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Chapter 4

Nonlinear Extensions to Principal
Component Analysis

“One geometry cannot be more true than another; it can only be
more convenient.”
— Henri Poincaré

In the previous chapters, we studied the problem of fitting a low-dimensional
linear or affine subspace to a collection points. In practical applications, how-
ever, a linear or affine subspace may not be able to capture nonlinear structures
in the data. For example, consider the set of all images of a face obtained by
rotating it about its main axis of symmetry. While all such images live in a high-
dimensional space whose dimension is the number of pixels, there is only one
degree of freedom in the data, namely the angle of rotation. In fact, the space
of all such images is a one-dimensional circle embedded in a high-dimensional
space, whose structure is not well captured by a one-dimensional line.

In this chapter, we consider the problem of fitting a low-dimensional manifold
to a collection of points. Specifically, let X = {x; € R}, be a set of N
points drawn from a d-dimensional manifold M embedded in RP, where d < D
(see e.g., Figure 4.1). The goal is to find a set of N points Y = {y, € Rd}é\’:l
whose geometry resembles that X. To address this problem, we present an ex-
tension of PCA, called Nonlinear PCA, which is based on embedding the data
via a nonlinear mapping into a high-dimensional space and then fitting a linear
or affine space to the embedded data. We also present other extensions of PCA,
which used the data to approximate the local geometry of the manifold and build a
low-dimensional embedding of the data directly from these local approximations.
This type of extensions are useful for applications where we are not so interested
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Figure 4.1. A set of points drawn from the two-dimensional surface in R?, z3 = 2% — z3.

The goal is to find a two-dimensional embedding of this manifold.

in a parametric model of the manifold, but rather in the low-dimensional points
Y = {y,} themselves.

Although the data could lie in complex manifolds with multiple connected
components, in this chapter we will assume the data all lie on a single contin-
uous nonlinear manifold. Datasets that cannot be modeled by a single subspace
or manifold and are instead clustered into multiple components will be studied
in Part II. Or alternatively, even for a nonlinear continuous manifold such as the
one shown in Figure 4.1, one can also choose to approximate it with a piece-wise
linear model that may consist of many (local) linear subspaces. Again, we will
pursue such a multiple-subspace solution in Part II.

4.1 Nonlinear and Kernel PCA

In this section, we present a nonlinear extension of PCA called Nonlinear PCA
(NLPCA). The key idea behind NLPCA is that, instead of applying PCA to
the given data, we apply it to a nonlinear embedding of the data into a high-
dimensional space H. The rationale is that the structure of the data becomes
(approximately) linear after applying a nonlinear embedding to it. In practice,
however, the dimension of  may be too high to be able to compute the nonlinear
principal components from the eigenvectors of the embedded covariance matrix.
To address this issue, we also present a method called Kernel PCA (KPCA). This
method computes the nonlinear principal components from the eigenvectors of
the so-called kernel matrix, which can be computed directly from the given data.

4.1.1 Nonlinear Principal Component Analysis (NLPCA)

As discussed before, the main idea behind NLPCA is that we may be able to find
an embedding of the data into a high-dimensional space such that the structure
of the embedded data becomes (approximately) linear. To see why this may be
possible, consider a set of points (x1,x2) € R? lying in a conic of the form

clx% + cox10 + 0395% +c4 =0. “.1)
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Figure 4.2. A circle in R? is embedded into a plane in R® by the mapping in (4.2) .

Notice that if we define the map ¢ : R? — R? as
(21722u2:3) = (1’%7\/§$1‘T2,$3>, (42)

then the conic in R? transforms into the following affine subspace in R?

C
c1z21 + 7222 + C3Z23 +cq = 0. (43)

V2

Therefore, instead of learning a nonlinear manifold in R?, we can simply learn an
affine manifold in R®. This example is illustrated in Figure 4.2.
More generally, we seek a nonlinear transformation (usually an embedding):

o(): RP — RM, 4.4)
z — oz, 4.5)
such that the structure of the embedded data {¢(x,) ;V: 1 becomes approximately
linear. In machine learning, ¢(x) € R is called the feature of the data point
x € RP, and the space RM is called the feature space.
1

Let ¢ = N 2uj=1 ¢(z;) be the sample mean in the feature space and define
the mean subtracted (centered) embedded data matrix as

® = [p(z1) — @, ¢(x2) — @,...,¢(zN) — P] € RM*N, (4.6)

It follows from the results in Chapter 2 that the principal components in the feature
space can be obtained from the eigenvectors of the sample covariance matrix'

N
L) = %Z(aﬁ(wj) — P)(lx;) —d) " = %Mg eRMM  @47)
j=1

Specifically, let w; € RM, i =1,..., M, be the M eigenvectors of Ly (), i.e.,
E¢(m)ul :)\iui, 1= 172,...7M. (48)
Then the d nonlinear principal components of every data point & are given by

yi =u, (p(x) — ) €R, i=1,2,....d (4.9)

i

In principle, we should use the notation f)¢<m) to indicate that it is the estimate of the actual
covariance matrix. But for simplicity, we will drop the hat in the sequel and simply use 3 (5. The
same goes for the eigenvectors and the principal components.
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Unfortunately, the map ¢(-) is generally not known beforehand and searching
for the map that makes the embedded data approximately linear is a difficult task.
In such cases, the use of nonlinear PCA becomes limited. However, in some prac-
tical applications, good candidates for the map ¢(-) can be found from the nature
of the problem. In such cases, the map, together with PCA, can be very effective
in extracting the overall geometric structure of the data.

