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Chapter 2
Principal Component Analysis

“Principal component analysis is probably the oldest and best

known of the techniques of multivariate analysis.”

– Ian T. Jolliffe

Principal component analysis (PCA) is the problem of fitting a low-dimensional

affine subspace to a set of data points in a high-dimensional space. PCA is, by

now, well established in the literature, and has become one of the most useful

tools for data modeling, compression, and visualization.

In this chapter, we will give a brief review of the basic principles behind PCA.

When the dimension of the subspace is known, we introduce both the statistical

and geometric formulations of the PCA problem and establish their equivalence.

Specifically, we show that the singular value decomposition provides an optimal

solution to the PCA problem and provide an interpretation of it as a rank mini-

mization problem. We also establish the similarities and differences between PCA

and a probabilistic generative subspace model called probabilistic PCA. Finally,

when the dimension of the subspace is unknown, we introduce some conventional

model selection methods to determine the number of principal components.

2.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) refers to the problem of fitting a low-

dimensional affine subspace S of dimension d ≪ D to a set of points

{x1,x2, . . . ,xN} in a high-dimensional space RD. Mathematically, this problem
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can be formulated as either a statistical problem or a geometric one. In this section,

we will discuss both formulations and show that they lead to the same solution.

We will also formulate PCA as a low-rank matrix approximation problem.

2.1.1 A Statistical View of PCA

Historically, PCA was first formulated in a statistical setting to estimate the prin-

cipal components of a multivariate random variable x [Pearson, 1901, Hotelling,

1933]. Specifically, given a zero-mean multivariate random variable x ∈ R
D and

any integer d < D, the d “principal components” of x, y ∈ R
d, are defined as the

d uncorrelated linear components of x,

yi = u
⊤
i x ∈ R, ui ∈ R

D, i = 1, 2, . . . , d, (2.1)

such that the variance of yi is maximized subject to

u
⊤
i ui = 1 and Var(y1) ≥ Var(y2) ≥ · · · ≥ Var(yd) > 0. (2.2)

For example, to find the first principal component, y1, we seek a vector u∗
1 ∈ R

D

such that

u
∗
1 = argmax

u1∈RD

Var(u⊤
1 x) s.t. u

⊤
1 u1 = 1. (2.3)

The following theorem shows that the principal components of x can be computed

from the eigenvectors of its covariance matrix Σx

.
= E[xx⊤].

Theorem 2.1 (Principal Components of a Random Variable). Assume that

rank(Σx) ≥ d. Then, the first d principal components of a zero-mean multivariate

random variable x, denoted by yi for i = 1, 2, . . . , d, are given by

yi = u
⊤
i x, (2.4)

where {ui}di=1 are d orthonormal eigenvectors of Σx

.
= E[xx⊤] associated with

its d largest eigenvalues {λi}di=1. Moreover, λi = Var(yi) for i = 1, 2, . . . , d.

Proof. For the sake of simplicity, let us first assume that Σx does not have re-

peated eigenvalues. In this case, since the matrix Σx is real and symmetric, its

eigenvalues are real and its eigenvectors form a basis of RD. Moreover, the eigen-

vectors are unique (up to sign) and the eigenvectors corresponding to different

eigenvalues are orthogonal to each other (see Exercise 2.1).

Now, notice that for any u ∈ R
D, we have that

Var(u⊤
x) = E[(u⊤

x)2] = E[u⊤
xx

⊤
u] = u

⊤Σxu. (2.5)

Therefore, the optimization problem in (2.3) is equivalent to

max
u1∈RD

u
⊤
1 Σxu1 s.t. u

⊤
1 u1 = 1. (2.6)

To solve the above constrained minimization problem, we use the method of

Lagrange multipliers (see Appendix A). The Lagrangian is given by

L = u
⊤
1 Σxu1 + λ1(1− u

⊤
1 u1), (2.7)
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where λ1 ∈ R is the Lagrange multiplier. From computing the derivatives of

L with respect to (u1, λ1) and setting them to zero, we obtain the following

necessary conditions for (u1, λ1) to be an extremum of L:

Σxu1 = λ1u1 and u
⊤
1 u1 = 1. (2.8)

This means that u1 is an eigenvector of Σx with associated eigenvalue λ1. Since

the extremum value is u
⊤
1 Σxu1 = λ1u

⊤
1 u1 = λ1, the optimal solution for u1

is given by the eigenvector of Σx associated with its largest eigenvalue λ1 =
Var(y1) > 0.

To find the second principal component, u2, we use the fact that u⊤
1 x and u

⊤
2 x

need to be uncorrelated. This implies that u2 is orthogonal to u1: Indeed from

E[(u⊤
1 x)(u

⊤
2 x)] = E[u⊤

1 xx
⊤
u2] = u

⊤
1 Σxu2 = λ1u

⊤
1 u2 = 0 (2.9)

and λ1 6= 0, we have u⊤
1 u2 = 0. Thus, to find u2, we need to solve the following

optimization problem

max
u2∈RD

u
⊤
2 Σxu2 s.t. u

⊤
2 u2 = 1 and u

⊤
1 u2 = 0. (2.10)

As before, we define the Lagrangian

L = u
⊤
2 Σxu2 + λ2(1− u

⊤
2 u2) + γu⊤

1 u2. (2.11)

The necessary conditions for (u2, λ2) to be an extremum are

Σxu2 +
γ

2
u1 = λ2u2, u

⊤
2 u2 = 1 and u

⊤
1 u2 = 0, (2.12)

from which it follows that u⊤
1 Σxu2 + γ

2u
⊤
1 u1 = λ1u

⊤
1 u2 + γ

2 = λ2u
⊤
1 u2,

and so γ = 2(λ2 − λ1)u
⊤
1 u2 = 0. This implies that Σxu2 = λ2u2 and that

the extremum value is u
⊤
2 Σxu2 = λ2 = Var(y2). Therefore, u2 is the lead-

ing eigenvector of Σx restricted to the orthogonal complement of u1.1 Since the

eigenvalues of Σx are different, u2 is the eigenvector of Σx associated with its

second largest eigenvalue.

To find the remaining principal components, we use that fact that for all for

i 6= j, yi = u⊤
i x and yj = u

⊤
j x need to be uncorrelated, hence

Var(yiyj) = E[u⊤
i xx

⊤
uj ] = u

⊤
i Σxuj = 0.

Using induction, assume that u1, . . . ,ui−1 are the unit-length eigenvectors of

Σx associated with its top i − 1 eigenvalues and let ui be the vector defining

the i-th principal component yi. Then Σxuj = λjuj for j = 1, . . . , i − 1 and

u
⊤
i Σxuj = λju

⊤
i uj = 0 for all j = 1, . . . , i − 1. Since λj > 0, we have that

u
⊤
i uj = 0 for all j = 1, . . . , i− 1. To compute ui, we build the Lagrangian

L = u
⊤
i Σxui + λi(1− u

⊤
i ui) +

i−1∑

j=1

γju
⊤
i uj . (2.13)

1The reason for this is that both u1 and its orthogonal complement u⊥
1 are invariant subspaces of

Σx.
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The necessary conditions for (ui, λi) to be an extremum are

Σxui +
i−1∑

j=1

γj
2
uj = λiui, u

⊤
i ui = 1 and u

⊤
i uj = 0, j = 1, . . . , i− 1, (2.14)

from which it follows that u⊤
j Σxui +

γj

2 = λju
⊤
j ui +

γj

2 = λiu
⊤
j ui, and so

γj = 2(λj−λi)u
⊤
j ui = 0 for all j = 1, . . . , i−1. Since the associated extremum

value is u⊤
i Σxui = λi = Var(yi), ui is the leading eigenvector of Σx restricted

to the orthogonal complement of the span of u1, . . . ,ui−1. Since the eigenvalues

of Σx are different, ui is the eigenvector of Σx associated with the i-th largest

eigenvalue. Therefore, when the eigenvalues of Σx are different, each eigenvector

ui is unique (up to sign), hence so are the principal components of x.

Let us now consider the case where Σx has repeated eigenvalues. In this case,

Σx still admits a basis of orthonormal eigenvectors. Specifically, the eigenvectors

of Σx associated to different eigenvalues are still orthogonal, while the eigen-

vectors associated with a repeated eigenvalue form an eigensubspace and any

orthonormal basis for this eigensubspace gives a valid set of eigenvectors (see Ex-

ercise 2.1). As a consequence, the principal directions {ui}di=1 are not uniquely

defined. For example, if λ1 is repeated, any eigenvector associated with λ1 can be

chosen as u1 and any other eigenvector associated with λ1 and orthogonal to u1

can be chosen as u2. Nonetheless, the principal components can still be obtained

from a(ny) set of the top d eigenvectors of Σx, as claimed.

