
This is page 50
Printer: Opaque this

Chapter 3

Robust Principal Component Analysis

“. . . any statistical procedure . . . should be robust in the sense that
small deviations from the model assumptions should impair its per-
formance only slightly . . . Somewhat larger deviations from the model
should not cause a catastrophe.”

– Peter J. Huber

In the previous chapter, we considered the PCA problem under the assumption
that all the sample points are drawn from the same statistical or geometric model:
a low-dimensional subspace. In practical applications, it is often the case that
some entries of the data points can be missing or incomplete. For example, the
2D trajectories of an object moving in a video may become incomplete when the
object becomes occluded. Sometimes it is also the case that some entries of the
data points are corrupted by gross errors and we do not know which entries are
corrupted in advance. For instance, the intensities of some pixels of the face image
of a person can be corrupted when the person is wearing a glasses. Sometimes it
is also the case that all the entries of a subset of the data points are corrupted. For
instance, if we are trying to detect face images from non-face images, then we can
model all face images as samples from a low-dimensional subspace, but non-face
images will not follow the same model. Such data points that do not follow the
model of interest are often called sample outliers and will be distinguished from
the case of corrupted entries, some times also referred to as intra-sample outliers.
The main distinction to be made is that in the latter case we do not want to discard
the entire data point, but only the atypical entries.

3.1. PCA with Missing Entries 51

In this chapter, we introduce some effective techniques based on statistical es-
timation or convex relaxation methods that can still recover the low-dimensional
subspace under such adversarial conditions. We first consider the PCA problem
with missing data and describe methods for solving this problem based on al-
ternating minimization, maximum likelihood and convex optimization. We then
consider the PCA problem with corrupted entries and describe methods for solv-
ing this problem based on alternating minimization and convex optimization. We
then consider the PCA problem with outliers and describe methods for solving
this problem based on robust estimation and convex optimization.

3.1 PCA with Missing Entries

Recall from Section 2.1.2 that in the PCA problem we are given N data points
{xj 2 RD}N

j=1 drawn (approximately) from a d-dimensional affine subspace
S = {x = µ+ Udy}, where µ 2 RD is an arbitrary point in S, Ud 2 RD⇥d is a
basis for S, and {yj 2 Rd}N

j=1 are the principal components.
In this section, we consider the PCA problem in the case where some of the

given data points are “incomplete.” A data point x = [x1, x2, . . . , xD]

> is said to
be incomplete when some of its entries are missing or unspecified. For instance,
if the xi-entry of x is missing, then x is known only up to a line in RD, i.e.,

x 2 L
.
=

�

[x1, . . . , xi�1, xi, xi+1, . . . , xD]

>, xi 2 R

=

�

x�i + xiei, xi 2 R

,
(3.1)

where x�i = [x1, . . . , xi�1, 0, xi+1, . . . , xD]

> 2 RD is the vector x with its i-th
entry zeroed out and ei = [0, . . . , 0, 1, 0, . . . , 0]> 2 RD is the i-th basis vector.
More generally, if the point x has m missing entries, without loss of generality

we can partition it as

xU

xO

�

, where xU 2 Rm denotes the unobserved entries

and xO 2 RD�m denotes the observed entries. Thus, x is known only up to the
following m-dimensional affine subspace:

x 2 L
.
=

⇢

0

xO

�

+

Im

0

�

xU ,xU 2 Rm

�

. (3.2)

In the PCA with missing data problem, the point x belongs to both L and S.
Therefore, given µ and Ud, we can compute the principal components y and the
missing entries xU by intersecting L and S. In the case of one missing entry
(illustrated in Figure 3.1), the intersection point can be computed from

x = x�i + xiei = µ+ Udy =) ⇥

Ud �ei

⇤

y

xi

�

= x�i � µ. (3.3)

Note that a necessary condition for this linear system to have a unique solution is
that the line L is not parallel to the principal subspace, i.e., ei 62 span(Ud).

52 Chapter 3. Robust Principal Component Analysis

x
y

z

S

L

•
x

Figure 3.1. Given a point x 2 RD with one unknown entry, x
i

, the point x is known only
up to a line L. However, if we also know that x belongs to a subspace S, we can find the
unknown entry by intersecting L and S provided that L is not parallel to S.

In the case of m missing entries, we can partition the point µ =

µU

µO

�

and the

subspace basis Ud =

UU

UO

�

according to x =

xU

xO

�

. Then, the intersection of L

and S can be computed from

xU

xO

�

=

µU

µO

�

+

UU

UO

�

y =)

UU �Im

UO 0

�

y

xU

�

=

 �µU

xO � µO

�

. (3.4)

A necessary condition for the linear system in (3.4) to have a unique solution is
that the matrix in the left hand side be of full column rank d+m D. This implies
that ei 62 span(Ud) for each missing entry i. This also implies that m D � d,
hence we need to have at least d observed entries in order to complete a data point.
Finally, in the case where the data point x is not precise and has some noise, we
can compute y and xU as the solution to the following optimization problem

min

y,x
U

kx� µ� Udyk2. (3.5)

It is easy to derive that the closed-form solution to the unknowns y and xU is
given by

y = (I � U>
U UU)

�1U>
O (xO � µO) = (U>

O UO)
�1U>

O (xO � µO),

xU = µU + UUy = µU + UU (U
>
O UO)

�1U>
O (xO � µO).

(3.6)

We leave the derivation to the reader as an exercise (see Exercise ??). Notice that
this solution is simply the least square solution to (3.4) and that in order for UO

to be full rank (so that U>
O UO is invertible), we need to know at least d entries.

Interestingly, the solution for y is obtained from the observed entries (xO) and
the part of the model corresponding to the observed entries (µO and UO). Then,
the missing entries (xU) are obtained from the part of the model corresponding to
the unobserved entries (µU and UU) and y.

In practice, however, we do not know µ or Ud a priori. Instead, we are given
only N incomplete samples, which we can arrange as the columns of an incom-

3.1. PCA with Missing Entries 53

plete data matrix X = [x1,x2, . . . ,xN] 2 RD⇥N . Let W 2 RD⇥N be the matrix
whose entries {wij} encode the locations of the missing entries, i.e.,

wij =

(

1 if xij is known,

0 if xij is missing,
(3.7)

and let W�X denote the Haddamart product of two matrices, which is defined as
the entry-wise product (W �X)ij = wijxij . The goal of PCA with missing data,
also known as matrix completion, is to find the missing entries, (11

>�W)�X ,
the point µ, the basis Ud, and the matrix of low-dimensional coordinates Y =

[y1,y2, . . . ,yN] 2 Rd⇥N from the known entries W �X .
Obviously, we cannot expect to always be able to find a solution to this problem.

For instance, suppose the first entry is missing from everyone of the data points.
Then we cannot hope to be able to recover the first row of X at all. Likewise,
suppose that all the entries of one data point are missing. While in this case we
can hope to find the subspace from the other data points, we cannot recover the
low-dimensional representation of the missing point. Moreover, suppose that the
matrix X is given by

X = e1e
>
1 =

2

6

6

6

4

1 0 · · · 0

0 0 · · · 0

...
. . .

0 0 · · · 0

3

7

7

7

5

. (3.8)

In this case, we cannot hope to recover X even if a relatively large percentage of
its entries are given, because most entries are equal to zero and so we will not be
able to distinguish X from the zero matrix.

In spite of the existence of obvious cases where the PCA problem with missing
entries is not well-posed, we expect that if the matrix X is generic and the missing
entries do not follow a specific pattern, we should be able to recover both µ, Ud

and Y as long as the number of measurements (known entries of X) is sufficiently
large relative to the number of unknowns (D+dD+dN�d2 independent entries
in µ, Ud and Y). Intuitively, the smaller the dimension of the subspace, d, the
larger the amount of missing entries we should be able to deal with.

In what follows, we discuss a few approaches for solving the PCA problem with
missing data. The first approach (described in Section 3.1.1) is a simple extension
of geometric PCA (see Section 2.1) in which the sample mean and covariance
are directly computed from the incomplete data. However, this approach has a
number of disadvantages, as we shall see. The second approach (described in
Section 3.1.2) is a direct extension of probabilistic PCA (see Section 2.2) and
uses the Expectation-Maximization algorithm (EM) described in Appendix B to
complete the missing entries. While this approach is guaranteed to converge, the
solution it finds is not always guaranteed to coincide with the global optimum.
The third approach (described in Section 3.1.3) alternates between solving for µ,
Ud and Y given a completion of X , and solving for the missing entries of X
given µ, Ud and Y . In general, this approach is not guaranteed to converge to

54 Chapter 3. Robust Principal Component Analysis

the global optimum. However, we present a variant of this method which, under
certain conditions, is guaranteed to recover the missing entries. The fourth and
final approach (described in Section 3.1.4) uses convex optimization to find the
missing entries of X . Under certain conditions on the subspace and the missing
entries, this approach is guaranteed to return a perfect completion of the low-rank
matrix.

3.1.1 Incomplete PCA by Mean and Covariance Completion
Recall from Section 2.1.2 that the optimization problem associated with geometric
PCA is:

min

µ,U
d

,{y
j

}

N
X

j=1

�

�

xj � µ� Udyj

�

�

2 s.t. U>
d Ud = Id and

N
X

j=1

yj = 0. (3.9)

We already know that the solution to this problem can be obtained from the mean
and covariance of the data points,

b

µN =

1

N

N
X

j=1

xj and b

⌃N =

1

N

N
X

j=1

(xj � b

µN)(xj � b

µN)

>, (3.10)

respectively. Specifically, µ is given by the sample mean b

µN , Ud is given by
the top d eigenvectors of the covariance matrix b

⌃N , and yj = U>
d (xj � µ).

Alternatively, an optimal solution can be found from the rank-d SVD of the mean
subtracted data matrix [x1 � b

µN , . . . ,xN � b

µN], as shown in Theorem 2.3.
When some entries of each xj are missing, we cannot directly compute b

µN

nor b⌃N as in (3.9). A straightforward method for dealing with missing entries
was introduced in [Jolliffe, 2002]. It basically proposes to compute the sample
mean and covariance from the known entries of X . Specifically, the entries of the
incomplete mean and covariance can be computed as

µ̂i =

N
P

j=1

wijxij

N
P

j=1

wij

and �̂ik =

N
P

j=1

wijwkj(xij � µ̂i)(xkj � µ̂k)

N
P

j=1

wijwkj

, (3.11)

where i, k = 1, . . . , D. However, as discussed in [Jolliffe, 2002], this simple ap-
proach has several disadvantages. First, the estimated covariance matrix need not
be positive semi-definite. Second, these estimates are not obtained by optimizing
any statistically or geometrically meaningful objective function (least squares,
maximum likelihood, etc.) Nonetheless, estimates obtained from this naive ap-
proach may be used to initialize the methods discussed in the next two sections,
which are iterative in nature. For example, we may initialize the columns of Ud as
the eigenvectors of b⌃N associated with its d largest eigenvalues. Then, given b

µN

and bUd, we can complete each missing entry as described in (3.6).