Example 4.1 (Veronese Map for an Arrangement of Subspaces). As we will see later in
this book, if the data points belong to a union of multiple subspaces, then a natural choice
of the transformation ¢(-) is the Veronese map:

vn(): & = vp(e),
(z1,...,zp) + (x?7x?71m2,...7x75),

where the monomials are ordered in the degree-lexicographic order. Under such a mapping,
the multiple low-dimensional subspaces are mapped into a single subspace in the feature
space, which can then be identified via PCA. n

4.1.2 NLPCA in a High-dimensional Feature Space

A potential difficulty associated with NLPCA is that the dimension M of the
feature space can be very high. Thus, computing the principal components in
the feature space may become computationally prohibitive. For instance, if we
use a Veronese map of degree n, the dimension of the feature space is M =
(”Jrf 71), which grows exponentially fast. When M exceeds N, the eigenvalue
decomposition of ®® " € RM*M hecomes more costly than that of ®T® €
RN "although the two matrices have the same eigenvalues.

This motivates us to examine whether the computation of PCA in the feature
space can be reduced to a computation with the lower-dimensional matrix ® T ®.
The answer is actually yes. The key is to notice that, despite the dimension of
the feature space, every eigenvector u € RM of ®® T associated with a non-zero
eigenvalue is always in the span of the matrix ®,” that is:

PO Tu=u <= u=>d\ 10 u) crange(d). (4.10)

Thus, if we let w = A"1®Tu € RV, we have ||w]]? = A\ 720" ®dTu = A7L.
Moreover, since ®Tdw = N 1dTPDd Ty = &Tu = \w, the vector w is an
eigenvector of ® T ® with the same eigenvalue . Once such a w is computed
from ® " ®, we can recover the corresponding w in the feature space as

u = dw, (4.11)
and compute the d nonlinear principal component of & under the map ¢(+) as:
yi =ul () - @) =w/ e (¢(x) —P) €R, i=1,....d (412

where w; € RY is the ith leading eigenvector of ®T® € RV*N

2The remaining M — N eigenvectors of ®® T are associated with the eigenvalue zero.
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4.1.3 Kernel PCA (KPCA)

A very interesting property of the above NLPCA method is that the computation

of the nonlinear principal components involves only inner products of the features.

More specifically, in order to compute the nonlinear principal components, y;, we

simply need to compute the entries of the matrix ® " ® and the entries of the

vectors &' () and @' p = + > @ ¢(x;). In what follows, we show that all

of these quantities can be obtained from inner products of the form ¢(z) " ¢ (y).
Before proceeding further, we will need some definitions.

Definition 4.2. The space of all square integrable functions is defined as
L*(RP) = {f : R — R such that /f 2dx < oo}. (4.13)

Definition 4.3. A function k : RP x RP — R is symmetric if for all x,y € RP
we have k(x,y) = k(x,y). A symmetric function is positive semi-definite if for
all f € L*(RP) we have

[ f@ie. ) 1) dudy = 0. (4.14)
RP xRP
Let us define the “kernel function” k : RP? x RP — R of two vectors &,y €
RP to be the inner product of their features

k(z,y) = ¢(x)" ¢(y) € R. (4.15)

One can show that (see Exercise ??) that k is a symmetric positive semi-definite
function in « and y. Let us also define the centered kernel as

K(x,y) = ((x) — )" (6(y) — ¢) R, (4.16)
where ¢ = £ >, gb(a:i) We may compute k from k as

k(x,y) = Zkazwj Zk z,Y) + ZZkazy

(4.17)

We can use these functions to compute the nonlinear principal components as
follows. Define a kernel matrix K = [k;;] € RVN*N as k;; = k(z;, ;). The
mean subtracted (centered) kernel matrix C = ® " ® can be computed from K as:
1 1 1TK1

K=K-—K11" - =11"K
N N +

1 1
—11NK(I - —11T) = JKJ, 4.19
where J =1 — ﬁl_l—r is called the centering matrix. Let us also define the vector
ke = @' (d(x) — @) = [k(x1, ), i(x2, ), ..., k(xN,z)]" € RN, This vector
can be computed from ky = [k(z1, ), k(z2, ), ..., k(zn,z)]T € RY as

1 1 1TK1

w=kp— —K1——11"Tk, + ———1. 4.20
K N N + e ( )

117 (4.18)

=(I-



4.1. Nonlinear and Kernel PCA 91

With this notation, we may compute the nonlinear principal components of  as
yi=w] ®'(¢(z) — @) =w/ ke, i=1,....4d, @21

where w; is the eigenvectors of K associated with its ¢-th largest eigenvalue, \;,
and normalized so that ||w;|| = A; 2. That i, [wy,...,wy]| = VdAgl/Q, where
V,; and A4 are obtained from the top d eigenvectors and eigenvalues in the EVD
of K = VAV, Since K = [Kg,, ..., Kay], it follows that we can compute the
low-dimensional coordinates of the entire dataset as

Y = APV = APV VA, = APV (4.22)

In other words, the low dimensional coordinates can be obtained from the top d
eigenvectors and eigenvalues of the centered kernel matrix.

Example 4.4 (PCA as a particular case of KPCA) For the linear kernel k(x, y) = « ' y,
we have ¢(x) = x, hence KPCA reduces to PCA. n

Example 4.5 For the polynomial embedding of degree 2 in (4.2), we have
k(z,y) = [o], V2z122, 23][y7, V24192, 3] T = (2190 + w2y2)” = (2" y)?, (4.23)

which can be computed directly in R? without having to compute the embedding into R3.
|

In summary, we have shown that the nonlinear principal components can be
computed directly from the kernel function k(z,y) = ¢(x) ¢(y) without hav-
ing to compute ¢(x). Nonetheless, given any (positive-definite) kernel function,
according to a fundamental result in functional analysis, one can in principle
decompose the kernel and recover the associated map ¢(-) if one wishes to.

