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Abstract

We describe a derivational approach to abstract interpretation that yields novel and trans-

parently sound static analyses when applied to well-established abstract machines for higher-

order and imperative programming languages. To demonstrate the technique and support

our claim, we transform the CEK machine of Felleisen and Friedman (Proc. of the 14th

ACM SIGACT-SIGPLAN Symp. Prin. Program. Langs, 1987, pp. 314–325), a lazy variant of

Krivine’s machine (Higher-Order Symb. Comput. Vol 20, 2007, pp. 199–207), and the stack-

inspecting CM machine of Clements and Felleisen (ACM Trans. Program. Lang. Syst. Vol 26,

2004, pp. 1029–1052) into abstract interpretations of themselves. The resulting analyses bound

temporal ordering of program events; predict return-flow and stack-inspection behavior; and

approximate the flow and evaluation of by-need parameters. For all of these machines, we find

that a series of well-known concrete machine refactorings, plus a technique of store-allocated

continuations, leads to machines that abstract into static analyses simply by bounding their

stores. These machines are parameterized by allocation functions that tune performance and

precision and substantially expand the space of analyses that this framework can represent. We

demonstrate that the technique scales up uniformly to allow static analysis of realistic language

features, including tail calls, conditionals, mutation, exceptions, first-class continuations, and

even garbage collection. In order to close the gap between formalism and implementation, we

provide translations of the mathematics as running Haskell code for the initial development

of our method.

1 Introduction

Program analysis aims to soundly predict properties of programs before being

run. For over 30 years, the research community has expended significant effort

designing effective analyses for higher-order programs (Midtgaard, to appear). Past

approaches have focused on connecting high-level language semantics, such as

structured operational semantics, denotational semantics, or reduction semantics,

to equally high-level but dissimilar analytic models. Too often, these models are

far removed from their programming language counterparts and take the form of

constraint languages specified as relations on sets of program fragments (Wright &

Jagannathan, 1998; Nielson et al., 1999; Meunier et al., 2006). These approaches

require significant ingenuity in their design and involve complex constructions and

correctness arguments, making it difficult to establish soundness, design algorithms,
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or grow the language under analysis. Moreover, such analytic models, which focus

on “value flow”, i.e., determining which syntactic values may show up at which

program sites at run-time, have a limited capacity to reason about many low-level

intensional properties such as memory management, stack behavior, or trace-based

properties of computation. Consequently, higher-order program analysis has had

limited impact on large-scale systems, despite the apparent potential for program

analysis to aid in the construction of reliable and efficient software.

In this paper, we describe a systematic approach to program analysis that overcomes

many of these limitations by providing a straightforward derivation process, lowering

verification costs and accommodating sophisticated language features and program

properties.

Our approach relies on leveraging existing techniques to transform high-level

language semantics into abstract machines – low-level deterministic state-transition

systems with potentially infinite state spaces. Abstract machines (Landin, 1964),

and the paths from semantics to machines (Reynolds, 1972; Danvy, 2006; Felleisen

et al., 2009) have a long history in the research on programming languages. From

canonical abstract machines such as the CEK machine or Krivine’s machine, which

represent the idealized core of realistic run-time systems, we perform a series of basic

machine refactorings to obtain a nondeterministic state-transition system with a finite

state space. The refactorings are simple: variable bindings and continuations are

redirected through the machine’s store, and the store is bounded to a finite size. Due

to finiteness, store updates must become merges, leading to the possibility of multiple

values residing in a single store location. This in turn requires store look-ups be

replaced by a nondeterministic choice among the multiple values at a given location.

The derived machine computes a sound approximation of the original machine, and

thus forms an abstract interpretation of the machine and the high-level semantics.

We demonstrate that the technique allows a direct structural abstraction by

bounding the machine’s store. (A structural abstraction distributes component-,

point-, and member-wise.) The approach scales up uniformly to enable program

analysis of realistic language features, including higher-order functions, tail calls,

conditionals, mutation, exceptions, first-class continuations, and even garbage col-

lection. Thus, we are able to refashion semantic techniques used to model language

features into abstract interpretation techniques for reasoning about the behavior of

those very same features.