3.1. PCA with Missing Entries 55

3.1.2 Incomplete PCA by Expectation Maximization
In this section, we derive an Expectation Maximization (EM) algorithm for solv-
ing the PPCA problem with missing data. Recall from Section 2.2 that in the
PPCA model each data point is drawn as x ⇠ N (µ

x

,⌃
x

), where µ

x

= µ and
⌃

x

= UdU>
d +�2ID. Recall also from (2.56) that the log-likelihood of the PPCA

model is given by

L = �ND

2

log(2⇡)� N

2

log det(⌃

x

)� 1

2

N
X

j=1

trace(⌃

�1
x

(xj � µ)(xj � µ)

>
).

(3.12)

where {xj}N
j=1 are N i.i.d. samples of x. Since the samples are incomplete, we

can partition each point x and the parameters µ
x

and ⌃

x

as

xU

xO

�

= Px,

µU

µO

�

= Pµ and

⌃UU ⌃UO

⌃OU ⌃OO

�

= P⌃

x

P>. (3.13)

Here xO is the observed part of x, xU is the unobserved part of x, and P is a
permutation matrix. Notice that conditional distribution of xU given xO is also
Gaussian. More specifically, xU | xO ⇠ N (µU |O,⌃U |O), where

µU |O = µU + ⌃UO⌃
�1
OO(xO � µO) and ⌃U |O = ⌃UU � ⌃UO⌃

�1
OO⌃OU .

Notice also that the above partition of x, µ
x

and ⌃

x

could be different for each
data point, because the missing entries could be different for different data points.
When needed, we will use xjU and xjO to denote the unobserved and observed
parts of point xj , respectively, and and Pj to denote the permutation matrix.

In what follows, we derive two variants of the EM algorithm for learning the pa-
rameters ✓ = (µ, Ud, �) of the PPCA model from incomplete samples {xj}N

j=1.
The first variant (MAP-EM) is an approximate EM method where the unobserved
variables are imputed by their MAP estimates. The second variant is the exact
EM algorithm, where we take the conditional expectation of L over the incom-
plete entries. Interestingly, both variants lead to the same estimate for µ

x

, though
the estimates for ⌃

x

are slightly different.

Maximum a Posteriori Expectation Maximization (MAP-EM)

The MAP-EM algorithm (see Appendix B.2) is a simplified version of the EM
algorithm that alternates between the following two steps:

E: Complete each data point x by imputing the unobserved variables xU with
their MAP estimates, argmax

x

U

p✓k(xU | xO), where ✓k is an estimate
for the model parameters at iteration k.

M: Maximize the complete log-likelihood, with xU is imputed as in the E-step.

56 Chapter 3. Robust Principal Component Analysis

During the E-step, the MAP estimate of the unobserved variables can be
computed in closed form as

argmax

x

U

p✓k(xU | xO) = µ

k
U |O = µ

k
U + ⌃

k
UO(⌃

k
OO)

�1
(xO � µ

k
O). (3.14)

Therefore, we can complete each data point as xk
=P>

µ

k
U |O
xO

�

. Letting x

k
j be

the completion of xj at iteration k, we obtain the complete log-likelihood as

L = �ND

2

log(2⇡)�N

2

log det(⌃

x

)� 1

2

N
X

j=1

(x

k
j�µx

)

>
⌃

�1
x

(x

k
j�µx

). (3.15)

During the M-step, we need to maximize L w.r.t. ✓. Since the data are already
complete, we can update the model parameters as described in Theorem 2.8, i.e.,

µ

k+1
=

1

N

N
X

j=1

x

k
j , Uk+1

d = U1

�

⇤1 � (�k
)

2I
�1/2

R and (�k
)

2
=

D
P

i=d+1

�i

D � d
,

where U1 2 RD⇥d is the matrix whose columns are the top d eigenvectors of the
complete sample covariance matrix

b

⌃

k+1
N =

1

N

N
X

j=1

(x

k
j � µ

k+1
)(x

k
j � µ

k+1
)

>, (3.16)

⇤1 2 Rd⇥d is a diagonal matrix with the top d eigenvalues of b⌃k+1
N , R 2 Rd⇥d is

an arbitrary orthogonal matrix and �i is the i-th largest eigenvalue of b⌃k+1
N . We

can then update the covariance matrix as ⌃k+1
x

= Uk+1
d (Uk+1

d)

>
+ (�k

)

2I .

Expectation Maximization (EM)

The EM algorithm (see Appendix B.2) alternates between the following steps

E: Compute the expectation of L given xO and ✓k, E[L | xO, ✓k
].

M: Maximize the expected completed log-likelihood E[L | xO, ✓k
].

Observe from (3.15) that to compute the expectation of L it suffices to compute
the following matrix for each incomplete data point x:

Sk
= E[(x� µ

x

)(x� µ

x

)

> | xO, ✓k
] = P>

Sk
UU Sk

UO

Sk
OU Sk

OO

�

P. (3.17)

3.1. PCA with Missing Entries 57

Each block of this matrix can be computed as

Sk
OO=E[(xO�µO)(xO�µO)

>| xO, ✓k
]=(xO�µk

O)(xO�µk
O)

>

Sk
UO =E[(xU�µU)(xO�µO)

>| xO, ✓k
]=(µ

k
U |O�µk

U)(xO�µk
O)

>
=(Sk

OU)
>

Sk
UU =E[(xU�µU)(xU�µU)

>| xO, ✓k
]

=E[(xU�µk
U |O)(xU�µk

U |O)
>| xO, ✓k

]+

2E[(µk
U |O � µU)(xU � µ

k
U |O)

> | xO, ✓k
] + (µ

k
U |O�µU)(µ

k
U |O�µU)

>

=⌃

k
U |O + (µ

k
U |O�µU)(µ

k
U |O�µU)

>.

Let Sk
j denote the matrix Sk associated with point xj and let b⌃k

N =

1
N

PN
j=1 Sk

j .
Then, the expected complete log-likelihood is given by

Q(✓ | ✓k
) = �ND

2

log(2⇡)� N

2

log det(⌃

x

)� N

2

trace(⌃

�1
x

b

⌃

k
N). (3.18)

In the M-step, we need to maximize this quantity w.r.t. ✓. Notice that this quan-
tity is almost identical to that in (2.56), except that the sample covariance matrix
b

⌃N is replaced by b

⌃

k
N . Thus, if b⌃k

N didn’t depend on the unknown parameter µ,
we could immediately compute Ud and � from Theorem 2.8. Therefore, all we
need to do is to show how to compute µ. To that end, notice that

@

@µ
trace(⌃

�1
x

Sk
) =

@

@µ
E[(x� µ)

>
⌃

�1
x

(x� µ) | xO, ✓k
] (3.19)

= �⌃�1
x

E[x� µ | xO, ✓k
] = �⌃�1

x

(x

k � µ), (3.20)

where x

k
=P>

µ

k
U |O
xO

�

is the complete data point. Therefore,

@

@µ
Q(✓ | ✓k

) = �1

2

@

@µ

N
X

j=1

trace(⌃

�1
x

Sk
j) =

N
X

j=1

⌃

�1
x

(x

k
j � µ) = 0, (3.21)

and so the optimal µ is

µ

k+1
=

1

N

N
X

j=1

x

k
j . (3.22)

Notice that this solution is the same as that of the MAP-EM algorithm. That is,
the optimal solution for µ is the average of the complete data. We can then form
the matrix b

⌃

k
N and compute Uk+1

d and �k+1 as before. Notice, however, that
b

⌃

k
N is not the covariance of the complete data. The key difference is in the term

Sk
UU , which contains an additional term ⌃

k
U |O. The EM algorithm for PPCA with

missing data is summarized in Algorithm 3.1.

58 Chapter 3. Robust Principal Component Analysis

Algorithm 3.1 (Expectation Maximization for PPCA with Incomplete Data)

Input: Entries xij of a matrix X 2 RD⇥N for (i, j) 2 ⌦ and integer d.

1: initialize
xij = 0 for (i, j) 62 ⌦, µ =

1
N

N
P

j=1

xj , and ⌃ =

1
N

N
P

j=1

(xj � µ)(xj � µ)

>

2: repeat

3: xj P>
j

µU + ⌃UO⌃
�1
OO(xO � µO)

xO

�

4: µ 1
N

PN
j=1 xj

5: S 1
N

PN
j=1(xj �µ)(xj �µ)

>
+P>

j

⌃UU � ⌃UO⌃
�1
OO⌃OU 0

0 0

�

Pj

6: U1 top d eigenvectors of S
7: ⇤1 top d eigenvalues of S
8: �2 1

D�d

PD
i=d+1 �i(S)

9: Ud U1(⇤1 � �2I)1/2R, where R 2 Rd⇥d is an arbitrary orthogonal
matrix

10: ⌃ UdU>
d + �2I = D�2

(S) + �2I
11: until convergence of µ and S

Output: µ� UdY 1, Ud and (I � 1
N 11

>
)Y .

3.1.3 Incomplete PCA by Matrix Factorization
In this section, we describe an alternating minimization algorithm for solving the
geometric PCA problem with missing data. The main idea behind this approach,
which was proposed in [Wiberg, 1976], is to find µ, Ud and Y that minimize the
error kX � µ1

> � UdY k2F considering only the known entries of X , i.e.,

kW � (X � µ1

> � UdY)k2F =

D
X

i=1

N
X

j=1

wij(xij � µi � u

>
i yj)

2, (3.23)

where xij is the ij-th entry of X , µi is the i-th entry of µ, u>
i is the i-th row of

Ud and yj is the j-th column of Y . Notice that this cost function is the same as
that in (3.9), except that the errors "ij = xij � u

>
i yj associated with the missing

entries (wij = 0) are removed.
In what follows, we will derive an alternating minimization algorithm for min-

imizing the cost function in (3.23). For the sake of simplicity, we will first derive
the algorithm in the case of zero-mean and complete data. In this case, the prob-
lem in (3.23) reduces to a low-rank matrix approximation problem, which can be
solved using the SVD, as described in Theorem 2.3. The alternating minimization
algorithm to be derived provides an alternative to the SVD solution, which how-
ever can be more easily extended to the case of incomplete data, as we will soon

3.1. PCA with Missing Entries 59

see. In fact, as we will show in a later section, the algorithm can also be extended
to the more challenging PCA problem with missing entries.

