B do not simultaneously have diffuse supports and row/column spaces,
respectively.

Also, the opposite situation of removing a rank-1 term from the SVD of the low-rank
matrix B� and moving it to A� to form a new decomposition ðA;BÞ (now with B having
strictly smaller rank than B�) faces a similar problem. In this case B has strictly smaller
rank than B� and also by construction a smaller ξðBÞ. However, the original low-rank
matrix B� has a small ξðB�Þ and thus has diffuse row/column spaces; therefore the rank-
1 term that is added to A� will not be sparse, and consequently the new matrix A will
have μðAÞ ≫ μðA�Þ.

Hence the key point is that these alternate decompositions ðA;BÞ do not satisfy the
property that μðAÞξðBÞ < 1

6. Thus, our result is to be interpreted as follows: Given a
matrix C ¼ A� þ B� formed by adding a sparse matrix A� with diffuse support and
a low-rank matrix B� with diffuse row/column spaces, the convex program that is stu-
died in this paper will recover this diffuse decomposition over the many possible alter-
native decompositions into sparse and low-rank components, as none of these have the
property of both components being simultaneously diffuse. Indeed in applications such as
graphical model selection (see section 2.1) it is precisely such a “diffuse” decomposition
that one seeks to recover.

A related question is, Given a decomposition C ¼ A� þ B� with μðA�ÞξðB�Þ < 1
6, do

there exist small, local perturbations of A� and B� that give rise to alternate decomposi-
tions ðA;BÞ with μðAÞξðBÞ < 1

6? Suppose B� is slightly perturbed along the variety of
rank-constrained matrices to some B. This ensures that the tangent space varies
smoothly from TðB�Þ to TðBÞ and consequently that ξðBÞ≈ ξðB�Þ. However, compen-
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sating for this by changing A� to A� þ ðB� − BÞ moves A� outside the variety of sparse
matrices. This is because B� − B is not sparse. Thus the dimension of the tangent space
ΩðA� þ B� − BÞ is much greater than that of the tangent space ΩðA�Þ, as a result of
which μðA� þ B� − BÞ ≫ μðA�Þ; therefore we have that ξðBÞμðA� þ B� − BÞ ≫ 1

6.
The same reasoning holds in the opposite scenario. Consider perturbing A� slightly
along the variety of sparse matrices to some A. While this ensures that
μðAÞ≈ μðA�Þ, changing B� to B� þ ðA� −AÞmoves B� outside the variety of rank-con-
strained matrices. Therefore the dimension of the tangent space TðB� þA� − AÞ is
much greater than that of TðB�Þ, and also TðB� þA� − AÞ contains sparse
matrices, resulting in ξðB� þ A� − AÞ ≫ ξðB�Þ; consequently we have that
μðAÞξðB� þ A� − AÞ ≫ 1

6.

4.3. Sparse and low-rank matrices with μ�A��ξ�B�� < 1
6. We discuss concrete

classes of sparse and low-rank matrices that satisfy the sufficient condition of Theorem 2
for exact decomposition. We begin by showing that sparse matrices with “bounded de-
gree”, i.e., bounded number of nonzeros per row/column, have small μ.

PROPOSITION 3. Let A ∈ Rn×n be any matrix with at most degmaxðAÞ nonzero entries
per row/column and with at least degminðAÞ nonzero entries per row/column. WithμðAÞ
as defined in (1.2), we have that

degminðAÞ ≤ μðAÞ ≤ degmaxðAÞ:

See Appendix B for the proof. Note that if A ∈ Rn×n has full support, i.e.,
ΩðAÞ ¼ Rn×n, then μðAÞ ¼ n. Therefore, a constraint on the number of zeros per
row/column provides a useful bound on μ. We emphasize here that simply bounding
the number of nonzero entries in A does not suffice; the sparsity pattern also plays a role
in determining the value of μ.

Next we consider low-rank matrices that have small ξ. Specifically, we show that
matrices with row and column spaces that are incoherent with respect to the standard
basis have small ξ. We measure the incoherence of a subspace S ⊆ Rn as follows:

βðSÞ ≜ max
i

kPSeik2;ð4:6Þ

where ei is the ith standard basis vector, PS denotes the projection onto the subspace S ,
and k · k2 denotes the vector l2 norm. This definition of incoherence also played an im-
portant role in the results in [4]. A small value of βðSÞ implies that the subspace S is not
closely aligned with any of the coordinate axes. In general for any k-dimensional sub-
space S, we have that

ffiffiffi
k

n

r
≤ βðSÞ ≤ 1;

where the lower bound is achieved, for example, by a subspace that spans any k columns
of an n× n orthonormal Hadamard matrix, while the upper bound is achieved by any
subspace that contains a standard basis vector. Based on the definition of βðSÞ, we de-
fine the incoherence of the row/column spaces of a matrix B ∈ Rn×n as

incðBÞ ≜ maxfβðrow-spaceðBÞÞ;βðcolumn-spaceðBÞÞg:ð4:7Þ

If the SVD of B ¼ UΣVT , then row-spaceðBÞ ¼ spanðV Þ and column-spaceðBÞ ¼
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spanðUÞ. We show in Appendix B that matrices with incoherent row/column spaces
have small ξ; the proof technique for the lower bound here was suggested by Recht [26].