Theorem 4.6 (Mercer’s Theorem). Suppose k : RP x RP — R is a symmetric
real valued function such that for some C > 0 and almost every (x,y)’ we have
|k(z,y)| < C. Suppose that the linear operator L : L*(RP) — L?(RP),

L)@ = [ | kau)fw)dy. 424

is positive semi-definite. Let 1; be the normalized orthogonal eigenfunctions of L
associated with the eigenvalues \; > 0, sorted in non-increasing order, and let
M be the number of nonzero eigenvalues. Then

o The sequence of eigenvalues is absolutely convergent, i.e., Zi\il [Ai] < oc.

o The kernel k can be expanded as k(x,y) = Zi\il A ()i (y) for almost
all (z,y). If M = oo, the series is absolutely and uniformly convergent for
almost all (x,y).

3“Almost every” means except for a set of measure zero.
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The interested readers may refer to [ ] for a proof of the theorem.
It follows from the theorem that, given a positive semi-definite kernel %k, we can
always associate with it an embedding function ¢ as

di(x) =/ Aihi(m) i=1,... M. (4.25)

Notice that the dimension of the embedding, M, could be rather large, sometimes
even infinity. Nevertheless, an important reason for computing with the kernel
function is that we do not need to compute the embedding function or the features.
Instead, we simply evaluate the dot products k(z, y) in the original space R”.

Example 4.7 (Examples of Kernels). There are several popular choices for the nonlinear
kernel function, such as the polynomial kernel and the Gaussian kernel, respectively,

2
kp(z,y) = (&' y)" and ko(x,y) = exp (- M) (4.26)

Evaluation of such functions only involves the inner product or the difference between two
vectors in the original space R”. This is much more efficient than evaluating the inner
product in the associated feature space, whose dimension grows exponentially for the first
kernel and is infinite for the second kernel. ]

We summarize our discussion in this section with Algorithm 4.1.

Algorithm 4.1 (Nonlinear Kernel PCA)

Input: A set of zero-mean data points X = [z, %2, ..., Zx] € RP*N amap
¢(x) such that ¢(0) = O or a kernel function k(x, y) such that £(0,0) = 0.
1: Compute the inner product matrix

Te = (¢p(x;) d(x;)) or (k(zm;,z;)) € RV, 4.27)
2: Compute the eigenvectors w; € RV of &7 ®:
O dw,; = \w;, (4.28)

and normalize so that [|w;||? = A\
3: For any data point , its ¢th nonlinear principal component is given by

yi = w; @ ¢(x) or w [k(w1,x),... k(zy,z)]', (4.29)

fori=1,2,...,d.
Output: A set of points {y;}}_, lying in R.

4.2 Nonparametric Manifold Learning

In the previous section we described NLPCA, a nonlinear extension of PCA based
on embedding the data X = {x; € R” }é\le into a high-dimensional space H and
applying PCA in the embedded space to obtain the low-dimensional representa-
tion Y = {y, € Rd}évzl with d < D. In this section we present a family of
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Figure 4.3. Two examples of manifolds typically used in manifold learning. Left: swiss
roll. Right: s-curve.

manifold learning methods, which search directly for the low-dimensional rep-
resentation Y without first embedding the data into a high-dimensional space.
Such methods are based on approximating the geometry of the manifold (pair-
wise distances, local neighborhoods, local linear relationships, etc.) and using
these approximations to find a global low-dimensional embedding. Different
methods differ on how certain geometric properties of of X are intended to be pre-
served or approximated. In what follows, we discuss three representative popular
manifold learning methods, namely Multidimensional Scaling (MDS), Laplacian
Eigenmaps (LE), and Locally Linear Embedding (LLE). For a more comprehen-
sive review of other manifold learning methods, we refer the reader to [Burges,
2005, Lee and Verleysen, 2007, Burges, 2010].

4.2.1 Multidimensional Scaling (MDS)

One of the oldest manifold learning methods is Multidimensional Scaling (MDS)
[Torgerson, 1958, Kruskal, 1964,Gower, 1966,Cox and Cox, 1994]. This approach
aims to capture the geometry of the manifold by finding a representation Y whose
pairwise distances approximate the pairwise distances in X as well as possible.
Specifically, let 0, be a distance between points «; and xy, such as the Euclidean
distance d,; = ||x; — x|| or any other distance. More generally, ¢;; can be any
dissimilarity measure between pairs of points. Given a matrix of dissimilarities
A = [§;1] € RVN*N the goal of MDS is to find a low-dimensional representation

Y = [y1,..,yyn] € RPN that minimizes the following objective
N
i 3 )y il = 95e)” (4.30)
=1 ke

Notice that, unlike PCA, MDS operates directly on the dissimilarities, hence it
does not require us to have the matrix of data points X = [:nl, ce, X N] € RPXN,
Moreover, notice that MDS can capture nonlinear structures in the data by using a
dissimilarity other than the Euclidean distance, e.g., a geodesic distance. However,
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in general, the minimization over Y cannot be carried out in closed form, and
gradient descent methods (see Appendix A) are typically used.*

However, notice that if instead of trying to approximate dissimilarities, we try
to approximate similarities obtained from a dot product, then the solution to MDS
can be obtained in closed form from the SVD of the similarity matrix. More
specifically, let A = [a;;] € RV*Y be the matrix of all pairwise similarities.
For example, A can be defined as aj;, = (x; — p) " (zx — p), where p = £ X1
is the mean of the data.” More generally, A can be obtained after embedding the
data into a high-dimensional space, as in NLPCA. In fact, we can think of A as
a centered kernel matrix, which can be obtained as in (4.18). The only important
property is that A is symmetric positive semidefinite. Given A, our goal is to find
a low-dimensional representation Y such that the dot products between pairs of
points best approximate the given similarities, i.e., we wish to minimize

N N
SN Wy —ap)? =YY — Al3. 4.31)
j=1k=1

Letting Z = Y 'Y and noticing that rank(Z) = rank(Y') = d, we arrive at the
following optimization problem:

mZin |Z - A||% suchthat rank(Z)=d, Z=2Z", Z>=0. (432

Notice that, except for the symmetric positive semidefiniteness constraint on Z,
this problem is identical to the low-rank matrix approximation problem in (2.35).
However, since A is symmetric positive semidefinite, this additional constraint is
not necessary. To see this, notice that if we use Theorem 2.6 to find the optimal so-
lution, we obtain the optimal Z from the SVD of A = UXUT as Z = UdEdUJ,
where Uy consists of the top d columns of U and X, consists of the top d x d
sub-block of X. Notice that this solution automatically satisfies the symmetric
positive semidefiniteness constraint. Given Z = UdEdU(;r , we can obtain Y as
Y = RZé/zUJ for any orthogonal matrix R € O(d).