Power Factorization for Complete Matrix Factorization

In the case of complete, zero-mean data, the optimization problem in (3.23)
reduces to the low-rank matrix approximation problem based on explicit factor-
ization minU

d

,Y kX � UdY k2F . As we have seen in Chapter 2, this problem can
be solved from the SVD of X . Here, we consider an alternative method based on
the orthogonal power iteration method [Golub and Loan, 1996] for computing
the top d eigenvectors of a square matrix.

Suppose that A 2 RN⇥N is a symmetric positive semidefinite matrix with
eigenvectors {ui}N

i=1 and eigenvalues {�i}N
i=1 sorted in decreasing order. Sup-

pose that �1 > �2 and let u0 2 RN be an arbitrary vector such that u>
1 u

0 6= 0.
One can show (see Exercise 3.1) that the sequence of vectors

u

k+1
=

Au

k

kAu

kk (3.24)

converges to the top eigenvector of A up to sign, i.e., uk ! ±u1, and that the rate
of convergence is �2

�1
. This method for computing the top eigenvector of a matrix

is called the power method.
More generally, assume that �d > �d+1 and let U0 2 RN⇥d be an arbitrary

matrix whose column space is not orthogonal to the subspace spanned by the top
d eigenvectors, {ui}d

i=1. One can show (see Exercise 3.2) that the sequence of
matrices

Uk+1
= AUk

(Rk
)

�1, (3.25)

where QkRk
= AUk is the QR decomposition of AUk, converges to a matrix Ud

whose columns are the top d eigenvectors of A and that the rate of convergence is
�
d+1

�
d

. This method for computing the top d eigenvectors of a matrix is called the
orthogonal power iteration method or Lanczos method [Lanczos, 1950].

Power Factorization (PF) [Hartley and Schaffalitzky, 2003] is a generalization
of the orthogonal power iteration approach for computing the top singular vectors
of a (possibly) non-square matrix X . The main idea behind PF is that, given Y ,
an optimal solution for Ud is given by XY >

(Y Y >
)

�1. As before, such a matrix
can be made orthogonal by replacing Ud by the Q factor of the QR decomposi-
tion of XY >

(Y Y >
)

�1. Then, given an orthogonal Ud, the optimal Y is U>
d X .

The PF algorithm (see Algorithm 3.2) then iterates between these two steps till
convergence. The method is guaranteed to converge to the rank d approximation
of X as stated in the following theorem (see Exercise 3.3 for the proof).

Theorem 3.1. Let Xd = Ud⌃dV >
d be the rank-d approximation of X obtained

from the SVD of X . Let �i be the i-th singular value of X . If �d > �d+1, then
there exists a constant c > 0 such that for all k � 0

kXd � Uk
d Y kk2F c

⇣�d+1

�d

⌘2k
. (3.26)

60 Chapter 3. Robust Principal Component Analysis

Algorithm 3.2 (Power Factorization for Complete Matrix Factorization)

Input: Matrices X and Y 0

1: Initialize Y Y 0

2: repeat
3: Given Y , find Ud Q, where QR = XY >

(Y Y >
)

�1

4: Given Ud, find Y U>
d X

5: until convergence of the product UdY

Output: Matrices Ud and Y

Power Factorization for Incomplete Matrix Factorization

Let us now consider the matrix factorization problem with incomplete, zero-mean
data, i.e., the problem in (3.23) with µ = 0. Taking the derivatives of the cost
function in (3.23) with respect to ui and yj and setting them to zero leads to

⇣

N
X

j=1

wijyjy
>
j

⌘

ui =

N
X

j=1

wijxijyj , i = 1, . . . , D, (3.27)

⇣

D
X

i=1

wijuiu
>
i

⌘

yj =

D
X

i=1

wijxijui, j = 1, . . . , N. (3.28)

Therefore, given Y , the optimal Ud can be computed linearly from (3.27). As
before, the constraint U>

d Ud = I can be enforced by replacing Ud by the Q
factor of the QR decomposition of Ud = QR. Then, given Ud, the optimal Y
can be computed linearly from (3.28). This leads to the PF algorithm for matrix
factorization with missing entries summarized in Algorithm 3.3.

Notice that when the matrix is complete, according to Theorem 3.1, the al-
ternating matrix factorization method is guaranteed to converge exponentially as
long as �d > �d+1. In the case of incomplete data, the above alternating proce-
dure appears to be the most natural extension to the complete case. It is arguably
the simplest and most popular low-rank matrix completion algorithm and works
fairly well for many practical problems. However, since the objective function is
non-convex, to the best of our knowledge, there are no results in the literature that
guarantee the convergence of the algorithm to the globally optimal solution.

Nevertheless, recent progress in high-dimensional statistical analysis has
started to indicate that when the matrix is high-dimensional, under certain be-
nign conditions one should expect the above process to converge exponentially to
the optimal solution with high-probability [Jain et al., 2012]. Although a detailed
explanation of such results is far beyond the scope of this book, we here provide
a brief introduction to the results with two purposes in mind. First, the analytical
conditions required for optimality provide good intuition as to when we should
expect low-rank matrix completion to work well in general. Second, the proposed

3.1. PCA with Missing Entries 61

Algorithm 3.3 (Power Factorization for Incomplete Matrix Factorization)

Input: Matrices W �X and Y 0

1: Initialize Y Y 0

2: repeat
3: Given Y =

⇥

y1, · · · ,yd

⇤

, solve min

U
d

kW � (X � UdY)k2F as

Ud =

2

6

4

u>
1
...

u>
D

3

7

5

, ui
⇣

N
X

j=1

wijyjy
>
j

⌘�1 N
X

j=1

wijxijyj , i = 1, . . . , D.

4: Normalize Ud UdR�1, where QR = Ud

5: Given Ud =

2

6

4

u>
1
...

u>
D

3

7

5

, solve min

Y
kW � (X � UdY)k2F as

Y =

⇥

y1, · · · ,yd

⇤

, yj
⇣

D
X

i=1

wijuiu
>
i

⌘�1 D
X

i=1

wijxijui, j = 1, . . . , N.

6: until convergence of the sequence UdY

Output: Ud and Y

algorithm introduces some modification to the above straightforward extensions,
which may inspire the readers to develop better algorithms in the future.

Consider a rank-d matrix X that we wish to complete. Assume that the loca-
tions of the given entries of X are drawn uniformly at random. Intuitively, one
should expect that it would be very difficult or even impossible to recover a ma-
trix X from such a subset of observations if the matrix X is itself very sparse,
i.e., if it has a very small portion of nonzero entries. In the extreme, if X only has
one nonzero entry (hence it is a rank-1 matrix), with high probability, any subset
of observations of X will all be zeros. Hence, there is little chance that one can
succeed in recovering the true X as all observations indicate that X is a matrix
full of zeros. To avoid such ambiguity, we must restrict our low-rank matrices to
those that are not so particularly sparse.

Definition 3.2 (Incoherent Matrix). A matrix X 2 RD⇥N is incoherent with a
constant µ > 0 if

max

i
kuik2 µ

p
dp

D
, max

j
kvjk2 µ

p
dp

N
, kUV >k1 µ

p
dp

DN
(3.29)

where X = U⌃V > is the SVD of X , and ui, and vj are the ith row of U and jth
row V , respectively.

62 Chapter 3. Robust Principal Component Analysis

This is a popular and convenient technical condition that people typically use to
impose that a given matrix is not so sparse or its singular vectors are not so spiky.
This condition is not so strict either – when the matrix is large, it holds with high
probability for randomly generated (say Gaussian) matrices.

As before, we are interested in finding a rank-d factorization UV > that best
approximates the matrix X given the observed entries:

min

U,V
kW � (X � UV >

)k2F . (3.30)

In the alternating minimization for Algorithm 3.3 , in each iteration, we use all
the observed entries to update the factors. As it turns out that at least technically
at this point, it is easier to prove convergence and global optimality if one incor-
porates information from observations in an incremental fashion. Let us randomly
and equally partition the set of observed entries W into 2K + 1 non-overlapping
subsets, denoted as W0, W1, . . . , W2K . Let p = kWk0/DN be the probability
that an entry is given. Let U be the top d singular vectors of 1

pW0 �X . We clip

entries of U that have magnitude higher than 2µ
p

dp
N

to be zero and let the initial
U0 be the orthonormalized version of such U . We then can use the alternating
minimization procedure described in Algorithm 3.4 to obtain the rank-d factors
U and V for X from the incomplete observations.

Algorithm 3.4 (Alternating Minimization for Matrix Completion)

Input: Observed matrix W � X and observation partition matrices
W1, . . . , W2K .

1: Initialize ˆU0 U0

2: For k = 0, 1, . . . , 2K do
3: ˆV k+1 argminV ||Wk+1 � (

ˆUkV T �X)k2F .
4: ˆUk+1 argminU ||WK+k+1 � (U(

ˆV k+1
)

T �X)k2F .
5: End do

Output: Return matrix X =

ˆUK
(

ˆV K
)

T .

Notice that there are two major differences between Algorithm 3.4 and Al-
gorithm 3.3: the initialization to left singular vectors U and the update in each
iteration uses only an independent subset of the observations. It is surprising that
these small modifications to the basic power factorization method can ensure the
convergence of the new procedure to the globally optimal solution as described by
the following theorem. It is beyond the scope of this book to provide a complete
proof and explanation to this theorem. We refer interested readers to [Jain et al.,
2012].

Theorem 3.3. Let X = U⌃V > 2 RD⇥N , (N � D), be a rank-d matrix that
is incoherent. Let each entry of X be observed independently and uniformly at
random. If there exists a constant c > 0 such that the number of observed entries

3.1. PCA with Missing Entries 63

satisfies

kWk0 � c
��1

�d

�4
d4.5N logN log(dkXkF /"), (3.31)

then with high probability, for K = C 0
log(kXkF /") with some constant C 0 > 0,

the outputs of Algorithm 3.4 satisfy kX � ˆUK
(

ˆV K
)

T kF ".

In words, the alternating minimization procedure guarantees to recover X up to
the precision " in O(log(1/")) steps given that the number of observations are in
the order of O(d4.5N logN log d). Although the theorem does not directly apply
to the basic alternating minimization procedure given in Algorithm 3.3, it suggests
that the procedure should work under similar conditions. Since it is very simple
and easier to implement in practice, we would prefer Algorithm 3.3 to Algorithm
3.4 in real use.