PROPOSITION 4. Let B ∈ Rn×n be any matrix with incðBÞ defined as in (4.7) and ξðBÞ
defined as in (1.1). We have that

incðBÞ ≤ ξðBÞ ≤ 2 incðBÞ:

If B ∈ Rn×n is a full-rank matrix or a matrix such as e1eT1 , then ξðBÞ ¼ 1. Therefore,
a bound on the incoherence of the row/column spaces of B is important in order to
bound ξ. Using Propositions 3 and 4 along with Theorem 2 we have the following cor-
ollary, which states that sparse bounded-degree matrices and low-rank matrices with
incoherent row/column spaces can be uniquely decomposed.

COROLLARY 3. Let C ¼ A� þ B� with degmaxðA�Þ being the maximum number of
nonzero entries per row/column of A� and incðB�Þ being the maximum incoherence
of the row/column spaces of B� (as defined by (4.7)). If we have that

degmaxðA�ÞincðB�Þ < 1

12
;

then the unique optimum of the convex program (1.3) is ðÂ; B̂Þ ¼ ðA�; B�Þ for a range of
values of γ:

γ ∈
�

2 incðB�Þ
1− 8 degmaxðA�ÞincðB�Þ ;

1− 6 degmaxðA�ÞincðB�Þ
degmaxðA�Þ

�
:ð4:8Þ

Specifically γ ¼ ð6 incðB�ÞÞp
ð2 degmaxðA�ÞÞ1−p for any choice of p ∈ ½0; 1� is always inside the above range

and thus guarantees exact recovery of ðA�; B�Þ.
We emphasize that this is a result with deterministic sufficient conditions on exact

decomposability.

4.4. Decomposing random sparse and low-rank matrices. Next we show
that sparse and low-rank matrices drawn from certain natural random ensembles satisfy
the sufficient conditions of Corollary 3 with high probability. We first consider random
sparse matrices with a fixed number of nonzero entries.

Random sparsity model.The matrixA� is such that supportðA�Þ is chosen uniformly
at random from the collection of all support sets of sizem. There is no assumption made
about the values of A� at locations specified by supportðA�Þ.

LEMMA 1. Suppose that A� ∈ Rn×n is drawn according to the random sparsity model
with m nonzero entries. Let degmaxðA�Þ be the maximum number of nonzero entries in
each row/column of A�. We have that

degmaxðA�Þ ≤ m

n
log n;

with probability greater than 1−Oðn−αÞ for m ¼ OðαnÞ.
The proof of this lemma follows from a standard balls and bins argument and can be

found in several references (see, for example, [2]).
Next we consider low-rank matrices in which the singular vectors are chosen uni-

formly at random from the set of all partial isometries. Such a model was considered in
recent work on the matrix completion problem [4], which aims to recover a low-rank
matrix given observations of a subset of entries of the matrix.
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Random orthogonal model [4]. A rank-kmatrix B� ∈ Rn×n with SVD B� ¼ UΣV  0 is
constructed as follows: The singular vectors U;V ∈ Rn×k are drawn uniformly at
random from the collection of rank-k partial isometries in Rn×k. The choices of U
andV need not be mutually independent. No restriction is placed on the singular values.

As shown in [4], low-rank matrices drawn from such a model have incoherent row/
column spaces.

LEMMA 2. Suppose that a rank-k matrix B� ∈ Rn×n is drawn according to the ran-
dom orthogonal model. Then we have that incðB�Þ (defined by (4.7)) is bounded as

incðB�Þ ≲
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðk; log nÞ

n

r
;

with probability greater than 1−Oðn−3 log nÞ.
Applying these two results in conjunction with Corollary 3, we have that sparse and

low-rank matrices drawn from the random sparsity model and the random orthogonal
model can be uniquely decomposed with high probability.

COROLLARY 4. Suppose that a rank-k matrix B� ∈ Rn×n is drawn from the random
orthogonal model and that A� ∈ Rn×n is drawn from the random sparsity model with m
nonzero entries. Given C ¼ A� þ B�, there exists a range of values for γ (given by (4.8))
so that ðÂ; B̂Þ ¼ ðA�; B�Þ is the unique optimum of the SDP (1.3) with high probability
(given by the bounds in Lemmas 1 and 2), provided

m ≲
n1.5

log n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðk; log nÞp :