The solution to PCA provided by Theorem 2.1 suggests that we may find the

d principal components of x simultaneously, rather than one by one. Specifically,

we can define a random vector y = [y1, y2, . . . , yd]
⊤ ∈ R

d and a matrix Ud =
[u1,u2, . . . ,ud] ∈ R

D×d. Since y = U⊤
d x, we have that

Σy

.
= E[yy⊤] = U⊤

d E[xx⊤]Ud = U⊤
d ΣxUd. (2.15)

Since were are looking for uncorrelated random variables, the matrix Σy must be

diagonal and the matrix Ud must be orthonormal, i.e., U⊤
d Ud = Id.

Recall that any diagonalizable matrix A can be transformed into a diagonal

matrix Λ = V −1AV , where the columns of V are the eigenvectors of A and the

diagonal entries of Λ are the corresponding eigenvalues. Recall also that if A is

real, symmetric and positive semi-definite, its eigenvalues are real and nonnega-

tive, i.e., λi ≥ 0, and its eigenvectors can be chosen to be orthonormal, so that

V −1 = V ⊤ (see Exercise 2.1). Since the matrix Σx is real, symmetric and pos-

itive semi-definite, one solution to the equation Σy = U⊤
d ΣxUd is obtained by

choosing the columns of Ud as d eigenvectors of Σx and the diagonal entries of

Σy as the corresponding d eigenvalues. Moreover, since our goal is to maximize

the variance of each yi and λi = Var(yi), we conclude that the columns of Ud are

the top d eigenvectors of Σx and the entries of Σy are the corresponding top d
eigenvalues.
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Principal Components of a Non-zero Mean Random Variable

When x is not zero mean, the d principal components of x are defined as the d
uncorrelated affine components of x

yi = u
⊤
i x+ ai ∈ R, ui ∈ R

D, i = 1, 2, . . . , d, (2.16)

such that the variance of yi is maximized subject to

u
⊤
i ui = 1 and Var(y1) ≥ Var(y2) ≥ · · · ≥ Var(yd) > 0. (2.17)

As shown in Exercise 2.3, the principal directions {ui}di=1 are the d eigenvec-

tors of Σx

.
= E[(x − µ)(x − µ)⊤], where µ = E(x), associated with its

d largest eigenvalues {λi}di=1. Moreover, λi = Var(yi) and ai = −u
⊤
i µ for

i = 1, 2, . . . , d.

Sample Principal Components of a Zero Mean Random Variable

In practice, we may not know the population covariance matrix, Σx. Instead, we

may be given N i.i.d. samples of the zero-mean random variable x, {xj}Nj=1,

which we collect into a data matrix X = [x1,x2, . . . ,xN ]. It is well known from

statistics (see Exercise B.1) that the maximum likelihood estimate of Σx is given

by

Σ̂N
.
=

1

N

N∑

j=1

xjx
⊤
j =

1

N
XX⊤. (2.18)

We define the d “sample principal components” of x as

ŷi = û
⊤
i x, i = 1, 2, . . . , d, (2.19)

where {ûi}di=1 are the top d eigenvectors of Σ̂N , or equivalently those of XX⊤.

Notice that when the dimension of the data, D, is very high, we can avoid

computing the eigenvectors of a large matrix XX⊤ by exploiting the fact that the

top eigenvectors of XX⊤ are the same as the top singular vectors of X . Therefore,

the sample principal components of x may be computed from the singular value

decomposition (SVD) of X = UΣV ⊤ as y = U⊤
d x, where the columns of Ud

are the first d columns of U .

Remark 2.2 (Relationship between principal components and sample principal

components). Even though the principal components of x and the sample prin-

cipal components of x are different notions, under certain assumptions on the

distribution of x they can be related to each other. Specifically, one can show

that, if x is Gaussian, then every eigenvector û of Σ̂N is an asymptotically con-

sistent unbiased estimate (see Appendix B) for the corresponding eigenvector u

of Σx. Interested readers may find a more detailed proof in [Jolliffe, 1986b].
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2.1.2 A Geometric View of PCA

An alternative geometric view of PCA, which is very much related to the SVD

[Beltrami, 1873,Jordan, 1874], assumes that we are given a set of points {xj}Nj=1

in R
D and seeks to find an (affine) subspace S ⊂ R

D of dimension d that best fits

these points. Each point xj ∈ S can be represented as

xj = µ+ Udyj , j = 1, 2, . . . , N, (2.20)

where µ ∈ S is a(ny) point in the subspace, Ud is a D× d matrix whose columns

form a basis for the subspace, and yj ∈ R
d is simply the vector of new coordinates

of xj in the subspace.

Notice that there is some redundancy in the above representation due to the

arbitrariness in the choice of µ and Ud. More precisely, for any y0 ∈ R
d, we

can re-represent xj as xj = (µ+ Udy0) + Ud(yj − y0). We call this ambiguity

the translational ambiguity. Also, for any A ∈ R
d×d we can re-represent xj as

xj = µ+ (UdA)(A
−1

yj). We call this ambiguity the change of basis ambiguity.

Therefore, we need some additional constraints in order to end up with a unique

solution to the problem of finding an affine subspace for the data.

A common constraint used to resolve the translational ambiguity is to impose

that the average of the yj be zero,2 i.e.,

1

N

N∑

j=1

yj = 0, (2.21)

where 0 ∈ R
d is the vector of all zeros, while a common constraint used to resolve

the change of basis ambiguity is to impose that the columns of Ud be orthonormal,

i.e., U⊤
d Ud = I . This last constraint eliminates the change of basis ambiguity only

up to a rotation, because we can still re-represent xj as xj = µ+ (UdR)(R⊤
yj)

for some rotation R in R
d. However, this rotational ambiguity can easily be dealt

with during optimization, as we shall see.

In general the given points are imperfect and have noise. For example, if the

points N are contaminated by additive noise {εj}Nj=1, respectively, we have that

xj = µ+ Udyj + εj , j = 1, 2, . . . , N. (2.22)

In this case, we define the “optimal” affine subspace to be the one that minimizes

the sum of squared errors, i.e.,

min
µ,Ud,{yj}

N∑

j=1

∥∥xj − µ− Udyj

∥∥2, s.t. U⊤
d Ud = Id and

N∑

j=1

yj = 0. (2.23)

2In the statistical setting, xj and yj will be samples of two random variables x and y, respectively.

Then this constraint is equivalent to setting their means to be zero.



2.1. Principal Component Analysis (PCA) 29

In order to solve this optimization problem, we define the Lagrangian

L =

N∑

j=1

∥∥xj − µ− Udyj

∥∥2 + γ⊤
N∑

j=1

yj + trace
(
(Id − U⊤

d Ud)Λ
)
, (2.24)

where γ ∈ R
d and Λ = Λ⊤ ∈ R

d×d are, respectively, a vector and a matrix of

Lagrange multipliers. The necessary condition for µ to be an extremum is

− 2

N∑

j=1

(xj − µ− Udyj) = 0 =⇒ µ̂ = µ̂N
.
=

1

N

N∑

j=1

xj . (2.25)

The necessary condition for yj to be an extremum is

− 2U⊤
d (xj − µ− Udyj) + γ = 0. (2.26)

Summing over j yields γ = 0, from which we obtain

ŷj = U⊤
d (xj − µ̂N ). (2.27)

The vector ŷj ∈ R
d is simply the coordinates of the projection of xj ∈ R

D onto

the subspace S. We may call such ŷ the “geometric principal components” of x.

Before optimizing over Ud, we can replace the optimal values for µ and yj into

the objective function. This leads to the following optimization problem

min
Ud

N∑

j=1

∥∥(xj − µ̂N )− UdU
⊤
d (xj − µ̂N )

∥∥2 s.t. U⊤
d Ud = Id. (2.28)

Note that this is a restatement of the original problem with the mean µ̂N sub-

tracted from each of the sample points. Therefore, from now on, we will consider

only the case in which the data points have zero mean. If not, simply subtract the

mean from each point before computing Ud.

The following theorem gives a constructive solution for finding an optimal Ûd.

Theorem 2.3 (PCA via SVD). Let X = [x1,x2, . . . ,xN ] ∈ R
D×N be the matrix

formed by stacking the (zero-mean) data points as its column vectors. Let X =
UΣV ⊤ be the SVD of the matrix X . Then for any given d < D, an optimal

solution Ûd for Ud is given by the first d columns of U , and an optimal solution

ŷj for yj is given by the i-th column of the top d×N submatrix Σ̂dV̂
⊤
d of ΣV ⊤.