In summary, when the similarity A is a centered kernel matrix, MDS gives
the same low-dimensional representation as KPCA, up to an arbitrary orthogonal
transformation R. For further connections between MDS, PCA and KPCA, we
refer the reader to [ ].

4.2.2 Laplacian Eigenmaps (LE)

Another popular manifold learning algorithm is Laplacian Eigenmaps (LE)
[ ]. This approach aims to capture the geometry of the
manifold by finding a low-dimensional representation such that nearby points in
the manifold are mapped to nearby points in the low-dimensional embedding.

“See [ ] for alternative optimization methods for minimizing the objective in (4.30).
SNotice that A = JXTXJ, where J =1 — %11-'— is the centering matrix.
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More specifically, if X = [:1:1, RO N} is the given set of points in a man-
ifold M, LE finds a low-dimensional embedding Y = [y;,...,yy| € RN
such that if ; and x; are close to each other, so are y, and y;. This is done by
minimizing the following objective

$(Y) = wijlly; — (4.33)
ij

subject to appropriate constraints on Y that prevent the trivial solution Y = 0.

The weights w;; > 0 are designed so that a small penalty is paid when x; and
x; are far so that y; and y; are allowed to be far, and a large penalty is paid when
x; and x; are close, but y, and y; are far. For this purpose, a local neighborhood
of each point x; is defined using the K nearest neighbors (K -NN) rule with some
distance dist on M, and the weights are chosen as

_dietei)® :
wij = e 202 if z; is a K-NN of x; or viceversa (4.34)

0 else

where o > 0 is a parameter.

Letting D € RV* be a diagonal matrix with diagonal entries d;; = Y- ; w;
and W € RV*¥ be the matrix of weights, we may rewrite the objective function
as

(V) = wij (lyll* + lly;1* — 29 y;) (4.35)
ij
=2 diy]y; —2) wizy]y; (4.36)
i ij

= 2trace(YDY ") — 2trace(YWY ") = 2trace(YLY "),  (4.37)

where L = D —W is a symmetric positive semi-definite matrix such that L1 = 0.
To prevent the trivial solution ¥ = 0. LE requires the low-dimensional
representation Y to satisfy the following additional constraints

YD1=0 and YDY' =1. (4.38)

The first constraint requires the scaled low-dimensional representation® YD to
be centered at the origin, similar to what it is done in PCA (see Chapter 2). The
second constraint ensures that rank(Y) = d and removes an arbitrary scaling
factor in the embedding. Therefore, LE finds the low-dimensional representation
by solving the following minimization problem

min trace(YLY ') st. YD1 =0 and YDY' =1I. (4.39)

The solution to this optimization problem is given by the next result.

By scaled low-dimensional representation we mean replacing y,; by dj;y;.
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Proposition 4.8. The solution to the optimization problem (4.39) is given by the
matrix Y whose rows are the d generalized eigenvectors of the matrix (L, D)
associated with its second to (d + 1)-th smallest generalized eigenvalues.

Proof. Notice that the Lagrangian for this problem can be written as
LY, A\ A) = trace(YLY ") + ATYD1 + trace(A(I — YDY ")),  (4.40)

where A € R?and A = AT € R are, respectively, a vector and matrix of
Lagrange multipliers. Computing the derivative of £ w.r.t. Y and setting it to zero
yields 2Y'L + A1 7D — 2AYD = 0. Multiplying on the right by 1 and using the
constraints L1 = 0 and YD1 = 0, we obtain A = 0. As a consequence,

YL=AYD — LY =DYTA. (4.41)

Following the same argument as in the proof of Theorem 2.3, one can show that
A is diagonal. Therefore, the rows of Y are generalized eigenvectors of (L, D)
with generalized eigenvalues in the diagonal entries of A. Moreover, YLY T =
AYDY T = A and so trace(Y LY ") = trace(A). Therefore, we must choose the
smallest generalized eigenvalues of (L, D). Since 1 is an eigenvector of L with
zero eigenvalue, and the eigenvectors of L must be orthogonal to D1 (because
YD1 = 0), the rows of the optimal Y are the d generalized eigenvectors of (L, D)
associated with its second to (d + 1)-th smallest eigenvalues, as claimed. O

The LE algorithm is summarized in Algorithm 4.2.

Algorithm 4.2 (Laplacian Eigenmaps)

Input: A set of points {x; }jvzl lying in a manifold M and integers K and d.
1: Find the K-nearest neighbors (/-NN) of each data point x;,5 = 1,..., N,
according to some distance dist in M.
2: Define a matrix of weights W € RY*N whose entries w;; measure the
similarity between two points x; and x; and are computed as

)2
202 if ¢; is a K-NN of x; or viceversa (4.42)

dist(z; ,@

wij =
else

3: Let D be a diagonal matrix with entries d;; = Zj wij andlet L =D — W.
Find a matrix Y = [y, ..., yy] € RN whose rows are the d generalized
eigenvectors of the pair (L, D) associated with its second to (d+1)th smallest
generalized eigenvalues. That is, solve for Y from YL = AY D, where A is
a diagonal matrix with the generalized eigenvalues in its diagonal.

Output: A set of points {y;}}_, lying in R
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Figure 4.4. Dimensionality reduction from R” to R? using LLE

4.2.3 Locally Linear Embedding (LLE)

Another popular manifold learning approach is Locally Linear Embedding (LLE)
[ ]. This approach aims to capture
the geometry of a manlfold M by exploiting the fact that the local neighborhood
of a point £ € M can be well approximated by the affine subspace spanned by
x and its K-NNs. These locally linear approximations are then used to find a
low-dimensional embedding that gives a small reconstruction error with respect
to such approximations.