In particular, γ ∼ ðmaxðk; log nÞ ∕ m log nÞ13 guarantees exact recovery of ðA�; B�Þ.
Thus, for matrices B� with rank k smaller than n the SDP (1.3) yields exact recovery

with high probability even when the size of the support of A� is superlinear in n.
Implications for the matrix rigidity problem. Corollary 4 has implications for the

matrix rigidity problem discussed in section 2. Recall that RM ðkÞ is the smallest number
of entries ofM that need to be changed to reduce the rank ofM below k (the changes can
be of arbitrary magnitude). A generic matrix M ∈ Rn×n has rigidity RM ðkÞ ¼ ðn− kÞ2
[31]. However, special structured classes of matrices can have low rigidity. Consider a
matrixM formed by adding a sparse matrix drawn from the random sparsity model with
support size Oð n

log nÞ, and a low-rank matrix drawn from the random orthogonal model
with rank ϵn for some fixed ϵ > 0. Such a matrix has rigidity RM ðϵnÞ ¼ Oð n

log nÞ, and one
can recover the sparse and low-rank components that composeM with high probability
by solving the SDP (1.3). To see this, note that

n

log n
≲

n1.5

log n
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðϵn; log nÞp ¼ n1.5

log n
ffiffiffiffiffiffi
ϵn

p ;

which satisfies the sufficient condition of Corollary 4 for exact recovery. Therefore, while
the rigidity of a matrix is intractable to compute in general [22], [8], for such low-rigidity
matrices M one can compute the rigidity RM ðϵnÞ; in fact the SDP (1.3) provides a cer-
tificate of the sparse and low-rank matrices that form the low rigidity matrix M .

5. Simulation results. We confirm the theoretical predictions in this paper with
some simple experimental results. We also present a heuristic to choose the trade-off
parameter γ. All our simulations were performed using YALMIP [20] and the SDPT3
software [30] for solving SDPs.
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In the first experiment we generate random 25× 25 matrices according to the ran-
dom sparsity and random orthogonal models described in section 4.4. To generate a
random rank-k matrix B� according to the random orthogonal model, we generate
X;Y ∈ R25×k with independent and identically distributed (i.i.d.) Gaussian entries
and set B� ¼ XYT . To generate an m-sparse matrix A� according to the random spar-
sity model, we choose a support set of sizem uniformly at random, and the values within
this support are i.i.d. Gaussian. The goal is to recover ðA�; B�Þ from C ¼ A� þ B� using
the SDP (1.3). Let tolγ be defined as

tolγ ¼ kÂ− A�kF
kA�kF

þ kB̂ − B�kF
kB�kF

;ð5:1Þ

where ðÂ; B̂Þ is the solution of (1.3) and k · kF is the Frobenius norm. We declare success
in recovering ðA�; B�Þ if tolγ < 10−3. (We discuss the issue of choosing γ in the next
experiment.) Figure 5.1 shows the success rate in recovering ðA�; B�Þ for various values
of m and k (averaged over 10 experiments for each m; k). Thus we see that one can
recover sufficiently sparse A� and sufficiently low-rank B� from C ¼ A� þ B�

using (1.3).
Next we consider the problem of choosing the trade-off parameter γ. Based on

Theorem 2 we know that exact recovery is possible for a range of γ. Therefore, one
can simply check the stability of the solution ðÂ; B̂Þ as γ is varied without knowing
the appropriate range for γ in advance. To formalize this scheme we consider the follow-
ing SDP for t ∈ ½0; 1�, which is a slightly modified version of (1.3):

ðÂt; B̂tÞ ¼ arg min
A;B

tkAk1 þ ð1− tÞkBk�
s:t: Aþ B ¼ C:ð5:2Þ

There is a one-to-one correspondence between (1.3) and (5.2) given by t ¼ γ
1þγ

. The ben-
efit in looking at (5.2) is that the range of valid parameters is compact, i.e., t ∈ ½0; 1�, as
opposed to the situation in (1.3) where γ ∈ ½0;∞Þ. We compute the difference between
solutions for some t and t− ϵ as follows:

difft ¼ ðkÂt−ϵ − ÂtkFÞ þ ðkB̂t−ϵ − B̂tkFÞ;ð5:3Þ

where ϵ > 0 is some small fixed constant, say, ϵ ¼ 0.01. We generate a random
A� ∈ R25×25 that is 25-sparse and a random B� ∈ R25×25 with rank ¼ 2 as described