Proof. Recalling that x⊤Ax = trace(Axx⊤), we can rewrite the least-squares

error

N∑

j=1

∥∥xj − UdU
⊤
d xj

∥∥2 =

N∑

j=1

x
⊤
j (ID − UdU

⊤
d )xj (2.29)

as trace((ID−UdU
⊤
d )XX⊤). The first term traceXX⊤ does not depend on Ud.

Therefore, we can transform the minimization of (2.29) to

max
Ud

trace(UdU
⊤
d XX⊤) s.t. U⊤

d Ud = Id. (2.30)
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Since traceAB = traceBA, the Lagrangian for this problem can be written as

L = trace(U⊤
d XX⊤Ud) + trace((Id − U⊤

d Ud)Λ), (2.31)

where Λ = Λ⊤ ∈ R
d×d. The conditions for an extremum are given by

XX⊤Ud = UdΛ. (2.32)

Therefore, Λ = U⊤
d XX⊤Ud and the objective function reduces to trace(Λ).

Now, recall that Ud is defined only up to a rotation, i.e., U ′
d = UdR is also a valid

solution, hence so is Λ′ = RΛR⊤. Since Λ is symmetric, it has an orthogonal

matrix of eigenvectors. Thus, if we choose R to be the matrix of eigenvectors

of Λ, then Λ′ is a diagonal matrix. As a consequence, we can choose Λ to be

diagonal without loss of generality. It follows from (2.32) that the columns of

Ud must be d eigenvectors of XX⊤ with the corresponding eigenvalues in the

diagonal entries of Λ. Since the goal is to maximize trace(Λ), an optimal solution

is given by the top d eigenvectors of XX⊤, i.e., the top d singular vectors of

X = UΣV ⊤, which are the first d columns of U . It then follows from (2.27)

that Y = [y1,y2, . . . ,yN ] = U⊤
d X = U⊤

d UΣV ⊤ = ΣdV
⊤
d . Finally, since Λ =

U⊤
d UΣ2U⊤Ud = Σ2

d, the optimal least-squares error is given by trace(Σ2) −
trace(Σ2

d) =
∑D

i=d+1 σ
2
i , where σi is the i-th singular value of X .

According to the theorem, the SVD gives an optimal solution to the PCA

problem. The resulting matrix Ûd (together with the mean µ̂ if the data is not zero-

mean) provides a geometric description of the dominant subspace structure for all

the points;3 and the columns of the matrix Σ̂dV̂
⊤
d = [ŷ1, ŷ2, . . . , ŷN ] ∈ R

d×N ,

i.e., the principal components, give a more compact representation for the points

X = [x1,x2, . . . ,xN ] ∈ R
D×N , as d is typically much smaller than D.

Theorem 2.4 (Equivalence of Geometric and Sample Principal Components). Let

X = [x1,x2, . . . ,xN ] ∈ R
D×N be the mean-subtracted data matrix. The vectors

û1, û2, . . . , ûd ∈ R
D associated with the d sample principal components of X

are exactly the columns of the matrix Ûd ∈ R
D×d that minimizes the least-squares

error (2.29).

Proof. The proof is simple. Notice that if X has the singular value decomposition

X = UΣV ⊤, then XX⊤ = UΣ2U⊤ is the eigenvalue decomposition of XX⊤.

If Σ is ordered, then the first d columns of U are exactly the leading d eigenvectors

of XX⊤, which give the d sample principal components.

The above theorem shows that both the geometric and statistical formulations

of PCA lead to exactly the same solution/estimate of the sample principal com-

ponents. This equivalence is part of the reason why PCA has become the tool

of choice for dimensionality reduction as the optimality of the solution can be

interpreted either statistically or geometrically in different application contexts.

3From a statistical standpoint, the column vectors of Ud give the directions in which the data X

has the largest variance, hence the name “principal components.”
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Figure 2.1. Example showing a two-dimensional dataset and its two principal components.

Figure 2.1 gives and example of a two-dimensional dataset and its two principal

components.

2.1.3 A Rank Minimization View of PCA

Notice that the geometric PCA problem in (2.23) can be rewritten as

min
µ,Ud,Y

∥∥X − µ1
⊤ − UdY

∥∥2
F
, s.t. U⊤

d Ud = Id and Y 1 = 0, (2.33)

where X =
[
x1, . . . ,xN

]
, Y =

[
y1, . . . ,yN

]
, 1 ∈ R

N is the vector of all ones,

and ‖X‖2F =
∑

ij X
2
ij is the Frobenius norm of X . Therefore, another interpre-

tation of PCA is to see it as the problem of finding a vector µ and rank-d matrix

A that best approximate the data matrix X . This problem can be formulated as

min
µ,A

‖X − µ1
⊤ −A‖2F s.t. rank(A) = d and A1 = 0. (2.34)

Notice that this formulation is identical to that in (2.23), except that we have now

replaced the subspace basis Ud and the matrix of principal components Y by their

product A = UdY . The constraint A1 = 0 comes from the requirement that the

principal components be centered, i.e.,
∑

yj = 0, hence Y 1 = 0.

Since the problem in (2.34) is the same as that in (2.23), we already know

that the optimal solution for µ is 1
N

∑
j xj = 1

NX1. Therefore, after centering

the data matrix by subtracting µ from each column, the optimization problem in

(2.34) can be reduced to

min
A

‖X −A‖2F s.t. rank(A) = d. (2.35)

Notice that we have dropped the constraint A1 = 0. This is because this constraint

is not needed when the data matrix is centered, i.e., when X1 = 0. To see this,

let A∗ = argminA:A1=0,rank(A)=d ‖X − A‖2F be the optimal solution subject to

the constraint A1 = 0, and let Â = A∗ − a1
⊤, where a = 1

NA∗
1, be another
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solution. By the sake of contradiction, assume that a 6= 0. Then,

‖X − Â‖2F = ‖X −A∗ + a1
⊤‖2F (2.36)

= ‖X −A∗‖2F + 2〈X −A∗,a1⊤〉+ ‖a1⊤‖2F (2.37)

= ‖X −A∗‖2F + 2a⊤(X −A∗)1+N‖a‖22 (2.38)

= ‖X −A∗‖2F −N‖a‖22 < ‖X −A∗‖2F , (2.39)

which contradicts the optimality of A∗.

To solve the problem in (2.35), let X = UXΣXV ⊤
X and A = UAΣAV

⊤
A be,

respectively, the SVD of X and A. Then, letting U = U⊤
XUA and V = V ⊤

X VA,

we have

‖X −A‖2F = ‖UXΣXV ⊤
X − UAΣAV

⊤
A ‖2F = ‖ΣX − UΣAV

⊤‖2F (2.40)

= ‖ΣX‖2F − 2〈ΣX , UΣAV
⊤〉+ ‖ΣA‖2F . (2.41)

Therefore, minimizing ‖X −A‖2F w.r.t. A, is equivalent to minimizing the above

expression with respect to U , V and ΣA. We will solve this problem in two steps.

In the first step, we will minimize w.r.t. U and V only. Notice that this is

equivalent to.

max
U,V

〈ΣX , UΣAV
⊤〉 (2.42)

The solution to this problem can be found from the Von Neumann’s inequality,

which is stated next.

Lemma 2.5 (Von Neumann’s Inequality). For any m×n real valued matrices F
and G, let σ1(F ) ≥ σ2(F ) ≥ · · · ≥ 0 and σ1(G) ≥ σ2(G) ≥ · · · ≥ 0 be the

descending singular values of F and G respectively. Then

〈F,G〉 = trace(F⊤G) ≤
n∑

i=1

σi(F )σi(G). (2.43)

The case of equality occurs if and only if it is possible to find unitary matrices UF

and VF that simultaneously singular value-decompose F and G in the sense that

F = UFΣFV
⊤
F and G = UFΣGV

⊤
F , (2.44)

where ΣF and ΣG denote the m × n diagonal matrices with the singular values

of F and G, respectively, down in the diagonal.

Proof. See [Mirsky, 1975].

Applying this lemma to F = ΣX and G = UΣAV
⊤, we obtain

〈ΣX , UΣAV
⊤〉 ≤

d∑

i=1

σi(X)σi(A), (2.45)

because σi(A) = 0 for i > d. Notice also that equality is achieved for example

for U = I and V = I , hence UA = UX and VA = VX .
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In the second step, we will substitute the above solutions for U and V into the

objective function ‖X − A‖2F and optimize over ΣA. We obtain the following

optimization problem

min
ΣA

d∑

i=1

σi(A)
2 − 2

d∑

i=1

σi(X)σi(A). (2.46)

Taking the derivatives with respect to σi(A) and setting them to zero gives us

σi(A) = σi(X) for i = 1, . . . , d. We thus have the following result.