Power Factorization for PCA with Incomplete Data

Let us now consider the PCA problem in the case of incomplete data, i.e., the
problem in (3.23) where we want to recover both the mean µ and the sub-
space basis Ud. As in the case of complete data, the solution to this problem
need not be unique, because if (µ, Ud, Y) is an optimal solution, then so is
(µ � Udb, UdA, A�1Y) for all b 2 Rd and A 2 Rd⇥d. Therefore, we will forgo
the constraints U>

d Ud = I and Y 1 = 0 for a moment, derive an algorithm for
solving the unconstrained problem, and then find a solution that satisfies the con-
straints. To solve the unconstrained problem, let us take the derivatives of the cost
function in (3.23) with respect to µi, ui and yj and set them to zero. This leads to

⇣

N
X

j=1

wij

⌘

µi =

N
X

j=1

wij(xij � u

>
i yj), i = 1, . . . , D, (3.32)

⇣

N
X

j=1

wijyjy
>
j

⌘

ui =

N
X

j=1

wij(xij � µi)yj , i = 1, . . . , D, (3.33)

⇣

D
X

i=1

wijuiu
>
i

⌘

yj =

D
X

i=1

wij(xij � µi)ui, j = 1, . . . , N. (3.34)

Therefore, given Ud and Y , the optimal µ and can be computed from (3.32).
Likewise, given µ and Y , the optimal Ud can be computed linearly from (3.33).
Also, given µ and Ud, the optimal Y can be computed linearly from (3.34).

As before, we can enforce the constraint U>
d Ud = I by replacing Ud by the

Q factor of the compact QR decomposition of Ud = QR. Also, we can enforce
the constraint Y 1 = 0 by replacing µ by µ � UdY 1, and Y by (I � 1

N 11

>
)Y .

This leads to the alternating minimization approach for PCA with missing entries
summarized in Algorithm 3.5.

A similar alternating minimization approach was proposed in [Shum et al.,
1995]. In this approach, the steps in (3.32) and (3.33) are combined into a single

64 Chapter 3. Robust Principal Component Analysis

Algorithm 3.5 (Power Factorization for PCA with Incomplete Data)

Input: Matrix W , entries xij of (i, j) such that wij = 1, and integer d.

1: initialize Ud =

2

6

4

u

>
1
...

u

>
D

3

7

5

 U0
d and Y =

⇥

y1, · · · ,yd

⇤ Y 0.

2: repeat
3: µi

P
N

j=1 w
ij

(x
ij

�u

>
i

y

j

)
P

N

j=1 w
ij

,

4: ui
⇣ N
P

j=1

wijyjy
>
j

⌘�1 N
P

j=1

wij(xij � µi)yj

5: Ud =

2

6

4

u

>
1
...

u

>
D

3

7

5

 UdR�1, where QR =

2

6

4

u

>
1
...

u

>
D

3

7

5

6: Y =

⇥

y1, · · · ,yd

⇤

where yj
⇣ D
P

i=1

wijuiu
>
i

⌘�1 D
P

i=1

wij(xij � µi)ui

7: until convergence of µ1

>
+ UdY

Output: µ� UdY 1, Ud and (I � 1
N 11

>
)Y .

step

N
X

j=1

wij

yj

1

�

yj

1

�>

ui

µi

�

=

N
X

j=1

wijxij

yj

1

�

, j = 1, . . . , N. (3.35)

This leads to an alternating minimization scheme where, given Y one solves for
µ and Ud from (3.35), and given µ and Ud, one solves for Y from (3.34).

As before, neither the three-term alternating minimization or the two-term al-
ternating minimization is guaranteed to converge to the global optimal solution of
the PCA problem. But it should not be so difficult to adjust the procedures based
on the general alternating minimization Algorithm 3.4 to ensure global optimality
under certain conditions. We leave such technical developments to the readers as
exercises. Nevertheless, the above simple procedures remain as viable choices for
practitioners to solve their problems in practice.

3.1.4 Incomplete PCA by Convex Optimization
The previous two approaches, namely expectation maximization and matrix fac-
torization with missing data, are based on (a) explicit parameterizations of the
low-rank factors and (b) minimization of a non-convex cost function in an al-
ternating minimization fashion. These approaches suffer from two important
disadvantages. First, the desired rank of the matrix needs to be known in advance.
Second, it is difficult to ensure convergence and global optimality.

3.1. PCA with Missing Entries 65

In this section, we introduce an alternative approach that solves the low-rank
matrix completion problem via a convex relaxation. As we will see, this approach
allows us to complete a low-rank matrix by minimizing a convex objective func-
tion, which is guaranteed to have a global minimizer. Moreover, under rather
benign conditions on the missing entries, this approach is guaranteed to perfectly
recover the desired low-rank matrix, even without knowing the rank of the matrix
in advance.

Similar to the convergence result for the matrix factorization algorithm, a rig-
orous justification of the optimality of the convex relaxation approach requires a
deep knowledge in high-dimensional statistics and geometry that is beyond the
scope of this book. However, this does not prevent us from introducing and sum-
marizing here the main results and basic algorithm offered by this approach so
that practitioners can apply them to their data and problems. The interested reader
may find further details in [Cai et al., 2008, Candès and Recht, 2009, Candès and
Tao, 2010, Gross, 2011, Keshavan et al., 2010a, Zhou et al., 2010a].

Compressive Sensing of Sparse Vector or Low-rank Matrix

Let us first motivate this approach with a simpler but related problem of finding
a solution to an underdetermined system of linear equations Ax = b, where
x 2 RN , b 2 RD and A 2 RD⇥N , with D < N . Since this linear system is
underdetermined, in general there could be many solutions x. This mimics the
matrix completion problem, where the number of given measurements is much
less than the number of variables to be estimated or recovered (all the entries of
the matrix). In other words, we want to recover an unknown vector or matrix from
highly compressive or incomplete observations. This class of problems is known
in the literature as compressed or compressive sensing [Candès, 2006].

To find a unique solution, we often need to specify what type of solutions we
prefer among all possible ones. This requires us to regularize the solution x based
some measure of goodness. A classical approach to finding a unique solution
(when a solution exists) is to look for a vector x of minimum `2 norm, i.e.,

min

x

kxk2 s.t. Ax = b. (3.36)

In physics, least `2 norm solutions often corresponds to minimum energy.
An alternative approach is to look for a solution x that is the sparsest, whose

physical meaning, unlike the `2 norm solution, would now corresponds to min-
imum entropy. Specifically, assume that the vector b is generated as Aµ = b,
where µ is a d-sparse vector, i.e., kµk0 = d ⌧ N . When the matrix A is such
that �2d(A) < 1, where �d(A) is the smallest number such that for all x with
kxk0 d, we have

(1� �d(A))kxk22 kAxk22 (1 + �d(A))kxk22, (3.37)

then µ is the only d-sparse vector such that Ax = b. Such a matrix A satisfying
�k(A) < ⌧ for some k and ⌧ is said to have the restricted isometry property (RIP).

66 Chapter 3. Robust Principal Component Analysis

In order to find µ, we seek a solution to the problem

min

x

kxk0 s.t. Ax = b. (3.38)

In general, this problem is NP hard [Amaldi and Kann, 1998]. However, as
recently shown in the compressive sensing literature (see [Candès and Tao,
2005,Candes, 2008] and others), under fairly broad conditions, say when the ma-
trix A is large and satisfies the RIP �2d(A) <

p
2 � 1, then the optimal solution

to (3.38) can be correctly found with high-probability by solving the following
convex optimization problem

min

x

kxk1 s.t. Ax = b. (3.39)

Inspired by the success of compressive sensing of high-dimensional sparse vec-
tors, one could naturally expect that a similar convex relaxation also applies to the
recovery of a high-dimensional low-rank matrix M from compressive linear mea-
surements b = A(M). If the linear operator A satisfies certain conditions (say a
generalized RIP condition), then the solution to the rank minimization problem
(which is also NP-hard in general)

min

X
rank(X) s.t. A(X) = B, (3.40)

could be correctly found with high probability by solving the following convex
optimization problem instead

min

X
kXk⇤ s.t. A(X) = B, (3.41)

where kXk⇤ is the nuclear norm of the matrix X (i.e., the sum of all singular
values of X). Below we summarize the exact conditions and results related to this
approach, and give a simple algorithm to solve the above optimization problem.

Exact Matrix Completion with Minimum Number of Measurements

Let X 2 RD⇥N be a matrix whose columns are drawn from a low-dimensional
subspace of RD of dimensions d⌧ D. Assume that we observe only a subset of
the entries of X indexed by a set ⌦, i.e.,

⌦ = {(i, j) : xij is observed}. (3.42)

Let P⌦ : RD⇥N ! RD⇥N be the orthogonal projector onto the span of matrices
vanishing outside of ⌦ so that the (i, j)-th component of P⌦(X) is equal to xij

if (i, j) 2 ⌦ and zero otherwise. As proposed in [Candès and Recht, 2009], we
may complete the missing entries in X by searching for a complete matrix A 2
RD⇥N that is of low-rank and coincides with X in ⌦. This leads to the following
optimization problem:

min

A
rank(A) s.t. P⌦(A) = P⌦(X). (3.43)

For simplicity, let us assume D = N for now. An N ⇥N matrix X of rank d has
2Nd � d2 degrees of freedom. Therefore, one should not expect to complete or

3.1. PCA with Missing Entries 67

recover a rank-d matrix uniquely with less than 2Nd � d2 entries as, in general,
there will be infinitely many rank-d matrices that have the same given entries.
The question is how many more entries are needed in order for the above problem
have a unique solution and the solution to be found efficiently.

Since the above rank-minimization problem (even if the solution exists and
is unique) is NP hard, inspired the compressive sensing story, we consider the
following convex relaxation

min

A
kAk⇤ s.t. P⌦(A) = P⌦(X), (3.44)

where kAk⇤ =

P

�i(A) is the sum of the singular values of A, which is the
convex envelop of the rank function rank(A).

It has been established in a series of seminal work [Candès and Recht,
2009, Candès and Tao, 2010, Gross, 2011] that when the matrix is incoherent, the
locations of the known entries are sampled uniformly at random, and the num-
ber of known entries is sufficiently large, the minimizer to the problem (3.44) is
unique and equal to the matrix X for most matrices X . More specifically, they
together have developed very tight bounds for the minimum number of measure-
ments that are needed in order for the convex optimization to give the correct
solution with high probability. The following theorem summarizes their results.