To demonstrate the applicability of the approach, we derive abstract interpreters

of

• a call-by-value λ-calculus with state and control based on the CESK machine

of Felleisen & Friedman (1987),

• a call-by-need λ-calculus based on a tail-recursive, lazy variant of Krivine’s

machine (Krivine, 1985, 2007) derived by Ager et al. (2004), and

• a call-by-value λ-calculus with stack inspection based on the CM machine of

Clements & Felleisen (2004);

and use abstract garbage collection to improve precision (Might & Shivers, 2006).
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Finally, we also show that by forgoing stack-allocated continuations, we obtain

pushdown abstract interpretations of programs that form nondeterministic state-

transition systems with potentially infinite state-spaces. Such abstractions, which

constitute recent research breakthroughs (Earl et al., 2010; Vardoulakis & Shivers,

2011), precisely match calls to returns and enjoy a natural formulation in our

approach.

1.1 Overview

In Section 2, we begin with the CEK machine and attempt a structural abstract

interpretation, but find ourselves blocked by two recursive structures in the machine:

environments and continuations. We make three refactorings to

1. store-allocated bindings,

2. store-allocated continuations, and

3. time-stamp machine states;

resulting in the CESK, CESK�, and time-stamped CESK� machines, respectively.

The time-stamps encode the history (context) of the machine’s execution and

facilitate context-sensitive abstractions. We then demonstrate that the time-stamped

machine abstracts directly into a parameterized, sound, and computable static

analysis.

In Section 3, we instantiate the analysis to obtain a k-CFA-like abstraction and

show how to perform store-widening to obtain a polynomial-time 0-CFA abstraction.

In Section 4, we replay the abstraction process (slightly abbreviated) with a lazy

variant of Krivine’s machine (Krivine, 1985, 2007) to arrive at a static analysis of

by-need programs. In Section 5, we incorporate conditionals, mutation, exceptions,

and first-class continuations. In Section 6, we show how run-time garbage collection

naturally induces a notion of abstract garbage collection, which can improve analysis

precision and performance. In Section 7, we abstract the continuation-marks (CM)

machine to produce an abstract interpretation of stack inspection.

This paper is based upon the work presented in Van Horn & Might (2010).

Compared with the conference paper, this paper additionally provides Haskell code

demonstrating the essential ideas, describes how to formulate pushdown abstractions

of programs, fixes a number of minor errors, and improves the technical development

and exposition. A shorter version of this work appeared in Communications of the

ACM (Van Horn & Might, 2011).

1.2 Background and notation

We assume a basic familiarity with reduction semantics and abstract machines. For

background and a more extensive introduction to the concepts, terminology, and

notation employed in this paper, we refer the reader to Semantics Engineering with

PLT Redex (Felleisen et al., 2009).
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1.3 A word on the Haskell code

The primary reason for introducing Haskell code corresponding to the formalism in

the initial development is that it provides an executable specification. There are three

secondary motivations: (1) The Haskell code aids presentation for readers learning

to navigate the gap between a semantics and its representation as working code;

(2) while the mathematics may use conventional elisions, the Haskell code cannot,

which makes each subsection standalone and unambiguous; (3) earlier versions of

this work were unspecific about a key process – allocation of addresses; the Haskell

code fully specifies the allocation process. In most cases, the Haskell code is a

transliteration, including variable names, of the formal mathematics. The notable

exceptions are addresses and time-stamps – the objects involved in the allocation

process.

2 From CEK to the abstract CESK�

In this section, we start with a traditional machine for a programming language based

on the call-by-value λ-calculus, and gradually derive an abstract interpretation of this

machine. The outline followed in this section covers the basic steps for systematically

deriving abstract interpreters that we follow throughout the rest of the paper.