The first step of LLE is to approximate each data point x; as an affine combina-
tion of its /{-NNss. Intuitively, this step is analogous to approximating the tangent
space of the manifold at the point x; by the affine subspace spanned by «; and
its K{-NNs. For a manifold of dimension d, the tangent space at each point is a
d-dimensional affine subspace. Therefore, we need at least d-NNs to reconstruct
this subspace, i.e., we need to choose K > d. On the other hand, K cannot be
chosen to be too large. Otherwise, each data point would be written as an affine
combination of too many points and the affine coefficients would not be unique.
Given K, the K-NNs {x;, }5 | of each data point x; are typically found using
the Euclidean distance. However, other distances can be used as well.
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To approximate each data point «; as an affine combination of its K-NNs, we
search for a matrix C = [¢;;] € RV>*¥ that minimizes the reconstruction error

2
, (4.43)

N
.’Ej — E cijmi
i=1

1
B(C) =3
j=1 -
subject to (i) ¢;; = 0 if ; is not a K-NN of x; and (ii) Zfil cij = 1. The first
constraint expresses point x; as an affine combination of only its K-NNs, while
the second constraint ensures that the combination of the K -NNss is affine.

Let j1,...,jKk denote the indexes of the K-NN of ;. Since c¢;; = 0 when x;
is not a K-NN of x;, we only need to keep track of K affine coefficients for each
point z;. Let ¢; = [cj, j,---,Cjx.j]T € RE be the vector of such coefficients
and let G; = [g,] € R > be the local Gram matrix at z;, which is defined as
g{l = (z; — x;) " (x; — x;) for 4,1 such that ; and x; are K-NNs of ;. With
this notation, the j-th term of (4.43) can be written as

N
H:Bj— E cijwi
=1

2 N 2
= H > cijl@i — a:j)H =Y cey(@i — ;) (@ — ;)
=1 il
= ZCijCljglql = C;—GjCj. (444)
il

Therefore, the optimization problem in (4.43) is equivalent to

N
1 T T
min — c;,Giec; st. 1'c¢c;=1. (4.45)
len} 2; ' GGy j

The Lagrangian for this problem is £ = 1 Zjvzl c;»'— Gjcj+X;(1-1"¢;). Thus,
the first order conditions for optimality are given by Gjc; = \j1and 1'¢; = 1.

Therefore, c; = /\jGj_ll and )\j_l = 1TGj_11, so that

G:'1
c; = féﬁ e RX, (4.46)
provided that G is of full rank K.

Notice that the affine coefficients c;; are invariant to rotations, translations and
scalings of all the data points. The invariance to rotations and translations follows
from the invariance properties of the Gram matrix G;. Specifically, notice that if
each x; is transformed to Rz ; +t, where R € SO(3) and t € R3, then z; —x; is
transformed to R(x; — x;), and so G; is not affected. The invariance to scalings
follows from the fact that the Gram matrix appears both in the numerator and
denominator of (4.46). Therefore, the affine coefficients characterize the intrinsic
geometric properties of each neighborhood of the data in R”.



4.3. Spectral Embedding and K-Means Clustering 99

The second step of LLE is to find a representation Y = [y, ...,yy] € RN
that minimizes

2
(4.47)

N N
oY) = Z Hyj - Zcijyi

=1

Notice that the objective in (4.47) is the same as the reconstruction error in
(4.43), but obtained with respect to the low-dimensional representation Y rather
than with respect to the original data X. Notice also that the global minimum
is obtained when Y = 0, thus we need to impose additional constraints on the
low-dimensional representation in order to avoid trivial solutions. LLE requires
the low-dimensional representation Y to satisfy the following constraints

1
Zyj =0 and ZyjyjT =1 (4.48)

The first constraint requires the low-dimensional representation to be centered at
the origin, as in the case of PCA (see Chapter 2). The second constraint enforces
the low-dimensional representation to have unit covariance and is an arbitrary
constraint to ensure that rank(Y) = d.

To find the optimal Y, notice that the optimization problem can be written as

1
min [|Y" — YC|% st. Y1=0 and NYYT =1 (4.49)

Proposition 4.9. The solution to the optimization problem (4.49) is given by the
matrix Y whose rows are the d eigenvectors of the matrix L = (I — C)(I —C)T
associated with its second to (d + 1)-th smallest eigenvalues.

Proof. Notice that |Y — Y C||% = trace(Y (I —C)(I —C) Y "). Therefore, the
optimization problem (4.49) is of the same form as that in (4.39), with L replaced
by (I—C)(I—C)" and D replaced by 4. Therefore, the results follows by direct
application of Proposition 4.8. O

In summary, LLE is a manifold learning algorithm that uses the data X to
construct a matrix of affine coefficients C', which captures the local geometry
of the manifold. The low-dimensional representation is then obtained from the
eigenvectors of the matrix L = (I—C)(I—C) " associated to its 2-nd to (d+1)-th
smallest eigenvalues. The LLE algorithm is summarized in Algorithm 4.3.

4.3 Spectral Embedding and K-Means Clustering

The reader probably has noticed in the above section that low-dimensional em-
beddings given by LE and LLE, at the high-level, are rather similar in several
aspects:
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Algorithm 4.3 (Locally Linear Embedding)

Input: A set of points {x; }5\/21 lying in a manifold M and integers K and d.

1: Find the K-nearest neighbors (/{-NN) of each data point z;,j = 1,..., 1V,
according to some distance dist in M.

2: Approximate each point x; ~ ) ¢;;&; as an affine combination of its {-NN
with coefficients the c;; obtained as per (4.46)

3: Let the rows of the matrix Y = [y, ..., yx]| € R¥*¥ be the d eigenvectors
of the matrix L = (I — C)(I — C) T associated with its second to (d + 1)-th
smallest eigenvalues.