Theorem 3.4. Let X be a D ⇥ N matrix of rank d and let K = max(D, N).
Assume X is incoherent with parameter µ according to Definition 3.2. Suppose
we observe M entries of X with locations sampled uniformly at random. Then
there is a numerical constant c (depending on µ) such that if

M � cdK(logK)

2, (3.45)

the minimizer to the problem (3.44) is unique and equal to X with probability at
least 1�K�3; that is to say, the program (3.44) recovers all the entries of X with
no error.

Notice that for a general rank-d matrix, this bound is already very tight. To see
this, recall from our previous discussion that the minimum number of required
measurements is O(dK). In essence, the theorem states that with only a polylog
factor of extra measurements, i.e., O(dKpolylog(K)), we can obtain the unique
correct solution via convex optimization. This bound can be strengthened under
additional assumptions. For instance, if d = O(1) (i.e., if X is a matrix of con-
stant) the minimum number of entries needed to guarantee the exact completion
of X reduces to M � K log(K) [Keshavan et al., 2010a]. It is worth mention-
ing that the above statement is not only limited to matrix completion. As shown
in [Gross, 2011], the same bound and statement hold for the compressive sensing
of low-rank matrices with general linear observations A(X), i.e., for the problem
(3.41), as long as the linear operator A(·) is incoherent with the matrix X .

Efficient Algorithm via Proximal Gradient

In order to compute the solution to the problem in (3.44), we can use the method
of augmented Lagrange multipliers (ALM) described in Appendix A. According

68 Chapter 3. Robust Principal Component Analysis

to this method, the Lagrangian of (3.44), kAk⇤ + hZ, P⌦(X) � P⌦(A)i, where
Z 2 RD⇥N is a matrix of Lagrange multipliers, is augmented by the sum of the
squares of the violation of the constraints, i.e.,

L(A, Z) = kAk⇤ + hZ, P⌦(X)� P⌦(A)i+ �

2

kP⌦(X)� P⌦(A)k2F , (3.46)

where � > 0 is a parameter. Then, the optimal solution to the problem
maxZ minA L(A, Z) is found by iterating the following two steps

(

Ak = argminA L(A, Zk�1),

Zk = Zk�1 + � @L
@Z (Ak, Zk�1).

(3.47)

To compute the optimal A, notice that the sub-gradient of L w.r.t. A is given
by @kAk⇤ � P⌦(Z)� �(P⌦(X)� P⌦(A)), where @kAk⇤ is the sub-gradient of
the nuclear norm of A (see Exercise 3.7). Thus, the optimal solution for A given
Z is A = D 1

�

(P⌦(X) +

1
� P⌦(Z)) (see Exercise 3.8), where D" is the singular

value thresholding operator defined in (2.90). This is also known as the proximal
gradient descent method. Even though the ALM objective function (3.46) is not
smooth, this method is known to converge as fast as the regular gradient descent
method for smooth functions, with a rate of O(1/k). Therefore, starting from
Z0 = 0, the augmented Lagrangian multiplier objective maxZ minA L(A, Z)

can be optimized via the Algorithm 3.6 summarized below.

Algorithm 3.6 (Low-rank Matrix Completion by ALM via Proximal
Gradient)

Input: Entries xij of a matrix X 2 RD⇥N for (i, j) 2 ⌦ and parameter � > 0.

1: Initialize Z0 0.
2: repeat
3: Ak D 1

�

(P⌦(X) +

1
� Zk�1).

4: Zk Zk�1 + �(P⌦(X)� P⌦(Ak)).
5: until convergence of Z.

Output: Matrix A.

3.2 PCA with Corrupted Data

Recall from Section 2.1.2 that in the PCA problem we are given N data points
{xj 2 RD}N

j=1 drawn (approximately) from a d-dimensional affine subspace
S = {x = µ+ Udy}, where µ 2 RD is an arbitrary point in S, Ud 2 RD⇥d is a
basis for S, and {yj 2 Rd}N

j=1 are the principal components. In this section, we
consider the PCA problem in the case where some of the entries of the data points
have been corrupted by gross errors. That is, the i-th entry xij of a data point xj

3.2. PCA with Corrupted Data 69

is obtained by corrupting the i-th entry x0
ij of a point x0

j lying perfectly on the
subspace S by an error eij , i.e.,

xij = x0
ij + eij , or xj = x

0
j + ej , or X = X0

+ E, (3.48)

where X,X0, E 2 RD⇥N are matrices with entries xij , x0
ij and eij , respectively.

Such errors can have a huge impact on the estimation of the subspace, thus it is
very important to be able to detect the locations of those errors,

⌦ = {(i, j) : eij 6= 0}, (3.49)

as well as correct the erroneous entries before applying PCA to the given data.
Indeed, notice that a key difference with the incomplete PCA problem, where we
know the location of the missing entries, is that we do not know the location of
the corrupted entries. This makes the robust PCA problem harder, since we need
to simultaneously detect and correct the errors. Nonetheless, when the number
of corrupted entries is a small enough fraction of the total number of entries, i.e.,
when |⌦|⌧ DN , we expect to be able detect and correct such gross errors. In the
remainder of this section, we describe methods from robust statistics and convex
optimization for addressing this problem.

3.2.1 Robust PCA by Reweighed Least Squares
One of the simplest algorithms for dealing with corrupted entries is the reweighted
least squares approach proposed in [De la Torre and Black, 2004]. In this ap-
proach, a subspace is fit to the corrupted data points using standard PCA. The
corrupted entries are detected as those that have a large residual with respect to
the identified subspace. A new subspace is estimated with the detected corruptions
down-weighted. This process is then repeated until the estimated model stabilizes.

The first step is to apply standard PCA to the given data. Recall from Section
2.1.2 that when the data points {xj 2 RD}N

j=1 have no gross corruptions, an
optimal solution to PCA can be obtained as

ˆ

µ =

1

N

N
X

j=1

xj and ˆ

yj =

ˆU>
d (xj � µ), (3.50)

where ˆUd is a D ⇥ d matrix whose columns are the top d eigenvectors of

b

⌃N =

1

N

N
X

j=1

(xj � ˆ

µ)(xj � ˆ

µ)

>. (3.51)

When the data points are corrupted by gross errors, we may improve the estima-
tion of the subspace by recomputing the model parameters after down-weighting
samples that have large residuals. More specifically, let wij 2 [0, 1] be a weight
assigned to the i-th entry of xj such that wij ⇡ 1 if xij is not corrupted and
wij ⇡ 0 otherwise. Then, similarly to (2.23), a new estimate of the subspace can
be obtained by minimizing the weighted sum of the least-squares errors between

70 Chapter 3. Robust Principal Component Analysis

a point xj and its projection µ+ Udyj onto the subspace S, i.e.,

D
X

i=1

D
X

j=1

wij(xij � µi � u

>
i yj)

2, (3.52)

where µi is the i-th entry of µ, u>
i is the i-th row of Ud, and yij is the i-th entry

of the vector of coordinates yj of the point xj in the subspace S.
Notice that the above objective function is identical to the objective function

in (3.23), which we used for incomplete PCA. The only difference is that in in-
complete PCA wij 2 {0, 1} denotes whether xij is observed or not, while here
wij 2 [0, 1] denotes whether xij is corrupted or not. Other than that, the iterative
procedure for computing µ, Ud and Y given W is the same as that outlined in
Algorithm 3.5.

Gven µ, Ud and Y , the main question is how to update the weights. A simple
approach is to set the weights depending on the residual "ij = xij � µi � u

>
i yj .

Our expectation is that when the residual is small, xij is not corrupted, and so we
should set wij ⇡ 1. Conversely, when the residual is large, xij is corrupted, and
so we should set wij ⇡ 0. One possible choice is

wij =

"20
"2ij + "20

, (3.53)

where "0 > 0 is a parameter. This is the choice in [De la Torre and Black, 2004].
The overall algorithm for PCA with corruptions is summarized in Algorithm

3.7. This algorithm initializes all the weights to wij = 1. This gives an initial
estimate for the subspace, which is the same as that given by PCA. Given this
initial estimate of the subspace, the weights wij are computed from the residuals
as per (3.53). Given these weights, one can reestimate the subspace using the
steps of Algorithm 3.5. One can then iterate in between computing the weights
given the subspace and computing the subspace given the weights. This iterative
process, called iterative re-weighted least squares, converges to a local minima of
the cost function (3.52).

3.2.2 Robust PCA by Convex Optimization
Although the above reweighting scheme is very simple and efficient to implement
and use in practice, there is no immediate guarantee that the solution that the iter-
ation converges to is the correct low-rank matrix. In this section, we would resort
to some advanced tools from high-dimensional sparse signal and low-rank ma-
trix recovery, which gives provably correct solution for a low-rank matrix with
intra-sample outliers as long as they are sparse enough. Although the mathemati-
cal theory that supports the correctness of these methods is far beyond the scope
of this book, we will introduce their key ideas and results from this approach for
PCA with intra-sample outliers. In later Section 3.3.2, we will see how the same
ideas apply to the case with sample outliers.

3.2. PCA with Corrupted Data 71

Algorithm 3.7 (Reweighted Least Squares for PCA with Corrupted Data)

Input: Data matrix X , integer d, and parameter "0 > 0.

1: initialize [µ, Ud, Y] = PCA(X) using Algorithm ??.
2: repeat
3: "ij xij � µi � u

>
i xj

4: wij "2
0

"2
ij

+"2
0

,

5: µi
P

N

j=1 w
ij

(x
ij

�u

>
i

y

j

)
P

N

j=1 w
ij

,

6: ui
⇣ N
P

j=1

wijyjy
>
j

⌘�1 N
P

j=1

wij(xij � µi)yj

7: Ud =

2

6

4

u

>
1
...

u

>
D

3

7

5

2

6

4

u

>
1
...

u

>
D

3

7

5

R�1, where QR =

2

6

4

u

>
1
...

u

>
D

3

7

5

8: Y =

⇥

y1, · · · ,yd

⇤

where yj
⇣ D
P

i=1

wijuiu
>
i

⌘�1 D
P

i=1

wij(xij � µi)ui

9: until convergence of µ1

>
+ UdY

Output: µ� UdY 1, Ud and (I � 1
N 11

>
)Y .

Let us assume that the given data matrix X is generated as the sum of two
matrices

X = L0 + E0. (3.54)

The matrix L0 represents the ideal low-rank matrix (the principal components),
while the matrix E0 represents the intra-sample outliers. Since many entries of X
are not corrupted (otherwise the problem is not well posed), many entries of E0

should be zero. As a consequence, we can pose the robust PCA problem as one of
decomposing a given matrix X as the sum of two matrices L + E, where L is of
low-rank and E is sparse. This problem can be formulated as

min

L,E
rank(L) + �kEk0 s.t. X = L + E, (3.55)

where kEk0 is the number of non-zero entries in E and � > 0 is a weight
parameter.