FIG. 5.1. For each value of m, k, we generate 25× 25 random m-sparse A� and random rank-k B� and
attempt to recover ðA�; B�Þ fromC ¼ A� þ B� using (1.3). For each value ofm, k we repeated this procedure 10
times. The figure shows the probability of success in recovering ðA�; B�Þ using (1.3) for various values ofm and
k. White represents a probability of success of 1, while black represents a probability of success of 0.
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above. Given C ¼ A� þ B�, we solve (5.2) for various values of t. Figure 5.2 shows two
curves—one is tolt (which is defined analogous to tolγ in (5.1)) and the other is difft.
Clearly we do not have access to tolt in practice. However, we see that difft is near zero in
exactly three regions. For sufficiently small t the optimal solution to (5.2) is ðÂt; B̂tÞ ¼
ðA� þ B�; 0Þ, while for sufficiently large t the optimal solution is ðÂt; B̂tÞ ¼ ð0; A� þ B�Þ.
As seen in Figure 5.2, difft stabilizes for small and large t. The third “middle” range of
stability is where we typically have ðÂt; B̂tÞ ¼ ðA�; B�Þ. Notice that outside of these
three regions difft is not close to 0 and in fact changes rapidly. Therefore if a reasonable
guess for t (or γ) is not available, one could solve (5.2) for a range of t and choose a
solution corresponding to the “middle” range in which difft is stable and near zero.
A related method to check for stability is to compute the sensitivity of the cost of
the optimal solution with respect to γ, which can be obtained from the dual solution.

6. Discussion. We have studied the problem of exactly decomposing a given ma-
trix C ¼ A� þ B� into its sparse and low-rank components A� and B�. This problem
arises in a number of applications in model selection, system identification, complexity
theory, and optics. We characterized fundamental identifiability in the decomposition
problem based on a notion of rank-sparsity incoherence, which relates the sparsity pat-
tern of a matrix and its row/column spaces via an uncertainty principle. As the general
decomposition problem is intractable to solve, we propose a natural SDP relaxation
(1.3) to solve the problem and provide sufficient conditions on sparse and low-rank ma-
trices so that the SDP exactly recovers such matrices. Our sufficient conditions are de-
terministic in nature; they essentially require that the sparse matrix must have support
that is not too concentrated in any row/column, while the low-rank matrix must have
row/column spaces that are not closely aligned with the coordinate axes. Our analysis
centers around studying the tangent spaces with respect to the algebraic varieties of
sparse and low-rank matrices. Indeed the sufficient conditions for identifiability and
for exact recovery using the SDP can also be viewed as requiring that certain tangent
spaces have a transverse intersection. The implications of our results for the matrix ri-
gidity problem are also demonstrated. We would like to mention here a related piece of
work [5] that appeared subsequent to the submission of our paper. In [5] the authors
analyze the convex program (1.3) for the sparse-plus-low-rank decomposition problem

FIG. 5.2. Comparison between tolt and difft for a randomly generated example with n ¼ 25, m ¼ 25,
k ¼ 2.
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and provide results for exact recovery based on a different set of conditions on sparse and
low-rank matrices (in particular focussing on sparse matrices with random support) to
those presented in our paper. The paper [5] also discusses some applications of this de-
composition problem in computer vision.

An interesting problem for further research is the development of special-purpose
algorithms that take advantage of structure in (1.3) to provide a more efficient solution
than a general-purpose SDP solver. Another question that arises in applications such as
model selection (due to noise or finite sample effects) is to approximately decompose a
matrix into sparse and low-rank components.

Appendix A. SDP formulation. The problem (1.3) can be recast as an SDP.
We appeal to the fact that the spectral norm k · k is the dual norm of the nuclear norm
k · k�:

kMk� ¼ maxftraceðM  0Y Þ ∣ kYk ≤ 1g:

Further, the spectral norm admits a simple semidefinite characterization [25]:

kYk ¼ min
t

t s:t:

�
tI n Y
Y  0 tI n

�
≽ 0:

From duality, we can obtain the following SDP characterization of the nuclear norm:

kMk� ¼ min
W 1;W 2

1

2
ðtraceðW 1Þ þ traceðW 2ÞÞ

s:t:

�
W 1 M

M  0 W 2

�
≽ 0:

Putting these facts together, (1.3) can be rewritten as

min
A;B;W 1;W 2;Z

γ1Tn Z1n þ
1

2
ðtraceðW 1Þ þ traceðW 2ÞÞ

s:t:

�
W 1 B

B  0 W 2

�
≽ 0;

−Zi;j ≤ Ai;j ≤ Zi;j ∀ ði; jÞ;
Aþ B ¼ C:ðA:1Þ

Here, 1n ∈ Rn refers to the vector that has 1 in every entry.

Appendix B. Proofs.
Proof of Proposition 1. We begin by establishing that

max
N∈TðB�Þ;kNk≤1

kPΩðA�ÞðNÞk < 1 ⇒ ΩðA�Þ ∩ TðB�Þ ¼ f0g;ðB:1Þ

where PΩðA�ÞðNÞ denotes the projection onto the space ΩðA�Þ. Assume for the sake of a
contradiction that this assertion is not true. Thus, there exists N ≠ 0 such that
N ∈ ΩðA�Þ ∩ TðB�Þ. Scale N appropriately such that kNk ¼ 1. Thus N ∈ TðB�Þ with
kNk ¼ 1, but we also have that kPΩðA�ÞðNÞk ¼ kNk ¼ 1 as N ∈ ΩðA�Þ. This leads to a
contradiction.
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Next, we show that

max
N∈TðB�Þ;kNk≤1

kPΩðA�ÞðNÞk ≤ μðA�ÞξðB�Þ;

which would allow us to conclude the proof of this proposition. We have the following
sequence of inequalities:

max
N∈TðB�Þ;kNk≤1

kPΩðA�ÞðN Þk ≤ max
N∈TðB�Þ;kNk≤1

μðA�ÞkPΩðA�ÞðNÞk∞
≤ max

N∈TðB�Þ;kNk≤1
μðA�ÞkNk∞

≤ μðA�ÞξðB�Þ:

Here the first inequality follows from the definition (1.2) ofμðA�Þ as PΩðA�ÞðNÞ ∈ ΩðA�Þ,
the second inequality is due to the fact that kPΩðA�ÞðN Þk∞ ≤ kNk∞, and the final in-
equality follows from the definition (1.1) of ξðB�Þ. ▯

Proof of Proposition 2. We first show that (A�, B�) is an optimum of (1.3), before
moving on to showing uniqueness. Based on subgradient optimality conditions applied
at (A�, B�), there must exist a dual Q such that

Q ∈ γ∂kA�k1 and Q ∈ ∂kB�k�:

The second condition in this proposition guarantees the existence of a dual Q that sa-
tisfies both these conditions simultaneously (see (4.4) and (4.5)). Therefore, we have
that (A�, B�) is an optimum. Next we show that under the conditions specified in
the lemma, (A�, B�) is also a unique optimum. To avoid cluttered notation, in the rest
of this proof we let Ω ¼ ΩðA�Þ, T ¼ TðB�Þ, ΩcðA�Þ ¼ Ωc, and T⊥ðB�Þ ¼ T⊥.

Suppose that there is another feasible solution ðA� þ NA;B
� þ NBÞ that is also a

minimizer. We must have that NA þ NB ¼ 0 because A� þ B� ¼ C ¼ ðA� þ NAÞ þ
ðB� þ NBÞ. Applying the subgradient property at ðA�; B�Þ, we have that for any sub-
gradient ðQA;QBÞ of the function γkAk1 þ kBk� at ðA�; B�Þ

γkA� þ NAk1 þ kB� þ NBk� ≥ γkA�k1 þ kB�k� þ hQA;NAi þ hQB;NBi:ðB:2Þ

Since ðQA;QBÞ is a subgradient of the function γkAk1 þ kBk� at ðA�; B�Þ, we must have
from (4.4) and (4.5) that

• QA ¼ γ signðA�Þ þ PΩcðQAÞ, with kPΩcðQAÞk∞ ≤ γ.
• QB ¼ UV  0 þ PT⊥ðQBÞ, with kPT⊥ðQBÞk ≤ 1.

Using these conditions we rewrite hQA;NAi and hQB;NBi. Based on the existence of the
dual Q as described in the lemma, we have that

hQA;NAi ¼ hγ signðA�Þ þ PΩcðQAÞ; NAi
¼ hQ − PΩcðQÞ þ PΩcðQAÞ; NAi
¼ hPΩcðQAÞ− PΩcðQÞ; NAi þ hQ;NAi;ðB:3Þ

where we have used the fact that Q ¼ γ signðA�Þ þ PΩcðQÞ. Similarly, we have that
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hQB;NBi ¼ hUV  0 þ PT⊥ðQBÞ; NBi
¼ hQ − PT⊥ðQÞ þ PT⊥ðQBÞ; NBi
¼ hPT⊥ðQBÞ− PT⊥ðQÞ; NBi þ hQ;NBi;ðB:4Þ

where we have used the fact thatQ ¼ UV  0 þ PT⊥ðQÞ. Putting (B.3) and (B.4) together,
we have that

hQA;NAi þ hQB;NBi ¼ hPΩcðQAÞ− PΩcðQÞ; NAi
þ hPT⊥ðQBÞ− PT⊥ðQÞ; NBi
þ hQ;NA þ NBi

¼ hPΩcðQAÞ− PΩcðQÞ; NAi
þ hPT⊥ðQBÞ− PT⊥ðQÞ; NBi

¼ hPΩcðQAÞ− PΩcðQÞ; PΩcðNAÞi
þ hPT⊥ðQBÞ− PT⊥ðQÞ; PT⊥ðNBÞi:ðB:5Þ

In the second equality, we used the fact that NA þ NB ¼ 0.
Since ðQA;QBÞ is any subgradient of the function γkAk1 þ kBk� at (A�, B�), we

have some freedom in selecting PΩcðQAÞ and PT⊥ðQBÞ as long as they still satisfy
the subgradient conditions kPΩcðQAÞk∞ ≤ γ and kPT⊥ðQBÞk ≤ 1. We set PΩcðQAÞ ¼
γ signðPΩcðNAÞÞ so that kPΩcðQAÞk∞ ¼ γ and hPΩcðQAÞ; PΩcðNAÞi ¼ γkPΩcðNAÞk1.
Letting PT⊥ðNBÞ ¼ ~U ~Σ ~VT be the SVD of PT⊥ðNBÞ, we set PT⊥ðQBÞ ¼ ~U ~VT so that
kPT⊥ðQBÞk ¼ 1 and hPT⊥ðQBÞ; PT⊥ðNBÞi ¼ kPT⊥ðNBÞk�. With this choice of
ðQA;QBÞ, we can simplify (B.5) as follows:

hQA;NAi þ hQB;NBi ≥ ðγ − kPΩcðQÞk∞ÞðkPΩcðNAÞk1Þ
þð1− kPT⊥ðQÞkÞðkPT⊥ðNBÞk�Þ:

Since kPΩcðQÞk∞ < γ and kPT⊥ðQÞk < 1, we have that hQA;NAi þ hQB;NBi is strictly
positive unless PΩcðNAÞ ¼ 0 and PT⊥ðNBÞ ¼ 0. Thus, γkA� þ NAk1 þ kB� þ NBk� >
γkA�k1 þ kB�k� if PΩcðNAÞ ≠ 0 and PT⊥ðNBÞ ≠ 0. However, if PΩcðNAÞ ¼ PT⊥ðNBÞ ¼
0, then PΩðNAÞ þ PT ðNBÞ ¼ 0 because we also have thatNA þNB ¼ 0. In other words,
PΩðNAÞ ¼ −PT ðNBÞ. This can only be possible if PΩðNAÞ ¼ PT ðNBÞ ¼ 0 (as
Ω ∩ T ¼ f0g), which in turn implies that NA ¼ NB ¼ 0. Therefore, γkA� þ NAk1þ
kB� þ NBk� > γkA�k1 þ kB�k� unless NA ¼ NB ¼ 0. ▯

Proof of Theorem 2. As with the previous proof, we avoid cluttered notation by
letting Ω ¼ ΩðA�Þ, T ¼ TðB�Þ, ΩcðA�Þ ¼ Ωc, and T⊥ðB�Þ ¼ T⊥. One can check that

ξðB�ÞμðA�Þ < 1

6
⇒

ξðB�Þ
1− 4ξðB�ÞμðA�Þ <

1− 3ξðB�ÞμðA�Þ
μðA�Þ :ðB:6Þ

Thus, we show that if ξðB�ÞμðA�Þ < 1
6, then there exists a range of γ for which a dual Q

with the requisite properties exists. Also note that plugging in ξðB�ÞμðA�Þ ¼ 1
6 in the

above range gives the strictly smaller range ½3ξðB�Þ; 1
2μðA�Þ� for γ; for any choice of p ∈

½0; 1� we have that γ ¼ ð3ξðB�ÞÞp ∕ ð2μðA�ÞÞ1−p is always within the above range.
We aim to construct a dual Q by considering candidates in the direct sum Ω

L
T of

the tangent spaces. Since μðA�ÞξðB�Þ < 1
6, we can conclude from Proposition 1 that
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there exists a unique Q̂ ∈ Ω
L
T such that PΩðQ̂Þ ¼ γ signðA�Þ and PT ðQ̂Þ ¼ UV  0 (re-

call that these are conditions that a dual must satisfy according to Proposition 2) as
Ω ∩ T ¼ f0g. The rest of this proof shows that if μðA�ÞξðB�Þ < 1

6, then the projections
of such a Q̂ onto T⊥ and onto Ωc will be small; i.e., we show that kPΩcðQ̂Þk∞ < γ

and kPT⊥ðQ̂Þk < 1.
We note here that Q̂ can be uniquely expressed as the sum of an element of T and an

element of Ω; i.e., Q̂ ¼ QΩ þQT with QΩ ∈ Ω and QT ∈ T . The uniqueness of the
splitting can be concluded because Ω ∩ T ¼ f0g. Let QΩ ¼ γ signðA�Þ þ ϵΩ and
QT ¼ UV  0 þ ϵT . We then have

PΩðQ̂Þ ¼ γ signðA�Þ þ ϵΩ þ PΩðQT Þ ¼ γ signðA�Þ þ ϵΩ þ PΩðUV  0 þ ϵT Þ:

Since PΩðQ̂Þ ¼ γsignðA�Þ,
ϵΩ ¼ −PΩðUV  0 þ ϵT Þ:ðB:7Þ

Similarly,

ϵT ¼ −PT ðγsignðA�Þ þ ϵΩÞ:ðB:8Þ

Next, we obtain the following bound on kPΩcðQ̂Þk∞:

kPΩcðQ̂Þk∞ ¼ kPΩcðUV  0 þ ϵT Þk∞
≤ kUV  0 þ ϵTk∞
≤ ξðB�ÞkUV  0 þ ϵTk
≤ ξðB�Þð1þ kϵTkÞ;ðB:9Þ