To begin, consider the following language of expressions:

e ∈ Exp = x | (e e) | (λx.e)
x ∈ Var a set of identifiers.

Or, when encoded as an abstract syntax tree in Haskell:

type Var = String

data Lambda = Var :=> Exp

data Exp = Ref Var

| Lam Lambda

| Exp :@ Exp

The syntax of expressions includes variables, applications, and functions. Values

v, for the purposes of this language, include only function terms, (λx.e). We say x

is the formal parameter of the function (λx.e), and e is its body.

A standard machine for evaluating this language is the CEK machine, and

it is from this machine that we derive the abstract semantics – a computable

approximation of the machine’s behavior. Most of the steps in this derivation

correspond to well-known machine transformations and real-world implementation

techniques – and the most of these steps are concerned only with the concrete

machine; a very simple abstraction is employed only at the very end.

The remainder of this section is outlined as follows: We present reduction

semantics for the call-by-value λ-calculus, we then present the CEK machine, to

which we add a store, and use it to allocate variable bindings. This machine is just

the CESK machine of Felleisen & Friedman (1987). From here, we further exploit the

store to allocate continuations, which corresponds to a well-known implementation

technique used in functional language compilers (Shao & Appel, 1994). We then
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abstract only the store to obtain a framework for the sound and computable analysis

of programs.

2.1 Reduction semantics

A standard approach to evaluating programs is to rely on a Curry–Feys-style

Standardization Theorem, which says roughly the following: If an expression e

reduces to e′ in, e.g., the call-by-value λ-calculus, then e reduces to e′ in a standard

way. This standard reduction sequence thus determines a state machine for evaluating

programs.

A program is a closed expression, i.e., an expression in which every variable occurs

within some function that binds that variable as its formal parameter. Call-by-value

reduction is characterized by the relation v:

((λx.e) v) v [v/x]e,

which states that a function applied to a value reduces to the body of the function

with every occurrence of the formal parameter replaced by the value. The expression

on the left-hand side is a known as a redex and the right-hand side is its contractum.

Reduction can occur within a context of an evaluation context, defined by the

following grammar:

E = [ ] | (E e) | (v E).
An evaluation context can be thought of as an expression with a single “hole” in it,

which is where a redex may be reduced. It is straightforward to observe that for all

programs, either the program is a value, or it decomposes uniquely into an evaluation

context and redex, written E[((λx.e) v)]. Thus, the grammar as given specifies a

deterministic reduction strategy, which is formalized as a standard reduction relation

on programs:

E[e] �−→v E[e′], if e v e′.

The evaluation of a program is defined by a partial function relating programs to

values (Felleisen et al., 2009, p. 67):

eval (e) = v if e �−→→v v, for some v,

where �−→→ v denotes the reflexive, transitive closure of the standard reduction relation.

We have now established the high-level semantic basis for our prototypical

language. The semantics is in the form of an evaluation function defined by

the reflexive, transitive closure of the standard reduction relation. However, the

evaluation function as given does not shed much light on a realistic implementation.

(Accordingly, we will omit a Haskell implementation.) At each step, the program is

traversed according to the grammar of evaluation contexts until a redex is found.

When found, the redex is reduced and the contractum is plugged back into the

context. The process is then repeated, again traversing from the beginning of the

program. Abstract machines offer an extensionally equivalent but more realistic

model of evaluation that short-cuts the plugging of a contractum back into a

context and the subsequent decomposition (Danvy & Nielsen, 2004).
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2.2 The CEK machine

The CEK machine (Reynolds, 1972, Interpreter III; Felleisen & Friedman, 1986;

Felleisen et al., 2009, p. 100) is a state transition system that efficiently performs

evaluation of a program. There are two key ideas in its construction, which can

be carried out systematically (Biernacka & Danvy, 2007). The first is substitution,

which is not an efficient implementation strategy, and is instead represented in a

delayed, explicit manner as an environment structure. So a substitution [v/x]e is

represented by e and an environment that maps x to v. Since e and v may have

previous substitutions applied, this will likewise be represented with environments.