At a first sight, one may think that solving the problem in (3.55) is really impos-
sible. First of all, we have D⇥N equations and 2D⇥N unknowns. Second, it is
not clear that we can always decompose a matrix as the sum of a low-rank matrix
and a sparse matrix. For instance, if x11 = 1 and xij = 0 for all (i, j) 6= (1, 1),
then the matrix X is both rank 1 and sparse. Thus, if � = 1, we can choose
L = X and E = 0 or L = 0 and E = X as valid solutions. Last, but not least,
even if there is a unique global minimum, the cost function to be minimized is
non-convex and non-differentiable. In fact, it is well known that problems of re-

72 Chapter 3. Robust Principal Component Analysis

covering a sparse signal or a low-rank matrix are in general NP-hard [Amaldi and
Kann, 1998].

In what follows, we will show that, under certain conditions on L0 and E0,
the correct solution to decompose X ! (L0, E0) can be found by solving the
following convex optimization problem, which is known as Principal Component
Pursuit (PCP):

min

L,E
kLk⇤ + �kEk1 s.t. X = L + E, (3.56)

where kLk⇤ =

P

i �i(L) is the nuclear norm of L, i.e., the sum of its singular
values, and kEk1 =

P

i,j |eij | is the `1 norm of E considered as a vector. As
we have discussed in Section 3.1.4, the inspiration for using convex relaxations
of `0 norm and matrix rank came from some related problems from compressive
sensing, which aim at finding a sparse solution to a linear system Ax = b or a
low-rank matrix from its linear measurements A(X) = b.

The following theorem gives conditions on the rank of the matrix and the per-
centage of outliers under which the optimal solution is exactly L0 and E0 with
overwhelming probability.

Theorem 3.5 ([Candès et al., 2011]). Let X = L0 + E0. Assume that there
exists a µ > 0 such that the compact SVD of L0 = U⌃V > is incoherent with
parameter µ according to Definition 3.2. Assume also that the support of E0 is
uniformly distributed among all the sets of cardinality D ⇥N . If

rank(L0) ⇢d min{D, N}
µ2

log

2
�

max{D, N}� and kE0k0 ⇢sND. (3.57)

Then there is a constant c such that with probability at least 1�cmax{N, D}�10,
the solution (L⇤, E⇤

) to (3.56) with � =

1p
max{N,D} is exact, i.e.,

L⇤
= L0 and E⇤

= E0. (3.58)

A complete proof and explanation for this theorem is beyond the scope of this
book – for interested readers please refer to [Candès et al., 2011]. But that does
not prevent us from understand its implications and use it to develop practical
solutions for real problems. The theorem essentially says, as long as the matrix is
incoherent and its rank is bounded almost linearly from its dimension, the convex
optimization can correctly recover the low-rank matrix despite a constant fraction
of entries are completely corrupted. More recent results show that under benign
conditions, the percentage of errors can be surprisingly high (not even have to be
sparse [Ganesh et al., 2010]).

Alternating Direction Algorithm for Principal Component Pursuit

Assuming that the conditions of the theorem are satisfied, the next question is
how we actually optimize the cost function in order to find the global minimum.
Although many convex optimization solvers can be used to solve the convex

3.2. PCA with Corrupted Data 73

optimization (3.56), we here introduce an algorithm based on the augmented La-
grange multiplier (ALM) method suggested by [Candès et al., 2011, Lin et al.,
2011].

The ALM method operates on the augmented Lagrangian

l(L, E, Y) = kLk⇤ + �kEk1 + hY, X � L� Ei+ �

2

kX � L� Ek2F . (3.59)

A generic Lagrange multiplier algorithm [Bertsekas, 1999] would solve PCP by
repeatedly setting (Lk, Ek) = argminL,E l(L, E, Yk), and then updating the
Lagrange multiplier matrix via Yk+1 = Yk + �(X � Lk � Ek).

For our low-rank and sparse decomposition problem, we can avoid having to
solve a sequence of convex programs by recognizing that minL l(L, E, Y) and
minE l(L, E, Y) both have very simple and efficient solutions. Let S⌧ : R ! R
denote the shrinkage operator S⌧ [x] = sign(x)max(|x| � ⌧, 0), and extend it to
matrices by applying it to each element. It is easy to show that

argmin

S
l(L, E, Y) = S��(X � L + ��1Y). (3.60)

Similarly, for matrices X , let D⌧ (X) denote the singular value thresholding op-
erator given by D⌧ (X) = US⌧ (⌃)V ⇤, where X = U⌃V ⇤ is any singular value
decomposition. It is not difficult to show that

argmin

L
l(L, E, Y) = D�(X � E + ��1Y). (3.61)

Thus, a more practical strategy is to first minimize l with respect to L (fixing E),
then minimize l with respect to E (fixing L), and then finally update the Lagrange
multiplier matrix Y based on the residual X�L�E, a strategy that is summarized
as Algorithm 3.8 below.

Algorithm 3.8 (Principal Component Pursuit by ADMM [Lin et al., 2011])

1: initialize: E0 = Y0 = 0, � > 0.
2: while not converged do
3: compute Lk+1 = D�(X � Ek + ��1Yk);
4: compute Ek+1 = S��(X � Lk+1 + ��1Yk);
5: compute Yk+1 = Yk + �(X � Lk+1 � Ek+1);
6: end while
7: output: L, E.

Algorithm 3.8 is a special case of a general class of algorithms known as al-
ternating direction method of multipliers (ADMM), described in Appendix A.
The convergence of these algorithms has been well-studied and established (see
e.g. [Lions and Mercier, 1979, Kontogiorgis and Meyer, 1989] and the many ref-
erences therein, as well as discussion in [Lin et al., 2011, Yuan and Yang, 2009]).
Algorithm 3.8 performs excellently on a wide range of problems: relatively small
numbers of iterations suffice to achieve good relative accuracy. The dominant cost

74 Chapter 3. Robust Principal Component Analysis

of each iteration is computing Lk+1 via singular value thresholding. This requires
us to compute those singular vectors of X � Ek + ��1Yk whose correspond-
ing singular values exceed the threshold �. Empirically, the number of such large
singular values is often bounded by rank(L0), allowing the next iterate to be com-
puted efficiently via a partial SVD.1 The most important implementation details
for this algorithm are the choice of � and the stopping criterion. In this work, we
simply choose � = ND/4kXk1, as suggested in [Yuan and Yang, 2009].

Some Extensions to PCP

In most practical applications, there are also small dense noise in the data. So
a more realistic model for robust PCA can be X = L + E + Z where Z are
a Gaussian matrix that models small Gaussian noise in the given data. In this
case, we can no longer expect to recover the exact solution to the low-rank matrix
(which is impossible even there is no outlier). Nevertheless, one can show that the
natural convex extension:

min

L,E
kLk⇤ + �kEk1 s.t. kX � L� Ek22 "2, (3.62)

where " is the known noise variance, gives a stable estimate to the low-rank and
sparse components L and E, subject to a small residual proportional to the noise
variance [Zhou et al., 2010b].

Another extension is to recover a low-rank matrix from both corrupted and
compressive measurements. In other words, we try to recover the low-rank and
sparse components L, E of X = L + E from only some of its linear measure-
ments: PQ(X) where PQ(·) could be a general linear operator. The special case
of when the operator represents a subset of the entries has been covered in the
original work of principal component pursuit [Candès et al., 2011]. It has been
shown that under similar conditions as Theorem 3.5, one can correctly recover
the low-rank and sparse components via the following optimization:

min

L,E
kLk⇤ + �kEk1 s.t. P⌦(X) = P⌦(L + E), (3.63)

where as in matrix completion, P⌦(·) represents projection onto the observable
entries. The case of a more general linear operator PQ(·) for projecting onto an
arbitrary subspace Q has also been studied in [Wright et al., 2013], known as
Compressive Principal Component Pursuit (CPCP). It has been shown that un-
der fairly broad conditions, the low-rank and sparse components can be correctly
recovered via the following optimization:

min

L,E
kLk⇤ + �kEk1 s.t. PQ(X) = PQ(L + E), (3.64)

We leave as an exercise for the readers to derive an algorithm for solving
above problems using ideas from Lagrangian methods and alternating direction
minimization methods (please refer to Appendix A).

1Further performance gains might be possible by replacing this partial SVD with an approximate
SVD, as suggested in [Goldfarb and Ma, 2009] for nuclear norm minimization.

3.3. PCA with Outliers 75

3.2.3 Example: Face Images under Different Illuminations
Face recognition is another domain in computer vision where low-dimensional
linear models have received a great deal of attention due to the work of [?]. The
key observation is that under certain idealized circumstances, images of the same
face under varying illumination lie near an approximately nine-dimensional linear
subspace known as the harmonic plane. However, since faces are neither perfectly
convex nor Lambertian, face images taken under directional illumination often
suffer from self-shadowing, specularities, or saturations in brightness.

Suppose that we have a matrix D whose columns represent perfectly aligned
training images of a person’s face under various illumination conditions. The
above robust PCA algorithm offers a principled way of removing the shadows
and specularities in the images since these artifacts are concentrated on small por-
tions of the face images i.e., sparse in the image domain. Figure 3.2 illustrates the
results of our algorithm on images from the Extended Yale B database [?]. We
observe that our algorithm removes the specularities in the eyes and the shadows
around the nose region. This technique is potentially useful for pre-processing
training images in face recognition systems to remove such deviations from the
linear model.

3.3 PCA with Outliers

Another issue that we often encounter in practice is that a small portion of the
data points does not fit well the same model as the rest of the data. Such points are
called outliers or outlying samples. Their presence can lead to a completely wrong
estimate of the underlying subspace. Therefore, it is very important to develop
methods for detecting and eliminating outliers from the given data.

The true nature of outliers can be very elusive. In fact, there is really no unan-
imous definition for what an outlier is.2 Outliers could be atypical samples that
have an unusually large influence on the estimated model parameters. Outliers
could also be perfectly valid samples from the same distribution as the rest of the
data that happen to be small-probability instances. Alternatively, outliers could
be samples drawn from a different model, and therefore they will likely not be
consistent with the model derived from the rest of the data. In principle, however,
there is no way to tell which is the case for a particular “outlying” sample point.

3.3.1 Outlier Detection by Robust Statistics
In this section, we discuss classical approaches from robust statistics for dealing
with outliers in the context of PCA.