where we obtain the second inequality based on the definition of ξðB�Þ (since
UV  0 þ ϵT ∈ T). Similarly, we can obtain the following bound on kPT⊥ðQ̂Þk:

kPT⊥ðQ̂Þk ¼ kPT⊥ðγ signðA�Þ þ ϵΩÞk
≤ kγ signðA�Þ þ ϵΩk
≤ μðA�Þkγ signðA�Þ þ ϵΩk∞
≤ μðA�Þðγ þ kϵΩk∞Þ;ðB:10Þ

where we obtain the second inequality based on the definition of μðA�Þ (since
γ signðA�Þ þ ϵΩ ∈ Ω). Thus, we can bound kPΩcðQ̂Þk∞ and kPT⊥ðQ̂Þk by bounding
kϵTk and kϵΩk∞, respectively (using the relations (B.8) and (B.7)).

By the definition of ξðB�Þ and using (B.7),

kϵΩk∞ ¼ kPΩðUV  0 þ ϵT Þk∞
≤ kUV  0 þ ϵTk∞
≤ ξðB�ÞkUV  0 þ ϵTk
≤ ξðB�Þð1þ kϵTkÞ;ðB:11Þ

where the second inequality is obtained because UV  0 þ ϵT ∈ T . Similarly, by the defi-
nition of μðA�Þ and using (B.8)
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kϵTk ¼ kPT ðγ signðA�Þ þ ϵΩÞk
≤ 2kγ signðA�Þ þ ϵΩk
≤ 2μðA�Þkγ signðA�Þ þ ϵΩk∞
≤ 2μðA�Þðγ þ kϵΩk∞Þ;ðB:12Þ

where the first inequality is obtained because kPT ðM Þk ≤ 2kMk and the second inequal-
ity is obtained because γ signðA�Þ þ ϵΩ ∈ Ω.

Putting (B.11) in (B.12), we have that

kϵTk ≤ 2μðA�Þðγ þ ξðB�Þð1þ kϵTkÞÞ

⇒ kϵTk ≤
2γμðA�Þ þ 2ξðB�ÞμðA�Þ

1− 2ξðB�ÞμðA�Þ :ðB:13Þ

Similarly, putting (B.12) in (B.11), we have that

kϵΩk∞ ≤ ξðB�Þð1þ 2μðA�Þðγ þ kϵΩk∞ÞÞ

⇒ kϵΩk∞ ≤
ξðB�Þ þ 2γξðB�ÞμðA�Þ

1− 2ξðB�ÞμðA�Þ :ðB:14Þ

We now show that kPT⊥ðQ̂Þk < 1. Combining (B.14) and (B.10),

kPT⊥ðQ̂Þk ≤ μðA�Þ
�
γ þ ξðB�Þ þ 2γξðB�ÞμðA�Þ

1− 2ξðB�ÞμðA�Þ
�

¼ μðA�Þ
�

γ þ ξðB�Þ
1− 2ξðB�ÞμðA�Þ

�

< μðA�Þ
�1−3ξðB�ÞμðA�Þ

μðA�Þ þ ξðB�Þ
1− 2ξðB�ÞμðA�Þ

�

¼ 1;

since γ < 1−3ξðB�ÞμðA�Þ
μðA�Þ by assumption.

Finally, we show that kPΩcðQ̂Þk∞ < γ. Combining (B.13) and (B.9),

kPΩcðQ̂Þk∞ ≤ ξðB�Þ
�
1þ 2γμðA�Þ þ 2ξðB�ÞμðA�Þ

1− 2ξðB�ÞμðA�Þ
�

¼ ξðB�Þ
�

1þ 2γμðA�Þ
1− 2ξðB�ÞμðA�Þ

�

¼
�
ξðB�Þ

�
1þ 2γμðA�Þ

1− 2ξðB�ÞμðA�Þ
�
− γ

�
þ γ

¼
�
ξðB�Þ þ 2γξðB�ÞμðA�Þ− γ þ 2γξðB�ÞμðA�Þ

1− 2ξðB�ÞμðA�Þ
�
þ γ

¼
�
ξðB�Þ− γð1− 4ξðB�ÞμðA�ÞÞ

1− 2ξðB�ÞμðA�Þ
�
þ γ

<

�
ξðB�Þ− ξðB�Þ

1− 2ξðB�ÞμðA�Þ
�
þ γ

¼ γ:

Here, we used the fact that ξðB�Þ
1−4ξðB�ÞμðA�Þ < γ in the second inequality. ▯
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Proof of Proposition 3. Based on the Perron–Frobenius theorem [18], one can con-
clude that kPk ≥ kQk if Pi;j ≥ jQi;jj ∀ i; j. Thus, we need only consider the matrix that
has 1 in every location in the support set ΩðAÞ and 0 everywhere else. Based on the
definition of the spectral norm, we can rewrite μðAÞ as follows:

μðAÞ ¼ max
kxk2¼1;kyk2¼1

X
ði;jÞ∈ΩðAÞ

xiyj:ðB:15Þ

Upper bound. For any matrix M , we have from the results in [28] that

kMk2 ≤ max
i;j

ricj;ðB:16Þ

where ri ¼
P

kjMi;kj denotes the absolute row-sum of row i and cj ¼
P

kjMk;jj denotes
the absolute column-sum of column j. Let MΩðAÞ be a matrix defined as follows:

M
ΩðAÞ
i;j ¼

�
1; ði; jÞ ∈ ΩðAÞ;
0; otherwise:

Based on the reformulation of μðAÞ above (B.15), it is clear that

μðAÞ ¼ kMΩðAÞk:

From the bound (B.16), we have that

kMΩðAÞk ≤ degmaxðAÞ:

Lower bound. Now suppose that each row/column of A has at least degminðAÞ non-
zero entries. Using the reformulation (B.15) of μðAÞ above, we have that

μðAÞ ≥
X

ði;jÞ∈ΩðAÞ

1ffiffiffi
n

p 1ffiffiffi
n

p ¼ jsupportðAÞj
n

≥ degminðAÞ:

Here we set x ¼ y ¼ 1ffiffiffi
n

p 1; with 1 representing the all-ones vector, as candidates in the
optimization problem (B.15). ▯

Proof of Proposition 4. Let B ¼ UΣVT be the SVD of B.
Upper bound. We can upper-bound ξðBÞ as follows:

ξðBÞ ¼ max
M∈TðBÞ;kMk≤1

kMk∞
¼ max

M∈TðBÞ;kMk≤1
kPTðBÞðM Þk∞

≤ max
kMk≤1

kPTðBÞðM Þk∞
≤ max

M orthogonal
kPTðBÞðM Þk∞

≤ max
M orthogonal

kPUMk∞ þ max
M orthogonal

kðI n×n − PU ÞMPVk∞:

For the second inequality, we have used the fact that the maximum of a convex function
over a convex set is achieved at one of the extreme points of the constraint set. The
orthogonal matrices are the extreme points of the set of contractions (i.e., matrices with
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spectral norm ≤ 1). Note that for the nonsquare case we would need to consider partial
isometries; the rest of the proof remains unchanged. We have used PTðBÞðM Þ ¼ PUM þ
MPV − PUMPV from (4.1) in the last inequality, where PU ¼ UUT and PV ¼ VVT

denote the projections onto the spaces spanned by U and V , respectively.
We have the following simple bound for kPUMk∞ with M orthogonal:

max
M orthogonal

kPUMk∞ ¼ max
M orthogonal

max
i;j

eTi PUMej

≤ max
M orthogonal

max
i;j

kPUeik2kMejk2
¼ max

i
kPUeik2 × max

M orthogonal
max

j
kMejk2

¼ βðUÞ:ðB:17Þ

Here we used the Cauchy–Schwarz inequality in the second line and the definition of β
from (4.6) in the last line.

Similarly, we have that

max
M orthogonal

kðI n×n − PU ÞMPVk∞ ¼ max
M orthogonal

max
i;j

eTi ðI n×n − PU ÞMPVej

≤ max
M orthogonal

max
i;j

kðI n×n − PU Þeik2kMPVejk2
¼ max

i
kðI n×n − PU Þeik2

× max
M orthogonal

max
j

kMPVejk2
≤ 1×max

j
kPVejk2

¼ βðV Þ:ðB:18Þ

Using the definition of incðBÞ from (4.7) along with (B.17) and (B.18), we have that

ξðBÞ ≤ βðUÞ þ βðV Þ ≤ 2incðBÞ:

Lower bound. Next we prove a lower bound on ξðBÞ. Recall the definition of the
tangent space TðBÞ from (3.2). We restrict our attention to elements of the tangent
space TðBÞ of the form PUM ¼ UUTM for M orthogonal (an analogous argument fol-
lows for elements of the form PVM for M orthogonal). One can check that

kPUMk ¼ max
kxk2¼1;kyk2¼1

xTPUMy ≤ max
kxk2¼1

kPUxk2 max
kyk2¼1

kMyk2 ≤ 1:

Therefore,

ξðBÞ ≥ max
M orthogonal

kPUMk∞:

Thus, we need only to show that the inequality in line (2) of (B.17) is achieved by some
orthogonal matrix M in order to conclude that ξðBÞ ≥ βðUÞ. Define the “most aligned”
basis vector with the subspace U as follows:

i� ¼ arg max
i

kPUeik2:
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Let M be any orthogonal matrix with one of its columns equal to 1
βðUÞPUei� , i.e., a nor-

malized version of the projection onto U of the most aligned basis vector. One can check
that such an orthogonal matrix achieves equality in line (2) of (B.17). Consequently, we
have that

ξðBÞ ≥ max
M orthogonal

kPUMk∞ ¼ βðUÞ:

By a similar argument with respect to V , we have the lower bound as claimed in the
proposition. ▯
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