So in general, if ρ is the environment of e and ρ′ is the environment of v, then

we represent [v/x]e by e in the environment ρ extended with a mapping of x to

(v, ρ′), written ρ[x �→ (v, ρ′)]. The pairing of a value and an environment is a closure

(Landin, 1964).

The second key idea is that evaluation contexts are constructed inside–out and

represent continuations:

1. [ ] is represented by mt;

2. E[([ ] e)] is represented by ar(e′, ρ, κ) where ρ closes e′ to represent e and κ

represents E; and

3. E[(v [ ])] is represented by fn(v′, ρ, κ) where ρ closes v′ to represent v and κ

represents E.

In this way, evaluation contexts form a program stack: mt is the empty stack, and

ar and fn are frames, thus equipping the machine with a mechanism to integrate the

process of plugging a contractum into a context and finding the next redex without

traversing the whole program as in the standard reduction machine.

States of the CEK machine consist of a control string (an expression), an

environment that closes the control string, and a continuation:

ς ∈ Σ = Exp × Env × Cont

v ∈ Val = (λx.e)

ρ ∈ Env = Var →fin Val × Env

κ ∈ Cont = mt | ar(e, ρ, κ) | fn(v, ρ, κ).

States are identified up to consistent renaming of bound and free variables, assuming

appropriate modifications to the environments.

Environments are finite maps from variables to closures. Environment extension

is written ρ[x �→ (v, ρ′)].

The definition of the state-space in Haskell is similar:

type Σ = (Exp,Env,Cont)

data D = Clo(Lambda, Env)

type Env = Var :-> D

data Cont = Mt | Ar(Exp,Env,Cont) | Fn(Lambda,Env,Cont)

A notable difference is the need to thread values through a datatype in order to

break the unbounded recursion in the type of environments. In this case, datatype
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D contains denotable values. Type operator :-> is a synonym for the finite map

Data.Map.Map:

type k :-> v = Data.Map.Map k v

A little syntactic sugar makes functional extension in Haskell look more like its

corresponding formal notation:

(==>) :: a -> b -> (a,b)

(==>) x y = (x,y)

(//) :: Ord a => (a :-> b) -> [(a,b)] -> (a :-> b)

(//) f [(x,y)] = Data.Map.insert x y f

so that ρ // [v ==> d] yields a map identical to ρ except (possibly) at v. At this

point, we diverge from the mathematics by constraining the domain of maps to

be ordered. We could build a less efficient implementation that merely required the

domain to be testable for equality. The Ord constraint allows the use of efficient

balanced-tree-based maps.

The transition function for the CEK machine is defined as follows (we follow the

textbook treatment of the CEK machine (Felleisen et al., 2009, p. 102)):

〈x, ρ, κ〉 �−→CEK 〈v, ρ′, κ〉 where ρ(x) = (v, ρ′)

〈(e0 e1), ρ, κ〉 �−→CEK 〈e0, ρ, ar(e1, ρ, κ)〉
〈v, ρ, ar(e, ρ′, κ)〉 �−→CEK 〈e, ρ′, fn(v, ρ, κ)〉
〈v, ρ, fn((λx.e), ρ′, κ)〉 �−→CEK 〈e, ρ′[x �→ (v, ρ)], κ〉

Now, we have to render the transition relation �−→ ⊆ Σ × Σ as code. There are

many ways to render a relation R ⊆ A × B in code. For finite relations, we could

construct R as a set of pairs. For infinite relations, we could render R as a predicate:

R ∼= A × B → Boolean ,

or as a function:

R ∼= A → P (B).