2For a more thorough exposition of outliers in statistics, we recommend the books of [Barnett and
Lewis, 1983, Huber, 1981].

76 Chapter 3. Robust Principal Component Analysis

(a) (b) (c)

Figure 3.2. Removing shadows and specularities from face images. (a) Cropped and
aligned images of a person’s face under different illuminations from the Extended Yale B
database. The size of each image is 96⇥84 pixels, and a total of 29 different illuminations
were used for each person. (b) Images recovered by our algorithm. (c) The sparse errors
returned by our algorithm correspond to specularities in the eyes, shadows around the nose
region, or brightness saturations on the face.

Influence-Based Outlier Detection

This approach relies on the assumption that an outlier is an atypical sample which
has an unusually large influence on the estimated model parameters. This leads
to an outlier detection scheme where the influence of a sample is determined
by comparing the difference between the model estimated with and without this
sample. For instance, for PCA one may use a sample influence function to measure
the difference:

I(xi, Ud)
.
= h ˆUd, ˆUd(i)i, (3.65)

3.3. PCA with Outliers 77

where h·, ·i is the largest subspace angle (see Exercise 2.5) between the subspace
span(ˆUd) estimated with the ith sample and the subspace span(ˆUd(i)) without the
ith sample. The larger the difference, the larger the influence of xi on the estimate,
and the more likely that xi is an outlier. Thus, we may eliminate a sample xi as
an outlier if

I(xi, Ud) � ⌧ (3.66)

for some threshold ⌧ > 0 or if I(xi, Ud) is relatively large among all the samples.
However, this method does not come without an extra cost. We need to com-

pute the principal components (and hence perform SVD) N times: one time with
all the samples together and another N�1 times with one sample eliminated from
each time. There have been many studies that aim to give a formula that can accu-
rately approximate the sample influence without performing SVD N times. Such
a formula is called a theoretical influence function. For more detailed discussion
of the sample influence for PCA, we refer the interested readers to [Jolliffe, 2002].

Probability-Based Outlier Detection

In this approach a model is fit to all the sample points, including potential out-
liers. Outliers are then detected as the points that correspond to small-probability
events or that have large fitting errors with respect to the identified model. A new
model is then estimated with the detected outliers removed or down-weighted.
This process is then repeated until the estimated model stabilizes.

In the case of PCA, the goal is to find a low-dimensional subspace that best fits
a given set of data points {xi 2 RD}N

i=1 by minimizing the least-squares errors

N
X

i=1

kxi � µ� Udyik2, (3.67)

between a point xi and its projection onto the subspace µ+Udyi, where µ 2 RD

is any point in the subspace, Ud 2 RD⇥d is a basis for the subspace, and yi 2 Rd

are the coordinates of the point in the subspace. If there were no outliers, an
optimal solution to PCA could be obtained as described in Section 2.1.2, i.e.,

ˆ

x0 =

1

N

N
X

i=1

xi and ˆ

yi =
ˆU>

d (x� ˆ

x0), (3.68)

where ˆUd is a D ⇥ d matrix whose columns are the top d eigenvectors of

b

⌃N =

1

N � 1

N
X

i=1

(xi � ˆ

x0)(xi � ˆ

x0)
>. (3.69)

If we adopt the guideline that outliers are samples that do not fit the model well
or have a small probability with respect to the estimated model, then the outliers
are exactly those samples that have a relatively large residual

"2i = kxi � ˆ

x0 � ˆUdˆyik2 or "2i = x

>
i
b

⌃

�1
N xi, i = 1, 2, . . . , N. (3.70)

78 Chapter 3. Robust Principal Component Analysis

The first error is simply the distance to the subspace, while the second error is the
Mahalanobis distance,3 which is obtained when we approximate the probability
that a sample xi comes from this model by a multivariate Gaussian

p(xi;
b

⌃N) =

1

(2⇡)D/2
det(

b

⌃N)

1/2
exp

�� 1

2

x

>
i
b

⌃

�1
N xi

�

. (3.71)

In principle, we could use p(xi, b⌃N) or either residual "i to determine if xi

is an outlier. However, the above estimate of the subspace is obtained using all
the samples, including the outliers themselves. Therefore, the estimated subspace
could be completely wrong and hence the outliers could be incorrectly detected.
In order to improve the estimate of the subspace, one can recompute the model
parameters after discarding or down-weighting samples that have large residuals.
More specifically, let wi 2 [0, 1] be a weight assigned to the ith point such that
wi ⇡ 1 if xi is an inlier and wi ⇡ 0 if xi is an outlier. Then, similarly to (2.23),
a new estimate of the subspace can be obtained by minimizing a weighted least-
squares error:

N
X

i=1

wikxi � µ� Udyik2 s.t. U>
d Ud = Id and

N
X

i=1

wiyi = 0. (3.72)

If we follow the same steps as in Section 2.1.2, we can find that an optimal
solution to this problem is of the form:

ˆ

x0 =

PN
i=1 wixi
PN

i=1 wi

and ˆ

yi =
ˆU>

d (x� ˆ

x0), (3.73)

where ˆUd is a D ⇥ d matrix whose columns are the top d eigenvectors of

b

⌃N =

PN
i=1 wi(xi � ˆ

x0)(xi � ˆ

x0)
>

PN
i=1 wi � 1

. (3.74)

As a consequence, under the least-squares criterion, finding a robust solution to
PCA reduces to finding a robust estimate of the sample mean and the sample
covariance of the data by properly setting the weights. In what follows, we discuss
two main approaches approaches for estimating the weights.

Multivariate trimming (MVT) is a popular robust method for estimating the
sample mean and covariance of a set of points. This method assumes discrete
weights

wi =

(

1 if xi is an inlier,
0 if xi is an outlier,

(3.75)

3 In fact, it can be shown that [Ferguson, 1961], if the outliers have a Gaussian distribution of a dif-
ferent covariance matrix a⌃, then "

i

is a sufficient statistic for the test that maximizes the probability
of correct decision about the outlier (in the class of tests that are invariant under linear transforma-
tions). Interested reader may want to find out how this distance is equivalent (or related) to the sample
influence b

⌃

(i)

N

� b
⌃

N

or the approximate sample influence given in (B.72).

3.3. PCA with Outliers 79

and chooses the outliers as a certain percentage of the samples (say 10 percent)
that have relatively large residual. This can be done by simply sorting the residu-
als {"i} from the lowest to the highest and then choosing as outliers the desired
percentage of samples with the highest residuals. Once the outliers are trimmed
out, one can use the remaining samples to re-estimate the subspace as in (3.73)-
(3.74). Each time we have a new estimate of the subspace, we can recalculate the
residual of every sample and reselect samples that need to be trimmed. We can
repeat the above process until a stable estimate of the subspace is obtained. When
the percentage of outliers is somewhat known, it usually takes only a few itera-
tions for MTV to converge and the resulting estimate is in general more robust.
However, if the percentage is wrongfully specified, MVT may not converge or it
may converge to a wrong estimate of the subspace. In general, the ”breakdown
point” of MTV, i.e., the proportion of outliers that it can tolerate before giving a
completely wrong estimate, depends only on the chosen trimming percentage.

Maximum Likelihood Type Estimators (M-Estimators) uses continuous weights
wi = ⇢("i)/"2i for some robust loss function ⇢(·). The objective function then
becomes

N
X

i=1

⇢("i). (3.76)

Many loss functions ⇢(·) have been proposed in the statistics literature [Huber,
1981, Barnett and Lewis, 1983]. When ⇢(") = "2, it corresponds to the standard
least-squares solution, which is not robust. Other robust loss functions include

1. L1 or total variation loss: ⇢(") = |"|;
2. Cauchy loss: ⇢(") = "20 log(1 + "2/"20);

3. Huber loss [Huber, 1981]: ⇢(") =

(

"2 if |"| < "0,

2"0|"|� "20 otherwise;

4. Geman-McClure loss [Geman and McClure, 1987]: ⇢(") = "2

"2+b2 ,

where " > 0 is a parameter.
One way of minimizing (3.76) with respect to the subspace parameters is to ini-

tialize all the weights to wi = 1, i = 1, . . . , N . This will give an initial estimate
for the subspace which is the same as that given by PCA. Given this initial esti-
mate of the subspace, one may compute the weights as wi = ⇢(")/"2 using any
the aforementioned robust cost functions. Given these weights, one can reestimate
the subspace from (3.73)-(3.74). One can then iterate in between computing the
weights given the subspace and computing the subspace given the weights. This
iterative process, called iterative re-weighted least squares, converges to a local
minima of the cost function (3.76). An alternative method for minimizing (3.76)
is to simply do gradient descent. This method may be preferable for loss functions
⇢ that are differentiable, e.g., the Geman-McClure loss function.

80 Chapter 3. Robust Principal Component Analysis

One drawback of the M-estimators is that its breakdown point is inversely pro-
portional to the dimension of the space. Thus, the M-estimators become much
less robust when the dimension is high. This makes M-estimators of limited use
in the context of GPCA since the dimension of the space is typically very high.

Consensus-Based Outlier Detection

This approach assumes that the outliers are not drawn from the same model as the
rest of the data. Hence it makes sense to try to avoid the outliers when we infer
the model in the first place. However, without knowing which points are outliers
beforehand, how can we avoid them? One idea is to fit a model, instead of to all
the data points at the same time, only to a subset of the data. This is possible when
the number of data points required for a unique solution for the estimate is much
smaller than that of the given data set. Of course, one should not expect that a
randomly chosen subset will have no outliers and always lead to a good estimate
of the model. Thus, one should try on many different subsets:

X1, X2, . . . , Xn ⇢ X. (3.77)

The rationale is that if the number of subsets are large enough,4 one of the trial
subsets, say Xi, likely contains few or no outliers and hence the resulting model
would be the most consistent with the rest of the data points.

In the case of PCA, the minimum number of data points needed to define the
model is d for linear subspaces and d + 1 for affine subspaces. Therefore, each
subset Xi is formed by randomly sampling d (or d + 1) data points and fitting a
subspace with basis bUd(Xi) to the subset. The subset Xi gives a consistent es-
timate bUd(Xi) of the subspace if the number of data points that fit the subspace
well is large enough. For instance, we may claim that the subset Xi gives a con-
sistent estimate bUd(Xi) if the following criterion is maximized (among all the
chosen subsets):

max

i
#

�

x 2 X :

�

�

x� ˆUd(Xi)
�

� ⌧

, (3.78)

where # is the cardinality of the set and ⌧ > 0 is a chosen error threshold.
This scheme is typically called Random Sample Consensus (RANSAC) [Fischler
and Bolles, 1981], and it normally improves the robustness of the estimate. As a
word of caution, in practice, in order to design a successful RANSAC algorithm,
one needs to carefully choose a few key parameters: the size of every subset, the
number of subsets, and the consensus criterion.5

In theory, the RANSAC scheme can tolerate beyond 50% outliers hence it is
extremely popular for practitioners who handle grossly contaminated data sets.
Nevertheless, the computational cost of this scheme is proportional to the number
of candidate subsets needed to ensure a decent probability of a good model being

4See Appendix B.5 for details on how large this number needs to be.
5That is, the criterion that verifies whether each sample is consistent with the model derived from

the subset.