Theorem 2.6. Let X = UΣV ⊤ be the singular value decomposition of the mean

subtracted data matrix. An optimal solution for the optimization problem

min
A

‖X −A‖2F s.t. rank(A) = d (2.47)

is given by A = UdΣdV
⊤
d , where Ud, Σd and Vd correspond to the top d singular

vectors and singular values in U , Σ and V , respectively.

Notice that this theorem is essentially equivalent to Theorem 2.3 and that the

above derivation based on Von Neummann’s inequality provides an alternative

proof for the theorem.

In summary, we can view the PCA problem either as a statistical problem,

or as a geometrical problem, or as a rank minimization problem, and all three

interpretations lead to the same solution.

2.2 Probabilistic PCA (PPCA)

The PCA model described so far allows us to find a low-dimensional representa-

tion {yj ∈ R
d} of a set of sample points {xj ∈ R

D}, with d ≪ D. However,

the PCA model is not a proper generative model, because the low-dimensional

representation {yj} and the error {εj} are not treated as random variables. As a

consequence, the PCA model cannot be used to generate new samples x.

To address this issue, assume that the low-dimensional representation y and the

error ε are independent random variables with pdfs p(y) and p(ε), respectively.

This allows us to generate a new sample of x from samples of y and ε as

x = µ+ Udy + ε. (2.48)

Assume that the mean and covariance of y are denoted as µ
y

and Σy , respectively.

Assume also that ε is zero mean with covariance Σε. The mean and covariance of

the observations are then given by

µ
x
= µ+ Udµy

and Σx = UdΣyU
⊤
d +Σε. (2.49)

Notice that, different from the PCA problem studied in the previous section,

here we no longer need to assume that Ud is a unitary matrix. This is because,

once we enforce a specific type of probability distribution for y, we should be able

to estimate via the Maximum Likelihood (ML) principle (see Appendix B.1.4) an
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optimal model from the observations x without any additional constraints on the

matrix Ud. The remainder of the section discusses different methods for estimat-

ing the parameters of this model, including µ, Ud, µ
y

, Σy and Σε, from the mean

and covariance of the population, µ
x

and Σx, or from i.i.d. samples {xj}Nj=1.

2.2.1 PPCA from Population Mean and Covariance

Observe that, in general, we cannot uniquely recover the model parameters from

µ
x

and Σx. For instance, notice that µ and µ
y

cannot be uniquely recovered from

µ
x

. Similarly to what we did in the case of PCA, this issue can easily be resolved

by assuming that µ
y
= 0. This leads to the following estimate of µ

µ̂ = µ
x
, (2.50)

which is the same estimate as that of PCA (see Exercise 2.3).

Another ambiguity that cannot be resolved in a straightforward manner is that

Σy and Σε cannot be uniquely recovered from Σx. For instance, Σy = 0 and

Σε = Σx is a valid solution. However, this solution is not meaningful, because it

assigns all the information in Σx to the error, rather than to the low-dimensional

representation. Intuitively we would like Σy to capture as much information about

Σx as possible. Thus it makes sense for Σy to be full rank and for Σε to be as

close to zero as possible. Probabilistic PCA (PPCA) resolves this ambiguity by

assuming that

1. The low-dimensional representation has unit covariance, i.e., Σy = Id ∈
R

d×d.

2. The noise covariance matrix Σε ∈ R
D×D is isotropic, i.e., Σε = σ2ID.

These assumptions lead to the following relationship

Σx = UdU
⊤
d + σ2ID, (2.51)

from which it follows that the off-diagonal entries of Σx are equal to the off-

diagonal entries of UdU
⊤
d . As a consequence, even though both PPCA and PCA

try to capture as much information from Σx into Σy , the information they attempt

to capture is not the same. On the one hand, PPCA tries to find a matrix Ud such

that the covariances are preserved, i.e., the off-diagonal entries of Σx. On the

other hand, PCA tries to preserve the variances, i.e., the diagonal entries of Σx.

As it turns out, the parameters Ud and σ of the PPCA model can be computed

in closed form from the SVD of the population covariance Σx, as stated by the

following theorem. Again, we emphasize that in the PPCA model, the matrix Ud

can be an arbitrary matrix and it does not need to be unitary.

Theorem 2.7 (PPCA from Population Mean and Covariance). The parameters

µ, Ud and σ of the PPCA model can be estimated from the population mean and

covariance, µ
x

and Σx, respectively, as

µ̂ = µ
x
, Ûd = U1(Λ1 − σ̂2I)1/2R, σ̂2 = λd+1 = λd+2 = · · · = λD, (2.52)
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where U1 is the matrix with the top d eigenvectors of Σx, Λ1 is the diagonal

matrix in R
d×d of the corresponding top d eigenvalues, R ∈ R

d×d is an arbitrary

orthogonal matrix and λi is the i-th eigenvalue of Σx.

Proof. We have already shown in (2.50) that µ̂ = µ
x

. To find σ, notice that

the eigenvalues of Σx must be equal to the eigenvalues of UdU
⊤
d plus σ2. Since

UdU
⊤
d has rank d and is positive semidefinite, D − d eigenvalues of UdU

⊤
d must

be equal to zero. Since σ is as small as possible, the smallest D − d eigenvalues

of Σx must be equal to each other and equal to σ2. To find Ud, let

Σx =
[
U1 U2

] [Λ1 0

0 σ2ID−d

] [
U1 U2

]⊤
(2.53)

be the eigenvalue decomposition of Σx, where the columns of U1 are the top d
eigenvectors of Σx and the entries of Λ1 are the corresponding eigenvalues. Then,

UdU
⊤
d = Σx − σ2ID =

[
U1 U2

] [Λ1 − σ2Id 0

0 0

] [
U1 U2

]⊤
(2.54)

= U1(Λ1 − σ2Id)U
⊤
1 . (2.55)

Since both Ud and U1 are of rank d, all the solutions for Ud must be of the form

Ud = U1(Λ1 − σ2Id)
1/2R, where R is an arbitrary orthogonal matrix.

2.2.2 PPCA by Maximum Likelihood

In practice, we may not know the population mean and covariance, µ
x

and Σx.

Instead, we are given N i.i.d. samples, {xj}Nj=1, from which we wish to estimate

the PPCA model parameters µ, Ud and σ. In this section, we show that the ML

estimates (see Appendix B.1.4) of these parameters can be computed in closed

form from the ML estimates of the mean and covariance.

To that end, recall that in the PPCA model x ∼ N (µ
x
,Σx), where µ

x
= µ

and Σx = UdU
⊤
d + σ2ID. Therefore, the log-likelihood of x is given by

L =

N∑

j=1

log
( 1

(2π)D/2 det(Σx)1/2
exp

(
− (xj−µ

x
)⊤Σ−1

x
(xj−µ

x
)

2

))

= −ND

2
log(2π)− N

2
log det(Σx)−

1

2

N∑

j=1

(xj − µ)⊤Σ−1
x

(xj − µ).

(2.56)

We obtain the ML estimate for µ from the derivatives of L with respect to µ, to

be

∂L
∂µ

= −
N∑

j=1

Σ−1
x

(xj − µ) = 0 =⇒ µ̂ = µ̂N
.
=

1

N

N∑

j=1

xj . (2.57)

After replacing µ̂ into the log-likelihood, we obtain

L = −ND

2
log(2π)− N

2
log det(Σx)−

N

2
trace(Σ−1

x
Σ̂N ), (2.58)
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where

Σ̂N
.
=

1

N

N∑

j=1

(xj − µ̂N )(xj − µ̂N )⊤. (2.59)

The answer to the question of whether Ud and σ can be estimated as in

Theorem 2.7 after replacing Σx by Σ̂N is given by the following theorem.

Theorem 2.8 (PPCA by Maximum Likelihood). The ML estimates for the pa-

rameters of the PPCA model µ, Ud and σ can be obtained from the ML estimates

of the mean and covariance of the data, µ̂N and Σ̂N , respectively, as

µ̂ = µ̂N , Ûd = U1(Λ1 − σ̂2I)1/2R and σ̂2 =
1

D − d

D∑

i=d+1

λi, (2.60)

where U1 is the matrix with the top d eigenvectors of Σ̂N , Λ1 is the matrix with

the corresponding top d eigenvalues, R ∈ R
d×d is an arbitrary orthogonal matrix

and λi is the i-th largest eigenvalue of Σ̂N .