In the Haskell implementation, we render the transition relation as a (partial)
function, step:

step :: Σ -> Σ

step (Ref x, ρ, κ) = (Lam lam,ρ’,κ) where Clo(lam, ρ’) = ρ!x

step (f :@ e, ρ, κ) = (f, ρ, Ar(e, ρ, κ))

step (Lam lam, ρ, Ar(e, ρ’, κ)) = (e, ρ’, Fn(lam, ρ, κ))

step (Lam lam, ρ, Fn(x :=> e, ρ’, κ)) = (e, ρ’ // [x ==> Clo(lam, ρ)], κ)

(The function is partial since match failure is possible.)

Since the transition relation is deterministic, we do not expand the range of this

function to a set. The initial machine state for a closed expression e is given by the

inj function:

inj CEK (e) = 〈e, ∅,mt〉.
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In Haskell, the injection function is almost identical:

inject :: Exp -> Σ

inject (e) = (e, Data.Map.empty, Mt)

Typically, an evaluation function is defined as a partial function from closed

expressions to answers:

evalCEK (e) = (v, ρ) if inj (e) �−→→CEK 〈v, ρ,mt〉.

This gives an extensional view of the machine, which is useful, e.g., to prove

correctness with respect to a canonical evaluation function such as the one defined

by standard reduction or compositional valuation. However, for the purposes of

program analysis, we are concerned more with the intensional aspects of the machine.

As such, we define a refined notion of the meaning of a program as the (possibly

infinite) set of reachable machine states:

CEK (e) = {ς | inj (e) �−→→CEK ς}.

In Haskell, we can use a collect auxiliary function:

collect :: (a -> a) -> (a -> Bool) -> a -> [a]

collect f isFinal ς0 | isFinal ς0 = [ς0]

| otherwise = ς0:(collect f isFinal (f(ς0)))

to define evaluate:

evaluate :: Exp -> [Σ]

evaluate e = collect step isFinal (inject(e))

where the isFinal function watches for proper final states:

isFinal :: Σ -> Bool

isFinal (Lam , ρ, Mt) = True

isFinal = False

An outline for abstract interpretation. Deciding membership in the set of reachable

machine states is not possible due to the halting problem. The goal of abstract

interpretation, then, is to construct a function, bCEK , that is a sound and computable

approximation to the CEK function.

We can do this by constructing a machine that is similar in structure to the CEK

machine: it is defined by an abstract state transition relation ( �−→
bCEK

) ⊆ Σ̂ × Σ̂,

which operates over abstract states, Σ̂, which approximate the states of the CEK

machine, and an abstraction map α : Σ → Σ̂ that maps concrete machine states into

abstract machine states.

The abstract evaluation function is then defined as

1CEK (e) = {ς̂ | α(inj (e)) �−→→
bCEK

ς̂}.

1. We achieve decidability by constructing the approximation in such a way that

the state-space of the abstracted machine is finite with respect to a given

program, which guarantees that for any closed expression e, the set bCEK (e) is

finite.
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2. We achieve soundness by demonstrating the abstracted machine transitions

preserve the abstraction map so that if ς �−→ ς′ and α(ς) � ς̂, then there exists

an abstract state ς̂′ such that ς̂ �−→ ς̂′ and α(ς′) � ς̂′.

2.3 A first attempt at abstract interpretation

A simple approach to abstracting the machine’s state-space is to apply a structural

abstract interpretation, which lifts abstraction point-wise, element-wise, component-

wise, and member-wise across the structure of a machine state (i.e., expressions,

environments, and continuations).

The problem with the structural abstraction approach for the CEK machine is

that both environments and continuations are recursive structures. As a result, the

map α yields objects in an abstract state-space with recursive structure, implying

the space is infinite. It is possible to perform abstract interpretation over an infinite

state-space, but it requires a widening operator. A widening operator accelerates

the ascent up the lattice of approximation and must guarantee convergence. It is

difficult to conceive a widening operator, other than the one that jumps immediately

to the top of the lattice, for these semantics.1

Focusing on recursive structure as the source of the problem, a reasonable course

of action is to add a level of indirection to the recursion – to force recursive structure

to pass through explicitly allocated addresses. In doing so, we will unhinge recursion

in a program’s data structures and its control-flow from recursive structure in the

state-space.