Output: A set of points {y;}1, lying in R.

1. They both map the original data points &; € R to a new set of data
points y, in R%. The mapping does not aim to provide any parametric rep-
resentation of x; in its original space, and instead only aim to preserve
certain geometric properties of the original data such as local position or
neighboring relationships.

2. They both start with constructing a pairwise weight w;; between any pair
of points that reflects the desired geometric properties to be preserved. A
higher weight indicates the two points are “similar” in such properties.

3. If we view the points and their pairwise weights as a weighted graph G =
(V, E), where V has N vertices (corresponding to the N sample points)
and E' are the weighted edges, then the final embeddings of LE and LLE
are given by the second to (d 4 1)th eigenvectors of the Laplacian matrix L
of the graph or its normalized version LD 1.

Indeed, these methods can be viewed as special cases of a very general data
modeling method that uses spectrum of graph Laplacians to provide new repre-
sentations for data, known as spectral embedding. Notice that there is one more
common feature about the LE and LLE methods: the smallest eigenvalue of their
Laplacian is always zero and there is only a unique zero eigenvalue if the pair-
wise weights give a connected graph. Although in the context of LE or LLE, the
eigenvector associated with the zero eigenvalue gives a trivial embedding of the
data — mapping all points to the same coordinate, this seemingly useless fact has
significant implications in using spectral mapping to extract important topological
properties such as whether the graph is connected or not or equivalently, whether
the data have multiple clusters.

Since data clustering will be a central theme for the rest of the book’, we
here give a brief survey for spectral embedding and its key properties, which will
become useful in our future development.

7as we will see that the spectral mapping method will play a crucial role in one of the approaches

to subspace clustering
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Given a set of data points 1, . .., zy € R, we associate it with an undirected
graph G = (V, E) of N vertices vy, ...,vy, each vertex v; corresponding to
one data point x;. A weight w;; > 0 is given on the edge ¢;; for each pair of
vertices (v;, v;) and w;; = 0 mean the two vertices are not connected. The weight
w;; is used to describe “similarity” between the two points x;,x; in terms of
their properties in the original space R”. For instance, w;; can be chosen as in
the Laplacian Embedding, or we can set w;; = 1 if and only if x; is within a
small neighborhood of ;. We denote the set of all NV x [N weights as a matrix
W = (w;;). As the graph is undirected, that implies the matrix W is symmetric:
W=wT.

We further define an N x N diagonal matrix D whose diagonal entries d;;
are the degrees of the vertices: d;; = > ; wij- The Laplacian of the graph G is
defined to be the matrix L = D — W.

Proposition 4.10 (Basic Properties of Laplacian). Given an undirected graph G
of N vertices with non-negative weights, its Laplacian matrix L € RN*N has the
following properties:

e For any vector u € RN, we have u" Lu =Y, j Wij(ui —uj)* > 0. Hence
L is positive semi-definite.

o The smallest eigenvalue is zero since L1 = 0 by definition of the degree
matrix.

We leave the rest of the proof of this statement as an exercise to the reader.

Although in LE and LLE, we are more interested in the non-zero eigenvalues
and eigenvectors, it turns out that the zero eigenvector(s) encode very important
topological properties of the graph: the number of zero eigenvalues correspond to
the number of connected components of the graph; and the eigenvectors encode
information which component each vertex belongs to. More precisely, we have
the following properties.

Proposition 4.11 (Number of Connected Subgraphs). Given an undirected graph
G of N vertices with non-negative weights, the number of zero eigenvalues n of its
Laplacian matrix L is exactly the number of connected components of the graph
G =G UGy U-- UG, with G;N Gj = 0. The null space null(L) is exactly
spanned by the indicator functions of these disconnected subgraphs:

null(L) = span{lqg,,1q,, .., 1q, }. (4.50)

Proof. Suppose u € R¥ is an eigenvector associated with a zero eigenvalue, then
we have

w'Lu = Zw”(uz — uj)2 =0. 4.51)
%,

Since w;; > 0, for the above equality to hold, we must have u; = u; whenever
w;; > 0. That is, if two vertices v; and v; belong to the same connected compo-
nent, the corresponding values of the eigenvector must be equal. From this fact,
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we can conclude that the dimension of the null space must be less or equal to
the number of connected components. To prove the equality must hold, it is easy
to verify that if the graph has n disconnected components, each of the indica-
tor functions 1¢;, is indeed an (independent) eigenvector associated with the zero
eigenvalue. O

The above property of the Laplacian matrix implies that the null space of
the Laplacian matrix encodes precise information about the membership of the
vertices in the n connected components.

Proposition 4.12 (Null Space of Laplacian). Any n linearly independent vectors
U1, ... up € RY in the null space of L (hence also that of LD ™) has the form:

[ur,...,un]" = Allg,,1a,,...,1q,] € RPN (4.52)
for some non-singular matrix A € R"*".

We leave the proof of this fact as an exercise for the reader. If we view the
columns of the matrix Y = [uy,...,u,]’ € R™¥ as a new embedding of the
points in R™, then Y has a very simple but important property: y; = y, if and
only if the two vertices v; and v; belong to the same connected component. That
is, all the points y, belong to one of the n centers in R". Hence, if we are only
interested in the topology of the graph, we only care about eigenvectors that are
associated with the zero eigenvalue, not other eigenvectors (like LE or LLE does).

In practice the data may contain noise and the similarity measure W = (w;)
introduced may be imprecise. As result, the eigen-subspace that is associated with
the n smallest eigenvalues of L might be noisy, so are points {y,} computed from
it. Nevertheless, these points should still cluster around n centers in R™. For sim-
plicity, we may assume that each cluster of points are distributed around their
center (mean) as an isotropic Gaussian in R™. Hence, all the points y, can be
modeled as a mixture of n Gaussians. To identify these n centers and group the
points to their respective centers, a very popular method is the K-means algo-
rithm which essentially estimates the n Gaussians via the minimax principle in
Appendix B.3.2.