Proof. We have already shown that µ̂ = µ̂N . To find Ud, we need to com-

pute the derivatives of L with respect to Ud. It follows from Exercise A.4 that
∂

∂X log(| det(X)|) = (X−1)⊤, ∂
∂X trace(AX−1B) = −(X−1BAX−1)⊤ and

∂
∂X trace(XBX⊤) = XB⊤ +XB. Therefore,

∂L
∂Ud

= −NΣ−1
x

Ud +NΣ−1
x

Σ̂NΣ−1
x

Ud = 0 =⇒ Σ̂NΣ−1
x

Ud = Ud. (2.61)

One possible solution is Ud = 0, which leads to a minimum of the log-likelihood

and violates our assumption that Ud should be full rank. Another possible solution

is Σx = Σ̂N , where the covariance model is exact. This corresponds to the case

discussed in the previous section, after replacing Σx by Σ̂N . Thus, the model

parameters can be computed as in Theorem 2.7 as equation (2.60) reduces to

equation (2.52). A third solution is obtained when Ud 6= 0 and Σx 6= Σ̂N . In

this case, let Ud = WΓV ⊤ be the compact SVD of Ud, where W ∈ R
D×d is a

matrix with orthonormal columns, Γ ∈ R
d×d is an invertible diagonal matrix, and

V ∈ R
d×d is an orthogonal matrix. Then

Σx = WΓ2W⊤ + σ2ID = W (Γ2 + σ2Id)W
⊤ + σ2W⊥W⊥⊤, (2.62)

where W⊥ ∈ R
D×(D−d) is an orthonormal matrix such that W⊤W⊥ = 0. Thus,

Σ̂NΣ−1
x

Ud = Σ̂N (W (Γ2 + σ2Id)
−1W⊤ + σ−2W⊥W⊥⊤)WΓV ⊤ (2.63)

= Σ̂NW (Γ2 + σ2Id)
−1ΓV ⊤ = WΓV ⊤ (2.64)

and

Σ̂NW = W (Γ2 + σ2Id). (2.65)

Letting W = [w1, . . . , wd] and Γ = diag{γ1, . . . , γd}, we obtain

Σ̂Nwi = (γ2
i + σ2)wi ∀i = 1, . . . , d. (2.66)
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Hence, W is a matrix containing d eigenvectors of Σ̂N with corresponding eigen-

values γ2
i + σ2. Let Σ̂N = UΛU⊤ = [U1, U2]diag{Λ1,Λ2}[U1, U2]

⊤ be the

eigenvalue decomposition of Σ̂N , where we partition U and Λ so that the d cho-

sen eigenvectors and eigenvalues are in U1 and Λ1, respectively. Then, all optimal

solutions for Ud are of the form

Ud = WΓV ⊤ = U1(Λ1 − σ2Id)
1/2V ⊤. (2.67)

To determine σ, we replace the solution for Ud into the likelihood in (2.58).

Noticing that

det(Σx) = det
(
UdU

⊤
d + σ2ID

)
(2.68)

= det
(
U1(Λ1 − σ2Id)U

⊤
1 + σ2(U1U

⊤
1 + U2U

⊤
2 )

)
(2.69)

= det(U1Λ1U
⊤
1 + σ2U2U

⊤
2 ) = det(Λ1)σ

2(D−d) (2.70)

and that

trace(Σ−1
x

Σ̂N ) = trace (U1Λ
−1
1 U⊤

1 + σ−2U2U
⊤
2 )(U1Λ1U

⊤
1 + U2Λ2U

⊤
2 )
(2.71)

= traceU1U
⊤
1 + σ−2U2Λ2U

⊤
2 = d+ σ−2 traceΛ2, (2.72)

we obtain

L = −N

2

(
D log(2π) + log det(Λ1) + (D − d) log σ2 + d+ σ−2 trace(Λ2)

)
.

(2.73)

The condition for an extremum in σ2 is given by

∂L
∂σ2

= −N

2

(
D − d

σ2
− trace(Λ2)

σ4

)
= 0 =⇒ σ2 =

trace(Λ2)

D − d
. (2.74)

Therefore, σ2 is the average of the discarded eigenvalues of Σ̂N .

To determine which d eigenvectors and eigenvalues of Σ̂N should be discarded,

notice that det(Λ1) =
det(Λ)
det(Λ2)

. Hence, after replacing the optimal σ2 into L, we

can see that the maximization of L is equivalent to the minimization of

M = log
(∑D

i=d+1 λπ[i]

D − d

)
−

∑D
i=d+1 log λπ[i]

D − d
, (2.75)

where λπ[1], . . . , λπ[d] are the chosen eigenvalues and λπ[d+1], . . . , λπ[D] are the

discarded ones. Since log is a concave downwards function, by Jensen’s inequal-

ity, M is nonnegative. Since the log function is concave downwards, the reader

can verify (see Exercise 2.10) that M is minimized when the discarded eigenval-

ues are contiguous within the spectrum of the ordered eigenvalues of Σ̂N . Further,

since the chosen eigenvalues must be such that λπ[i] ≥ σ2 for i = 1, . . . , d, the

discarded eigenvalues must be the D − d smallest eigenvalues. Indeed if not,

λmin = min
i=1,...,D

λi would be one of the chosen eigenvalues and we would have

λmin < σ2, which would be a contradiction to equation (2.66). Therefore, the

optimal solutions for Ud and σ are given by (2.60).
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2.3 Model Selection for Principal Component Analysis

One of the main goals of both PCA and PPCA is to reduce the data to a small

number of principal components that capture as much information about the data

as possible. So far, we have assumed that the number of principal components, d,

or the dimension of the subspace S, is known. In practice, however, we may not

know the intrinsic dimension of the data. In this section, we review a few methods

(several of them heuristic) for estimating the number of principal components.

2.3.1 Model Selection by Information Theoretic Criteria

Let X = [x1,x2, . . . ,xN ] ∈ R
D×N be the mean-subtracted data matrix. When

the data points are noise free, they lie exactly in a subspace of dimension d. Hence,

we can estimate d as the rank of X , i.e., d = rank(X). However, when the data

are contaminated by noise, the matrix X will be full rank in general, hence we

cannot use its rank to estimate d. Nonetheless, notice that the SVD of the noisy

data matrix X gives a solution to PCA not only for a particular dimension of

the subspace, d, but also for all d = 1, 2, . . . , D. This has an important side-

benefit: If the dimension of the subspace S is not known or specified a priori,

rather than optimizing for both d and S simultaneously, we can easily look at

the entire spectrum of solutions for different values of d to decide on the “best”

estimate d̂ for the dimension of the subspace d given the data X .

One possible criterion is to chose d as the dimension that minimizes the least-

squares error between the given data X and its projection X̂d =
[
x̂
d
1, x̂

d
2, . . . , x̂

d
N

]

onto the subspace S of dimension d. As shown in the proof of Theorem 2.3, the

least-squares error is given by the sum of the squares of the remaining singular

values of X , i.e.,

J(d)
.
= ‖X − X̂d‖2F =

N∑

j=1

‖xj − x̂
d
j‖2 =

D∑

i=d+1

σ2
i . (2.76)

However, this is not a good criterion, because J(d) is a non-increasing function

of d. In fact, the best solution is obtained when d = rank(X), because J(d) = 0.

The problem of determining the optimal dimension d̂ is in fact a “model

selection” problem. As we discussed in the introduction of the book, the conven-

tional wisdom is to strike a good balance between the complexity of the chosen

model and the fidelity of the data to the model. The dimension d of the sub-

space S is a natural measure of model complexity, while the least-squares error

‖X − X̂d‖2F =
∑D

i=d+1 σ
2
i or its leading term σ2

d+1 are natural measures of the

data fidelity.

Perhaps the simplest model selection criterion is to minimize the complexity

subject to a bound on the fidelity. For example, we can choose d as the smallest
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Figure 2.2. Singular value as a function of the dimension of the subspace.

number such that the fidelity is less than a threshold τ > 0, i.e.,

d̂ = min
d

{
d :

D∑

i=d+1

σ2
i < τ

}
or d̂ = min

d

{
d : σ2

d+1 < τ
}
. (2.77)

The second criterion is illustrated in Figure 2.2. However, it is very hard to choose

an appropriate τ , because the singular values of X are not invariant with respect to

transformations of the data, such as scaling. One possible solution is to normalize

the singular values by ‖X‖2F =
∑D

i=1 σ
2
i and estimate d as

d̂ = min
d

{
d :

∑D
i=d+1 σ

2
i∑D

i=1 σ
2
i

< τ
}

or d̂ = min
d

{
d :

σ2
d+1∑D
i=1 σ

2
i

< τ
}
. (2.78)

The first criterion is widely used, because it has an intuitive interpretation: the

number of principal components is chosen as the smallest number such that the

fraction of information being discarded is less than a threshold τ . Typical values

for τ are in the range 10-20%.