3.3. PCA with Outliers 81

estimated. That typically grows exponentially with the dimension of the model
and the number of samples. Hence, RANSAC is mostly used in situations when
the model dimension is low – in most of the cases we have seen, the number
of model parameters does not exceed 10. There is a vast amount of literature on
RANSAC-type algorithms, especially in computer vision [Steward, 1999]. For
more details on RANSAC and other related random sampling techniques, the
reader is referred to Appendix B.

3.3.2 Outlier Detection by Convex Optimization
When we deal with high-dimensional data, the above random sampling techniques
could become computationally prohibitive. The other robust statistics based tech-
niques normally do not provide clear conditions under which they could guarantee
correctness or global optimality of the solution found. As we have seen in Section
3.2.2 for the problem with inter-sample outliers, in the high-dimensional regime,
we may resort to results from high-dimensional statistics and convex optimization
and obtain solutions to the outlier detection problem that is provably efficient and
correct.

Outlier Detection by `2,1 Minimization

In Section 3.2.2 we have seen that we can recover a data matrix X with sparsely
corrupted entries by decomposing it into the sum of a low-rank component and
a sparse component: X = L0 + S0, which in turn can be effectively solved via
convex relaxation.

We here could attempt to extend the same ideas and techniques to the case
of a data matrix X with sparsely corrupted columns. These columns correspond
to outlying samples in the dataset. We may assume the fraction of outliers, �,
is small. We denote their column support in X as I0. Hence, the data matrix
naturally can be written as the sum of two components:

X = L0 + C0,

where L0 is a low-rank matrix which has zero columns on I0 and C0 is a matrix
which only has nonzero columns on I0. As � is small, the columns of C0 are
sparse in X .

Obviously such a decomposition is ill-posed (at least ambiguous) if the matrix
X or L0 are also column sparse. Therefore, in order for the decomposition to be
unique, the matrix L0 cannot be column sparse on the (1��)N columns on which
it can be non-zero. We need to introduce a column incoherence condition:

Definition 3.6. A rank r matrix L 2 RD⇥N with SVD: L = U⌃V T , and nonzero
on (1� �)N columns is said to be column incoherent with parameter µ if:

max

i
kV T

eik2 µr

(1� �)N
, (3.79)

where ei are the standard basis vectors for RN .

82 Chapter 3. Robust Principal Component Analysis

It is easy to verify that the smaller µ is, the entries of each column of V are
more spread in value. For randomly generated low-rank matrices, µ is typically
of order O(1).

Even though the incoherence condition may ensure the above low-rank column-
sparse decomposition meaningful, there is no guarantee one can find the correct
decomposition efficiently. For that, we need to resort to proper relaxation. To
this end, we need to use a norm that promotes column-wise sparsity. Let
{c1, c2, . . . , cN} be the N columns of the matrix C. The so-called `2,1 norm of C
is the sum of `2 norm of all the columns:

kCk2,1 =

n
X

i

kcik2. (3.80)

If we collect all the `2 norms of the columns as a vector, the above norm is es-
sentially the `1 norm of the vector, hence measuring how sparse the columns
are.

Similar to PCP for the intra-sample outliers, we can use the following convex
optimization:

min

L,C
kLk⇤ + �kCk2,1 s.t. X = L + C, (3.81)

to decompose sparse column outliers in the data matrix X from the low-rank
component. This convex program is called outlier pursuit.

One can rigorously show that under similarly benign conditions as for Theorem
3.5, the outlier pursuit program can correctly identify the set of sparse (column)
outliers.

Theorem 3.7 ([Xu et al., 2010]). Given X = L0 + C0 2 RD⇥N . Assume that
C0 is supported on at most �N columns and that there exists a µ > 0 such that
L0 is column incoherent with parameter µ according to Definition 3.6. If

rank(L0) c1(1� �)

�µ
,

where c1 =

9
121 , then, with � set to be 3

7
p

�n , the solution (L⇤, C⇤
) to the outlier

pursuit program (3.81) recovers the low-dimensional column space of L0 exactly
and identifies exactly the indices of columns corresponding to outliers not lying
in the column space.

If the data also contain small noise X = L0 + C0 + Z, where Z is a random
Gaussian matrix that models small noise in the data, then we can modify the
outlier pursuit program as

min

L,C
kLk⇤ + �kCk2,1 s.t. kX � L� Ck22 "2, (3.82)

where " is the noise variance. It can be shown that under similar conditions as in
the above theorem, this program gives a stable estimate of the correct solution.
For more details, we refer the reader to [Xu et al., 2010].

3.4. Bibliographic Notes 83

Using similar optimization techniques as in PCP and those introduced in Ap-
pendix A, one can easily develop ALM or ADM based algorithms to solve the
above convex optimization problems. We leave that to the reader as an exercise
(see Exercise 3.10).

Outlier Detection by `1 Minimization

3.4 Bibliographic Notes

Completing a low-rank matrix with missing entries has been a problem with a
very long and rich history. Since the original work by Wiberg [Wiberg, 1976],
one can refer to [Johnson, 1990] for a survey on some of the early developments
on this topic.

This problem has drawn tremendous interest in recent years particularly in the
area of computer vision and pattern recognition. This is because people are start-
ing to deal with higher dimensional data that are acquired under less controlled
conditions. Many algorithms have been proposed to solve this problem in late
1990s and early 2000s, including [Shum et al., 1995,Jacobs, 2001,H.Aanaes et al.,
2002, Brandt, 2002]. There has been work [Ke and Kanade, 2005] that proposes
the use of `1 norm for matrix completion and recovery, which extends the original
Wiberg method [Wiberg, 1976] from `2 to `1 norm.

The seminal work of [Recht et al., 2010, Candès and Recht, 2008] has shown
that under broad conditions, one can correctly recover a low-rank matrix with
significant amount of missing entries via convex optimization (i.e. minimizing the
nuclear norm of the matrix). This has inspired a host of work on developing ever
stronger conditions and more efficient algorithms for low-rank matrix completion
[Cai et al., 2008, Candès and Tao, 2009, Keshavan et al., 2010b], including work
that extends to the case with noise [Candès and Plan, 2010].

3.5 Exercises

Exercise 3.1 (Power Method). Let A 2 RN⇥N be a symmetric positive semidefinite
matrix with eigenvectors {u

i

}N
i=1

and eigenvalues {�
i

}N
i=1

sorted in descending order.
Assume that that �

1

> �
2

and let u0 be an arbitrary vector not orthogonal to u
1

, i.e.,
u>
1

u0 6= 0. Consider the sequence of vectors

u
k+1

=

Au
k

kAu
k

k . (3.83)

1. Show that the exist {↵
i

}N
i=1

with ↵
1

6= 0 such that

uk

= Aku0

=

NX

i=1

↵
i

�k

i

u
i

. (3.84)

84 Chapter 3. Robust Principal Component Analysis

2. Use this expression to show that uk converges to ↵1
|↵1|

u
1

with rate �2
�1

. That is, show
that there exists a constant C > 0 such that for all k � 0

���uk � ↵
1

|↵
1

|u1

��� C
⇣�

2

�
2

⌘
k

. (3.85)

Exercise 3.2 (Orthogonal Power Iteration). Let A 2 RN⇥N be a symmetric positive
semidefinite matrix with eigenvectors {u

i

}N
i=1

and eigenvalues {�
i

}N
i=1

sorted in descend-
ing order. Assume that �

d

> �
d+1

and let U0 2 RN⇥d be an arbitrary matrix whose
column space is not orthogonal to the subspace spanned by the top d eigenvectors of A,
{u

i

}d
i=1

. Consider the sequence of matrices

Uk+1

= AUk

(Rk

)

�1, (3.86)

where QkRk

= AUk is the QR decomposition of AUk. Show that Uk converges to a
matrix U whose columns are the top d eigenvectors of A. Moreover, show that the rate of
convergence is �

d+1

�

d

.

Exercise 3.3 (Convergence of Orthogonal Power Iteration). Prove Theorem 3.1

Exercise 3.4 (Convexity of the Nuclear Norm). Show that the nuclear norm of a matrix,
f(A) = kAk⇤ =

P
i

�
i

(A), is a convex function of A.

Exercise 3.5 (Sub-gradient of the `
1

Norm). Let X be a matrix. Show that the sub-
gradient of the `

1

norm is given by

@kXk
1

= sign(X) +W (3.87)

where W is a matrix such that |W
ij

| 1.

Exercise 3.6 (`
1

Norm Approximation of a Given Matrix). Show that the optimal
solution of

min

A

1

2

kX �Ak2
F

+ ⌧kAk
1

(3.88)

is given by A = S
⌧

(X).

Exercise 3.7 (Sub-gradient of the Nuclear Norm). Let X be a matrix of rank r. Show
that the sub-gradient of the nuclear norm is given by

@kXk⇤ = UV >
+W (3.89)

where X = U⌃V > is the compact (rank r) SVD of X and W is a matrix such that
U>W = 0, WV = 0 and kWk

2

 1.

Exercise 3.8 (Nuclear Norm Approximation of a given matrix). Show that the optimal
solution of

min

A

1

2

kX �Ak2
F

+ ⌧kAk⇤ (3.90)

is given by A = D
⌧

(X).

Exercise 3.9 (Probability of Selecting a Subset of Inliers). Imagine we have 80 samples
from a four-dimensional subspace in R5. However, the samples are contaminated with
another 20 samples that are far from the subspace. We want to estimate the subspace from
randomly drawn subsets of four samples. In order to draw a subset that only contains inliers
with probability 0.95, what is the smallest number of subsets that we need to draw?

3.5. Exercises 85

Exercise 3.10 (Algorithm for Outlier Pursuit). Similar to the Algorithm 3.8 for solving
the principal component pursuit problem, design an algorithm that solves the outlier pursuit
problem (3.81). Discuss what is the difference you have to make and why. Implement the
algorithm in Matlab, and verify its correctness with simulated matrices.