We turn our attention next to the CESK machine (Felleisen, 1987; Felleisen

& Friedman, 1987), since the CESK machine eliminates recursion from one of the

structures in the CEK machine: environments. In the subsequent section (Section 2.6),

we will develop a CESK machine with a pointer refinement (CESK�) that eliminates

the other source of recursive structure: continuations. At that point, the machine

structurally abstracts via a single point of approximation: the store.

2.4 The CESK machine

The states of the CESK machine extend those of the CEK machine to include a

store, which provides a level of indirection for variable bindings to pass through.

The store is a finite map from addresses to storable values and environments are

changed to map variables to addresses. When a variable’s value is looked up by the

machine, it is now accomplished by using the environment to look up the variable’s

address, which is then used to look up the value. To bind a variable to a value, a

fresh location in the store is allocated and mapped to the value; the environment is

extended to map the variable to that address.

1 In more detail, the difficulty with a widening operator lies in satisfying the third condition – that it will
force an over-approximation of an ascending Kleene chain’s fixed point in a finite number of steps.
Even what seems like an aggressive widening – unifying the ranges of all reachable environments –
fails to guarantee termination, since new environments may still be introduced at every step.
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The state-space for the CESK machine is defined as follows:

ς ∈ Σ = Exp × Env × Store × Cont

ρ ∈ Env = Var →fin Addr

σ ∈ Store = Addr →fin Storable

s ∈ Storable = Lam × Env

a, b, c ∈ Addr an infinite set.

States are identified up to consistent renaming of bound variables and addresses. In

Haskell:
type Σ = (Exp,Env,Store,Kont)

type Env = Var :-> Addr

data Storable = Clo (Lambda, Env)

type Store = Addr :-> Storable

data Kont = Mt | Ar(Exp,Env,Kont) | Fn(Lambda,Env,Kont)

type Addr = Int

The transition function for the CESK machine is defined as follows (we follow

the textbook treatment of the CESK machine (Felleisen et al., 2009, p. 166)):

〈x, ρ, σ, κ〉 �−→CESK 〈v, ρ′, σ, κ〉 where σ(ρ(x)) = (v, ρ′)

〈(e0 e1), ρ, σ, κ〉 �−→CESK 〈e0, ρ, σ, ar(e1, ρ, κ)〉
〈v, ρ, σ, ar(e, ρ′, κ)〉 �−→CESK 〈e, ρ′, σ, fn(v, ρ, κ)〉
〈v, ρ, σ, fn((λx.e), ρ′, κ)〉 �−→CESK 〈e, ρ′[x �→ a], σ[a �→ (v, ρ)], κ〉 where a /∈ dom(σ)

In Haskell, the transition relation is once again a function:

step :: Σ -> Σ

step (Ref x, ρ, σ, κ) = (Lam lam, ρ’, σ, κ)

where Clo (lam, ρ’) = σ!(ρ!x)

step (f :@ e, ρ, σ, κ) = (f, ρ, σ, Ar(e, ρ, κ))

step (Lam lam,ρ,σ,Ar(e, ρ’, κ)) = (e, ρ’, σ, Fn(lam, ρ, κ))

step (Lam lam,ρ,σ,Fn(x :=> e, ρ’, κ)) =

(e, ρ’ // [x ==> a’], σ // [a’ ==> Clo (lam, ρ)], κ)

where a’ = alloc(σ)
A key difference is that instead of choosing any address not currently in the store

for binding variables, we require a well-defined process for choosing a free address.

For that, we use the alloc function:

alloc :: Store -> Addr

alloc(σ) = (foldl max 0 $ keys σ) + 1

The initial state for a closed expression is given by the inj function, which combines

the expression with the empty environment, store, and continuation:

inj CESK (e) = 〈e, ∅, ∅,mt〉.