Yet another model selection criterion seeks a balance between d and σ2
d+1 by

minimizing an objective function of the form:

d̂ = argmin J̃(d)
.
= α · σ2

d+1 + β · d (2.79)

for some proper weights α, β > 0. In general, the ordered squared singular values

of the data matrix X versus the dimension d of the subspace resemble a plot

similar to that shown in Figure 2.2. In the statistics literature, this is known as

the “scree graph,” which was discussed and named by [Cattell, 1966]. We should

see a significant drop in the singular values right after the “correct” dimension d̂,

which is sometimes called the “knee” or “elbow” point of the plot. Such a point is
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a stable minimum as it optimizes the above objective function (2.79) for a range

of values for α and β.

A more principled approach to finding the optimal dimension of the subspace,

d̂, is to use some of the model selection criteria described in Appendix B. Such

criteria rely on a different choice of the model complexity term and provide an

automatic way of choosing the parameters α and β. Specifically, the complexity

of the model is measured by the number of parameters needed to describe the sub-

space. This count is made by using the so-called Grassmann coordinates, which

give the dimension of the parameter space for a d-dimensional subspace in R
D to

be Dd−d2.4 With a model parameter space of dimension Dd−d2 and a Gaussian

noise model with known variance σ2, the Bayesian information criterion (BIC) is

equivalent to minimizing

BIC(d)
.
=

D∑

i=d+1

σ2
i + (logN)(Dd− d2)σ2, (2.80)

while the Akaike information criterion (AIC) minimizes

AIC(d)
.
=

D∑

i=d+1

σ2
i + 2(Dd− d2)σ2. (2.81)

More recently, a geometric version of the Akaike information criterion has been

proposed by [Kanatani, 2003]. The Geometric AIC minimizes

G-AIC(d)
.
=

D∑

i=d+1

σ2
i + 2(Dd− d2 +Nd)σ2, (2.82)

where the extra term Nd accounts for the number of coordinates needed to

represent (the closest projection of) the given N data points in the estimated d-

dimensional subspace. From an information-theoretic viewpoint, the additional

Nd coordinates are necessary if we are interested in encoding not only the model

but also the data themselves. This is often the case when we use PCA for purposes

such as data compression and dimension reduction. The quantity
(Dd−d2+Nd)

N
is closely related to the so-called “effective dimension” of the data set defined

in [Huang et al., 2004], which can be generalized to multiple subspaces.

In some sense, all the above criteria can be loosely referred to as information-

theoretic model selection criteria, in the sense that most of these criteria can

be interpreted as variations to minimizing the optimal code length for both the

model and the data with respect to certain class of distributions and coding

4Dd − d2 is the dimension of the Grassmann manifold of d-dimensional subspaces in R
D . To

specify a subspace, one can use the so-called Grassmann coordinates which need exactly Dd − d2

entries: starting with a D × d matrix whose columns form a basis for the subspace, perform column-

reduction so that the first d×d block is the identity matrix. Then, one only needs to give the remaining

(D − d)× d entries to specify the subspace.
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schemes [Hansen and Yu, 2001].5 There are many other methods for determin-

ing the number of principal components. The interested reader may find more

references in [Jolliffe, 1986b].

2.3.2 Model Selection by Rank Minimization

In this section, we present an alternative view of model selection based on the rank

minimization approach to PCA introduced in Section 2.1.3. In this approach, the

PCA problem is posed as one of finding a rank-d matrix A that best approximates

the mean substracted data matrix X , i.e.,

min
A

‖X −A‖2F s.t. rank(A) = d. (2.83)

Although this problem is non-convex due to the rank constraint, as we showed in

Section 2.1.3, its optimal solution can be computed in closed form as

A = UHσd+1
(Σ)V ⊤, (2.84)

where X = UΣV ⊤ is the SVD of X , σk is the k-th singular value of X , and

Hε(x) is the hard thresholding operator:

Hε(x) =

{
x |x| > ε

0 else
. (2.85)

However, this closed solution requires d to be known.

When d is unknown, the problem of finding a low-rank approximation can be

formulated as

min
A

‖X −A‖2F + τ rank(A), (2.86)

where τ > 0 is a parameter. Since the optimal solution of (2.83) for a fixed rank

d = rank(A) is A = UHσd+1
(Σ)V ⊤, the problem in (2.86) is equivalent to

min
d

∑

k>r

σ2
k + τd. (2.87)

The optimal solution is the smallest d such that σ2
d+1 ≤ τ . Notice that this model

selection criteria is the same as that in (2.77). Therefore, the optimization problem

in (2.86) provides a justification for the criteria in (2.77). Under this criteria, and

with the notation introduced in this section, the optimal A is given by

A = UH√
τ (Σ)V

⊤. (2.88)

5Even if one chooses to compare models by their algorithmic complexity, such as the minimum

message length (MML) criterion [Wallace and Boulton, 1968] (an extension of the Kolmogrov com-

plexity to model selection), a strong connection with the above information-theoretic criteria, such

as MDL, can be readily established via Shannon’s optimal coding theory (see [Wallace and Dowe,

1999]).
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Therefore, the optimal A can still be computed in closed form from the SVD of

X , in spite of the fact that the optimization problem in (2.86) is non convex.

Most rank minimization problems are, however, NP hard and cannot be solved

as easily as the one in (2.86). This has motivated the development of convex re-

laxations, which lead to more efficient solutions. A commonly used relaxation

(see e.g., [Cai et al., 2008, Recht et al., 2010]) is to replace the rank of A by its

nuclear norm ‖A‖∗ =
∑

σk(A), i.e., the sum of its singular values. As it turns

out, this relaxation leads to a slightly different model selection criteria for PCA.

More specifically, the relaxation of (2.86) (modulo the 1/2 factor) is given by

min
A

1

2
‖X −A‖2F + τ‖A‖∗. (2.89)

The sub-gradient of this function w.r.t. A is given by A −X + ∂‖A‖∗, where

∂‖A‖∗ is the sub-gradient of the nuclear norm of A (see Exercise 3.7). Therefore,

as shown in [Cai et al., 2008] (see also Exercise 3.8), the optimal solution for A
is given by

A = Dτ (X) = USτ (Σ)V
⊤, (2.90)

where Dε is the singular value thresholding operator and Sε is the soft

thresholding operator, which is defined as

Sε(x) = sign(x)max(|x| − ε, 0) =





x− ε x > ε

x+ ε x < −ε

0 else

. (2.91)

Notice that the latter solution does not coincide with the one given by PCA, which

performs hard-thresholding of the singular values of X without shrinking them

by τ . However, the model selection criteria is the same: choose d as the largest

integer such that σ2
d+1 > τ .

2.3.3 Model Selection by Asymptotic Mean Square Error

From the above two sections, we see that by following different model selection

criteria or objectives, we essentially have three different types of estimators X̂
for a low-rank matrix X0 from its noisy measurements: X = X0 + σZ. Let the

SVD of X to be X = UΣV ⊤, the three estimators are of the following forms,

respectively:

1. If the rank of d is known, the optimal estimate X̂ subject to rank(X̂) = d,

is the truncated SVD solution:

X̂1 = UTd(Σ)V ⊤.

Or if the rank d is not known and one uses one of the information-theoretic

criteria given in Section 2.3.1 to estimate the dimension d̂. Then we only

have to replace the d in the above solution with the estimated d̂.
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2. If we try to balance the mean squared error and the dimension as in equation

(2.86), the optimal estimate is given by the SVD hard thresholding:

X̂2 = UHτ (Σ)V
⊤.

for some threshold τ > 0.

3. If we try to balance the mean squared error and the nuclear norm as in

equation (2.89), the optimal estimate is given by the SVD soft thresholding:

X̂3 = USτ (Σ)V
⊤.

for some threshold τ > 0.

Naturally, this may lead to certain degree of confusion for practitioners: Which

estimate is “the best”? What is the optimal threshold τ∗ to use in case we need to

threshold the singular values? Which thresholding is better, hard or soft? The short

answer to these questions is that none of the above estimators is always better than

others, as they are all optimal in their own way under certain conditions.

However, if we all agree on a common objective based on a common noise

model, it might be meaningful and even insightful to examine which estimator

is better than others. One such setting was recently proposed by [Donoho and

Gavish, 2013]. That is to study the different estimators in terms of their Mean

Square Errors (MSE) in an asymptotic setting as the size of the matrix becomes

large:

AMSE = lim
N→∞

‖X̂ −X0‖2F .