If we combine the spectral embedding technique with the K-means method,
it leads to a popular data clustering algorithm, known as spectral clustering. For
completeness and clarity, we summarize the overall process in Algorithm 4.5.

Notice that in the ideal noise free case, the null spaces of L and LD ™! are
exactly the same. Nevertheless, when there are noise in the data or the similarity
measure W is imprecise, using LD ™! introduces additional “normalization” ef-
fect and typically leads to more numerically stable estimate of the null space than
directly using L, especially when the degrees of the graph vertices are not so bal-
anced. In the simple two-cluster case, the null spectrum of LD~ gives exactly
the same solution to the well-known ‘“normalized cut” formulation [?], which
was initially proposed to approximately solve the NP-hard minicut problem of a
graph. Early empirical success of this formulation in problems such as image seg-
mentation has made spectral methods very popular in the community of computer
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Algorithm 4.4 (K-means for Mixture of Isotropic Gaussians)

Input: A set of points {y; }jvzl clustered around n centers in R".

1: Initialization: Given n initial guess of the n centers c§0), e c%o).
2: while (the clusters and their centers do not converge) do

3:  For each point y;, assign it to the cluster Cl-(k) with

i = argmin Hyj — cgff)Hg
m

4:  Update the centers cz(-kH) to be the mean of all points y; that belong to the
cluster Ci(k):

()

K3

1
®) Z Yj-

C; |jec§")

5: end while
Output: The converged n clusters and their centers: {C;, ¢; }.

Algorithm 4.5 (Spectral Clustering)

Input: Construct a similarity graph G for set of points {x; }5\/:1 € RP with a
weight matrix W € RV XN Specify the number of clusters n.
1: Inmitialization: Compute the degree matrix D = diag(7¥1) and the Laplacian
matrix L =D — W.

2: Compute the first n left eigenvectors (u1, ..., u,) of L or LD~! associated
with the n smallest eigenvalues.
3:Let Y = [ug,...,u,] € R"™Z be the matrix that collect the n left

eigenvectors as its rows.
4 Lety;,j=1,..., N bethe N column vectors of Y.
5: Cluster the NV points {y;} using the K-means Algorithm 4.4 into n clusters
Cly ey Cn
Output: The converged n clusters: {C;}.

vision and machine learning. In the more general n-cluster case, when the simi-
larity measure is noisy and the resulting graph does not have clearly disconnected
subgraphs, the resulting clustering using small eigenvalues of its Laplacian gives
be a partition of the graph that approximately minimizes the multi-way cutting
cost.

In essence, the role of Laplacian is, through its null space, map the original data
points {z;} C RP to the embedded points {y;} C R™. The original data may
have complex structures and deny a simple clustering solution; whereas the (clus-
ter) structures of the embedded data become much simpler, leading to arguably
the simplest class of clustering problems. Of course, there is no free lunch. The
difficulty in clustering the original data needs to be alleviated through the design
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of a good similarity measure W = (w;;). The performance of the spectral cluster-
ing method highly depends on the design of the similarity measure W = (w;;).
In general, there is no theory that characterizes precisely how certain choice of
similarity measure would influence the resulting clusters. Nevertheless, in Chap-
ter ?? we will see that at least for the situation when the clusters of original data
are subspaces, one could design similarity measures in a principled manner with
good theoretical guarantee.

4.4 Bibliographic Notes

Nonlinear dimensionality reduction (NLDR) refers to the problem of finding a
low-dimensional representation for a set of points lying in a nonlinear manifold
embedded in a high-dimensional space. This question of how to detect and repre-
sent low-dimensional structure in high-dimensional data is fundamental to many
disciplines and several attempts have been made in different areas to address this
question. For example, the number of pixels in an image can be rather large, yet
most computer vision models use only a few parameters to describe the geometry,
photometry and dynamics of the scene. Since most datasets often have fewer de-
grees of freedom than the dimension of the ambient space, NLDR is fundamental
to many problems in computer vision, machine learning and pattern recognition.

When the data lives in a low-dimensional linear subspace of a high-dimensional
space, simple linear methods such as Principal Component Analysis (PCA)
[ ] and metric Multi-Dimensional Scaling (MDS) [

] can be used to learn the subspace and its dimension. However, when the
data lies in a low-dimensional submanifold, its structure may be highly nonlin-
ear, hence linear dimensionality reduction methods are likely to fail. This has
motivated extensive efforts toward developing NLDR algorithms for computing
low-dimensional embeddings. One of the first generalizations of PCA to non-
linear manifolds is the work of [ ] and [ ]
on principal curves and surfaces. The principal curve of a dataset, which gen-
eralizes the notion of a principal component, is a curve that passes through the
middle of the data points and minimizes the sum of squared distances from the
data points to the curve. A more general approach however is to find a nonlin-
ear embedding map, or equivalently a kernel function, such that the embedded
data lie on a linear subspace. Such methods are referred to as nonlinear ker-
nel PCA [ , ]. A huge family
of such algorithms computes a low-dimensional representation from the eigen-
vectors of a matrix constructed from the local geometry of the manifold. Such

algorithms include ISOMAP [ ], locally linear embedding
(LLE) [ , ], and its variants such as
Laplacian Eigenmaps (LE) [ ], Hessian LLE [

], Local Tangent Space Alignment (LTSA) [ 1,

maximum variance unfolding [ ], and conformal eigen-
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maps [ ]. For a survey of many of these algorithms, we refer
the reader to [ s s 1.

Survey about spectral method. Such as Ng, Weiss and Jordan [ 1,
or Luxberg [ ] for a more thorough review etc.

4.5 Exercises

Exercise 4.1 Show that the following functions are positive-semidefinite kernels
1. k(x,y) = ¢(x) " ¢(y) for some embedding function ¢ : RP — R,
2. kp(x,y) = (x"y)" for fixedn € N.