As it turns out, this would allow us to find clear answers to the above questions

with some additional useful findings.

For simplicity, we first assume the matrix X is a square matrix of size N = D.

In the asymptotic setting (as N → ∞), we assume the following noise model:

X = X0 + σZ (2.92)

where Z is a matrix whose entries are i.i.d. drawn from a probability (say Gaus-

sian) distribution with zero mean and variance 1/
√
N . It is easy to see that the

noise level in the singular values of X is σ. Among all estimates of X0 obtained

by a hard thresholding of the singular values of X , we are interested in finding

the one that minimizes the asymptotic mean square error. The work of [Donoho

and Gavish, 2013] gives the following answer to this question.

Proposition 2.9 (Optimal Hard Thresholding for Minimizing AMSE). Given a

low-rank matrix X0 ∈ R
D×N and noisy measurements X = X0 + σZ with Z

zero mean and variance 1/
√
N . If the matrix is square, i.e. D = N , the optimal

hard threshold estimate X̂ = UHτ∗(Σ)V ⊤ that minimizes the asymptotic mean

square error ‖X̂ −X0‖2F is given by

τ∗ = 4/
√
3σ ≈ 2.309σ. (2.93)
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In the more general case of a non square matrix with D/N → β, the optimal

threshold is given by

τ∗(β) = σ

√
2(β + 1) +

8β

(β + 1) +
√
β2 + 14β + 1

.

The proof of this statement is beyond the scope of this book. But that does not

prevent us from discussing and understanding its implications in our context.

In can be shown that under the same noise model, the distribution of the singu-

lar values of the matrix X = X0 + σZ form a quarter-circle bulk, whose radius

lies approximately at (1 +
√
β)σ. This is the place where we would normally

expect to see a “knee point” in the distribution of singular values (as shown in

Figure 2.2). The information-theoretic criteria or the rank-minimization objec-

tives are most likely to pick this value to threshold the singular values. For a

square matrix, this gives the threshold τ = 2σ, which is close but not quite at the

optimal value 2.309σ. As shown in the work of [Donoho and Gavish, 2013], this

minor difference in the choice of the threshold can result in a 5/3-fold increase in

AMSE.

Interestingly, even if we know the correct rank d of the matrix X0 and take the

truncated SVD solution X̂ = UTd(Σ)V ⊤, the resulting AMSE is also 5/3-fold

larger than that of the optimal hard thresholding solution given above. In general,

soft thresholding does not work as well as hard thresholding in the high signal-

to-noise ratio regime, and the AMSE for the optimal soft thresholding solution

X̂3 = USτ∗(Σ)V ⊤ is twice as large as that of hard thresholding. In fact, even if

one is allowed to use any singular value shrinkage function instead of merely a

hard or soft thresholding (see the work of [Shabalin and Nobel, 2010] for more

details), compared to the above optimal hard thresholding solution (2.93), one can

at best reduce the AMSE by another 1/3.

2.4 Bibliographic Notes

As a matrix decomposition tool, SVD was initially developed independently from

PCA in the numerical linear algebra literature, also known as the Eckart and

Young decomposition [Eckart and Young, 1936, Hubert et al., 2000]. The re-

sult regarding the least-squares optimality of SVD given in Theorem 2.3 can

be traced back to [Householder and Young, 1938, Gabriel, 1978]. While prin-

cipal components were initially defined exclusively in a statistical sense [Pearson,

1901, Hotelling, 1933], one can show that the algebraic solution given by SVD

gives asymptotically unbiased estimates of the true parameters in the case of

Gaussian distributions. A more detailed analysis of the statistical properties of

PCA can be found in [Jolliffe, 2002].

Note that PCA only infers the principal subspace (or components), but not

a probabilistic distribution of the data in the subspace. Probabilistic PCA was

developed to infer an explicit probabilistic distribution from the data [Tipping



2.5. Exercises 45

and Bishop, 1999b]. The data is assumed to be independent samples drawn

from an unknown distribution, and the problem becomes one of identifying the

subspace and the parameters of the distribution in a maximum-likelihood or a

maximum-a-posteriori sense. When the underlying noise distribution is Gaussian,

the geometric and probabilistic interpretations of PCA coincide [Collins et al.,

2001]. However, when the underlying distribution is non Gaussian, the optimal

solution to PPCA may no longer be linear. For example, in [Collins et al., 2001]

PCA is generalized to arbitrary distributions in the exponential family.

2.5 Exercises

Exercise 2.1 (Properties of Symmetric Matrices). Let S ∈ R
n×n be a real symmetric

matrix. Prove the following:

1. All the eigenvalues of S are real, i.e., σ(S) ⊂ R.

2. Let (λ, v) be an eigenvalue-eigenvector pair. If λi 6= λj , then vi ⊥ vj ; i.e.,

eigenvectors corresponding to distinct eigenvalues are orthogonal.

3. There always exist n orthonormal eigenvectors of S, which form a basis of Rn.

4. S is positive definite (positive semidefinite) if and only if all of its eigenvalues are

positive (non-negative), i.e., S ≻ 0 (S � 0), iff ∀i = 1, 2, . . . , n, λi > 0 (λi ≥ 0).

5. If λ1 ≥ λ2 ≥ · · · ≥ λn are the sorted eigenvalues of S, then max
‖x‖2=1

x⊤Sx = λ1

and min
‖x‖2=1

x⊤Sx = λn.

Exercise 2.2 (Pseudo-inverse of a Matrix).

1. Let A = UrΣrV
⊤
r be the compact SVD of a matrix A of rank r. Show that the

pseudo-inverse of A is given by A† = VrΣ
−1
r U⊤

r .

2. Consider the linear system of equations Ax = b, where the matrix A ∈ R
m×n

is of rank r = rank(A) = min{m,n}. Show that the solution x∗ that minimizes

‖Ax− b‖22 is given by x∗ = A†b, where A† is the pseudo-inverse of A.

Exercise 2.3 (Statistical PCA for Non-Zero Mean Random Variables) Let x ∈ R
D

be a random vector. Let µ
x

= E(x) ∈ R
D and Σx = E(x − µ)(x − µ)⊤ ∈ R

D×D

be, respectively, the mean and the covariance of x. Define the principal components of x

as the random variables yi = u⊤
i x + ai ∈ R, i = 1, . . . , d ≤ D, where ui ∈ R

D is

a unit norm vector, ai ∈ R, and {yi}
n
i=1 are zero mean, uncorrelated random variables

whose variances are such that Var(y1) ≥ Var(y2) ≥ · · · ≥ Var(yd). Assuming that the

eigenvalues of Σx are different from each other, show that

1. ai = −u
⊤
i µx

, i = 1, . . . , d.

2. u1 is the eigenvector of Σx corresponding to its largest eigenvalue.

3. u⊤
2 u1 = 0 and u2 is the eigenvector of Σ corresponding to its second largest

eigenvalue.
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4. u⊤
i uj = 0 for all i 6= j and ui is the eigenvector of Σx corresponding to its i-th

largest eigenvalue.

Exercise 2.4 (Properties of PCA). Let x ∈ R
D be a random vector with covariance matrix

Σx ∈ R
D×D . Consider a linear transformation of x:

y = W
⊤
x, (2.94)

where y ∈ R
d and W ∈ R

D×d has orthonormal columns. Let Σy = W⊤ΣxW be the

covariance matrix for y. Show that

1. The trace of Σy is maximized by W = Ud, where Ud consists of the first d unit

eigenvectors of Σx.

2. The trace of Σy is minimized by W = Ũd, where Ũd consists of the last d unit

eigenvectors of Σ.

Exercise 2.5 (Subspace Angles). Given two d-dimensional subspaces S1 and S2 in R
D ,

define the largest subspace angle θ1 between S1 and S2 to be the largest possible sharp

angle (< 90◦) formed by any two vectors u1,u2 ∈ (S1 ∩ S2)
⊥ with u1 ∈ S1 and

u2 ∈ S2 respectively. Let U1 ∈ R
D×d be an orthogonal matrix whose columns form a

basis for S1 and similarly U2 for S2. Then show that if σ1 is the smallest non-zero singular

value of the matrix W = U⊤
1 U2, then we have

cos(θ1) = σ1. (2.95)

Similarly, one can define the rest of the subspace angles as cos(θi) = σi, i = 2, . . . , d
from the rest of the singular values of W .