3. ka(m,y) =exp (— M)

Exercise 4.2 Consider the polynomial kernel in [—1,1]? x [—1, 1]? defined as k(z, y) =
(wTy)2 = (z1y1 + x2y2)2. Define the operator

L(f) (@) = / k(. ) f(y)dy. 4.53)

Show that the eigenfunctions of £ corresponding to nonzero eigenvalues are of the form
P(x) = c12} + coz1x2 + c3x3. Show that there are three such eigenfuctions, where
(c1,c2, c3) and A are obtained from

4/5 0 4/9 C1 C1
0 8/9 0| |ea| =Ae2]. (4.54)
4/9 0 4/5 C3 C3

Exercise 4.3 (Karhunen-Loéve Transform). The Karhunen-Loéve transform (KLT) can
be thought of as a generalization of PCA from a (finite-dimensional) random vector
x € R to an (infinite-dimensional) random process x(t),t € R. When z(t) is a (zero-
mean) second-order stationary random process, its auto correlation function is defined to
be K(t,7) = Elz(t)z)(7)] forall ¢, 7 € R.

1. Show that K (¢, T) has a family of orthonormal eigen-functions {¢; ()}, that are
defined as

/K(L‘7 )i (T) dT = Nihi(t), 1=1,2,.... (4.55)

(Hint: First show that K (¢, 7) is a positive definite function and then use Mercer’s
Theorem.)

2. Show that with respect to the eigen-functions, we original random process can be
decomposed as

a(t) = wigi(t), (4.56)
i=1

where {z;}$2, are a set of uncorrelated random variables.
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Exercise 4.4 (Full Rank of Gaussian RBF Gram Matrices) Suppose that you are given
N distinct points {z;} 2. If ¢ # 0, then the matrix K € RY*¥ given by

2
Kij = exp (—7”““ 2| ) “57)

202
has full rank.

Exercise 4.5 Let {z; € R”})_; be a set of points you believe live in a manifold of
dimension d. Imagine you have applied PCA, KPCA with kernel k£ and LLE with K-NN
to the data. Assume now you are given a new point z € R” and you wish to find its
corresponding point y € R? according to each one of the three methods. How would you
compute y € R? without applying PCA, KPCA or LLE from scratch to the N 4 1 points?
Under what conditions the solution you propose is equivalent to applying PCA, KPCA or
LLE to the N + 1 points?

Exercise 4.6 Implement the KPCA algorithm for an arbitrary kernel function kernel .m.
The format of your function should be as follows.
Function [y]=kpca(x,d, kernel, params)
Parameters
x D x N matrix whose columns are the data points
d  dimension of the projected dataset
kernel name of the MATLAB function that computes the kernel k =
kernel (x1,x2,params)
params parameters needed by the kernel function, such as the degree in the
polynomial kernel or the standard deviation in the Gaussian kernel
Returned values
vy d x N matrix containing the projected coordinates
Description
Computes the kernel principal components of a set of points.
Also implement the functions k = poly_kernel (x1,x2,n) for the polynomial
kernel k(x1,x2) = (2 22)" and k = gauss_kernel (x1,x2,sigma) for the
Gaussian kernel k(x1, 2) = exp(—||z1 — x2||*>/c?), where k € RV*Y and &1, 22 €
RP*N Try your code on the example given in class. The code generating the data can be
found at http://www.kernel-machines.org/code/kpca_toy.m

4.A Laplacian Eigenmaps: Continuous Formulation

Laplacian Eigenmaps (LE) [ ] is a popular dimensionality
reduction method. It aims to capture the geometry of a manifold by finding a low-
dimensional representation such that nearby points in the manifold are mapped
to nearby points in the low-dimensional embedding. In the chapter, we have seen
how such a goal can be achieved for a collection of sample points drawn from
the manifold. Nevertheless, the original derivation of LE draws inspiration from
a similar goal for embedding a continuous manifold into a (low-dimensional) Eu-
clidean space. To complement the discrete LE method described in the chapter, in
this appendix, we describe LE in the continuous setting,.
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In the continuous setting, the goal of LE is to find d functions from a manifold
M to the real line R that preserve locality, i.e., functions that map nearby points
in the manifold to nearby points in the real line. When M = R, one such function
is the identity map, which perfectly preserves locality. For higher-dimensional
manifolds, a function f that maps nearby points to nearby points should have a
small derivative, hence we could find it by minimizing fR(%)%x.

More generally, let f : M — R be a map from a manifold M to the real line
and assume that it is twice differentiable. We can find functions that map nearby

points in the manifold to nearby points in the real line by minimizing

/ IVi(@)?de st |f]? = / fa)Pdz=1,  @458)
M M

where Vf € T, M is the gradient of f and the constraint || f|| = 1 is added to
prevent the trivial solution f =0

We can solve the above optimization problem using the method of Lagrange
multipliers. The Lagrangian is given by

LN = [ (19 @) + A @) - 1) de. (4.59)
Using calculus of variations, we can compute the gradient of £ w.r.t. f as
Vil = =2Af+2\f. (4.60)

where A is the Laplace-Beltrami operator on M, which can be expressed in

2
tangent coordinates z; as Af = . %. Setting the gradient to zero, we ob-
tain Af = Af, hence f is an eigenfunction of A with associated eigenvalue .

Noticing that the cost function may be rewritten as

/M IV f(x)|® de = /M Af(x)f(x) de = )\/M fA(x)de =1, (4.61)

we conclude that the functions f that minimize the cost function are eigenfunc-
tions of A associated with the smallest eigenvalues. One such eigenfunction is
the constant function, which is associated with the zero eigenvalue. This function
maps all points in the manifold M to a single point on the real line R. The optimal
d-dimensional embedding is hence given by the d eigenfunctions corresponding
to the second to (d + 1)-th smallest eigenvalues.