Hint: Following the derivation of statistical PCA, find first the smallest angle (largest

cosine = largest variance) and then find the second smallest angle all the way to the largest

angle (smallest variance). As your proceed, the vectors that achieve the second smallest

angle need to be chosen to be perpendicular to the vectors that achieve the smallest angle

and so forth, as we did in statistical PCA. Also, let u1 = U1c1 and u2 = U2c2. Show that

you need to optimize cos(θ) = c⊤1 U
⊤
1 U2c2 subject to ‖c1‖ = ‖c2‖ = 1. Show (using

Lagrange multipliers) that a necessary condition for optimality is
[

0 U⊤
1 U2

U⊤
2 U1 0

] [
c1
c2

]
= λ

[
c1
c2

]
. (2.96)

Deduce from here that σ = λ2 is a singular value of U⊤
1 U2 with c2 as singular vector.

Exercise 2.6 (Fixed-Rank Approximation of a Matrix). Let A = UΣV ⊤ be the SVD of

A. Let B = UΣpV
⊤, where Σp denotes the matrix obtained from Σ by setting to zero its

elements on the diagonal after the p-th entry. Show that ‖A − B‖2F = σ2
p+1 + · · · + σ2

r ,

where ‖ · ‖F indicates the Frobenius norm. Furthermore, show that such a norm is the

minimum achievable over all matrices B ∈ R
m×n of rank p, i.e.,

min
B:rank(B)=p

‖A−B‖2F = σ
2
p+1 + · · ·+ σ

2
r . (2.97)

Exercise 2.7 (Identification of Auto-Regressive Exogeneous (ARX) Systems). A popu-

lar model that is often used to analyze a time series {yt}t∈Z is the linear auto-regressive

model:

yt = a1yt−1 + a2yt−2 + · · ·+ anyt−n + εt, ∀t, yt ∈ R, (2.98)
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where εt ∈ R models the modeling error or noise and it is often assumed to be a white-

noise random process. Now suppose that you are given the values of yt for a sufficiently

long period of time.

1. Show that in the noise free case, i.e. εt ≡ 0, regardless of the initial conditions, the

vectors xt = [yt, yt−1, . . . , yt−n]
⊤ for all t lie on an n-dimensional hyperplane in

R
n+1. What is the normal vector to this hyperplane?

2. Now consider the case with noise. Describe how you may use PCA to identify the

unknown model parameters (a1, a2, . . . , an)?

Exercise 2.8 (Basis for an Image). Given a gray-level image I , consider all of its

b × b blocks, denoted as {Bi ∈ R
b×b}. We would like to approximate each block as a

superposition of d base blocks, say {B̂j ∈ R
b×b}dj=1. That is,

Bi =

d∑

j=1

aijB̂j + Ei, (2.99)

where Ei ∈ R
b×b is the possible residual from the approximation. Describe how you can

use PCA to identify an optimal set of d base blocks so that the residual is minimized?6

Exercise 2.9 (Ranking of Webpages). PCA is actually used to rank webpages on the

Internet by many popular search engines. One way to see this is to view the Internet as

a directed graph G = (V,E), where every webpage, denoted as pi, is a node in V , and

every hyperlink from pi to pj , denoted as eij , is a directed edge in E. We can assign

each webpage pi an “authority” score xi and a “hub” score yi. The “authority” score xi

is a scaled sum of the “hub” scores of other webpages pointing to webpage pi. The “hub”

score is the scaled sum of the “authority” scores of other webpages that webpage pi is

pointing out to. Let x and y be the vector of authority scores and hub scores, respectively.

Also, let A be the adjacent matrix of the graph G, i.e., Aij = 1 if eij ∈ E and Aij = 0
otherwise and consider the following algorithm:

Algorithm 2.1 (Ranking webpages)

Choose a random vector x, and repeat the following two steps

1. y′ ← Ax, y ← y
′

‖y′‖

2. x′ ← A⊤y, x← x
′

‖x′‖

Answer the following questions.

1. Given the definitions of hubs and authorities, justify the algorithm.

2. Show that unit-norm eigenvectors of AA⊤ (for y) and A⊤A (for x) give fixed

points of the algorithm.

6 In Section 1.2.1, we have seen an example in which a similar process can be applied to an ensem-

ble of face images, where the first d = 3 principal components are computed for further classification.

In the computer vision literature, the corresponding base images are called “eigenfaces.”
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3. Show that, in general, y and x converge to the unit-norm eigenvectors associated

with the maximum eigenvalue of AA⊤ and A⊤A, respectively. Explain why not any

other eigenvector and why the normalization steps in the algorithm are necessary.

4. Explain how y and x can be computed from the singular value decomposition of

A. Under what circumstances would the given algorithm be preferable to using the

SVD?

In the literature, this is known as the Hypertext Induced Topic Selection (HITS) algo-

rithm [Kleinberg, 1999, Ding et al., 2004]. The same algorithm can also be used to rank

any competitive sports such as football teams and chess players.

Exercise 2.10 Use the concavity of the log function to prove that theM in equation (2.75)

is minimized by choosing λπ[i], i = d+ 1, . . . , D to be contiguous in magnitude.

Exercise 2.11 (An EM Algorithm for PPCA) In Section 2.2.2 we showed that the ML

estimate of the parameter θ = (µ, Ud, σ) of the PPCA model x = µ + Udy + ε, where

y ∼ N (0, Id) and ε ∼ N (0, σ2ID), can be found in closed form, as shown in Theorem

2.8. An alternative approach, which can be advantageous for large D, is to view y as a

hidden variable and use the EM algorithm described in Section B.2 to find the ML estimate.

In this exercise, you will derive an EM algorithm for PPCA.

1. Show that the conditional distribution of the hidden variables given the observations

is given by

y | x ∼ N (Σ−1
x U

⊤
d (x− µ), σ2Σ−1

x ), (2.100)

where Σx = UdU
⊤
d + σ2ID .

2. Let wk
i (y) = pθk (y | xi) be the posterior distribution of the hidden variables with

parameters θk = (µk, Uk
d , σ

k) at iteration k of the EM algorithm. Show that the

expected complete log-likelihood, Q(θ | θk) = Ewk [log pθ({xi}
N
i=1, {yj}

N
i=1)],

is given by:

−
N∑

i=1

(
D

2
log(2πσ2) +

1

2σ2

(
‖xi − µ‖2 − 2(xi − µ)⊤Ud〈yj〉

k

+ traceU⊤
d Ud〈yjy

⊤
i 〉

k
)
+

1

2
trace 〈yiy

⊤
i 〉

k
)
,

(2.101)

where

〈yi〉
k =

∫

y

w
k
i (y)y dy = Σk

x

−1
U

k⊤
d (xi − µ

k), (2.102)

〈yiy
⊤
i 〉

k =

∫

y

w
k
i (y)yy

⊤
dy = (σk)2Σk

x

−1
+ 〈yi〉

k〈yi〉
k⊤

. (2.103)
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3. Show that the parameters θ = (µ, Ud, σ) that maximize Q(θ | θk) are given by

[
Ud µ

]
=

[
N∑
i=1

xi〈yi〉
k⊤

N∑
i=1

xi

]




N∑
i=1

〈yiy
⊤
i 〉

k
N∑
i=1

〈yi〉
k

N∑
i=1

〈yi〉
k⊤ N





−1

,

(2.104)

σ
2=

1

ND

N∑

i=1

‖xi − µ‖2−2(xi − µ)⊤Ud〈yi〉
k+traceU⊤

d Ud〈yiy
⊤
i 〉

k
.

(2.105)

4. In practice, we know that the ML estimator for µ is µ̂ = 1
N

∑N

i=1 xi. Therefore, a

more efficient approach is to maximize Q(θ | θk) only over the parameters (Ud, σ).
Show that the optimal parameters are given by

U
k+1
d =

N∑

i=1

(xi − µ̂)〈yi〉
k⊤

( N∑

i=1

〈yiy
⊤
i 〉

k
)−1

, (2.106)

σ
k+1=

√√√√ 1

ND

N∑

i=1

‖xi−µ̂‖2−2(xi−µ̂)⊤U
k+1
d 〈yi〉

k+traceUk+1⊤
d Uk+1

d 〈yiy
⊤
i 〉

k.

where 〈yi〉
k is computed with µk = µ̂. Show also that the above iterations can be

re-written as

U
k+1
d = Σ̂NU

k
d

[
(σk)2Id +Σk

x

−1
U

k⊤
d Σ̂NU

k
d

]−1
, (2.107)

σ
k+1 =

√
1

D
trace(Σ̂N − Σ̂NUk

dΣ
k
x

−1
Uk+1⊤

d ), (2.108)

where Σ̂N = 1
N

∑N

i=1(xi − µ̂)(xi − µ̂)⊤.