In Haskell:
inject :: Exp -> Σ

inject (e) = (e, ρ0, σ0, Mt)

where ρ0 = Data.Map.empty

σ0 = Data.Map.empty
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The reachable states semantics is defined following the template of the CEK

machine given in Section 2.2:

CESK (e) = {ς | inj CESK (e) �−→→CESK ς},

which is identical in Haskell to the prior version, except for the final-state recognizer:

isFinal :: Σ -> Bool

isFinal (Lam , , , Mt) = True

isFinal = False

Observe that for any closed expression, the CEK and CESK machines operate

in lock-step: each machine transitions, by the corresponding rule, if and only if the

other machine transitions.

Lemma 1

CESK (e) � CEK (e).

Proof

Follows from known results about the CEK and CESK machines (Felleisen, 1987).

�

2.5 A second attempt at abstract interpretation

With the CESK machine, half the problem with the attempted näıve abstract

interpretation is solved: environments and closures are no longer mutually recursive.

Unfortunately, continuations still have recursive structure. We could crudely abstract

a continuation into a set of frames, losing all sense of order, but this would lead to a

static analysis lacking faculties to reason about return-flow: every call would appear

to return to every other call. A better solution is to refactor continuations as we

did environments, redirecting the recursive structure through the store. In the next

section, we explore a CESK machine with a pointer refinement for continuations.

2.6 The CESK� machine

To untie the recursive structure associated with continuations, we shift to store-

allocated continuations. The basic idea behind store-allocated continuations is not

new. SML/NJ has allocated continuations in the heap for well over a decade (Shao

& Appel, 1994). At first glance, modeling the program stack in an abstract machine

with store-allocated continuations would not seem to provide any real benefit.

Indeed, for the purpose of defining the meaning of a program, there is no benefit,

because the meaning of the program does not depend on the stack-implementation

strategy. Yet, a closer inspection finds that store-allocated continuations eliminate

recursion from the definition of the state-space of the machine. With no recursive

structure in the state-space, an abstract machine becomes eligible for conversion

into an abstract interpreter through a simple structural abstraction.
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States of the CESK� machine, like the CESK, consist of an expression, envi-

ronment, store, and continuation; however, continuations are represented slightly

differently. Instead of the inductive definition of continuations as

κ ∈ Cont = mt | ar(e, ρ, κ) | fn(v, ρ, κ),

we insert a level of indirection by replacing the continuation of a frame with a

pointer to a continuation:

κ ∈ Cont = mt | ar(e, ρ, a) | fn(v, ρ, a).

This change requires the store to follow suit by mapping addresses to denotable

values or continuations:

s ∈ Storable = Val × Env + Cont .

All together, the new state-space in Haskell becomes

type Σ = (Exp,Env,Store,Kont)

data Kont = Mt | Ar(Exp,Env,Addr) | Fn(Lambda,Env,Addr)

data Storable = Clo(Lambda, Env) | Cont Kont

type Env = Var :-> Addr

type Store = Addr :-> Storable

type Addr = Int

The revised machine is defined as

〈x, ρ, σ, κ〉 �−→CESK� 〈v, ρ′, σ, κ〉 where (v, ρ′) = σ(ρ(x))

〈(e0 e1), ρ, σ, κ〉 �−→CESK� 〈e0, ρ, σ[a �→ κ], ar(e1, ρ, a)〉 where a ∈ dom(σ)

〈v, ρ, σ, ar(e, ρ′, a)〉 �−→CESK� 〈e, ρ′, σ, fn(v, ρ, a)〉
〈v, ρ, σ, fn((λx.e), ρ′, b)〉 �−→CESK� 〈e, ρ′[x �→ a], σ[a �→ (v, ρ)], κ〉

where a ∈ dom(σ) and κ = σ(b)

and the initial machine state is defined just as before:

inj CESK �(e) = inj CESK (e) = 〈e, ∅, ∅,mt〉.

In Haskell:

step :: Σ -> Σ

step (Ref x, ρ, σ, κ) = (Lam lam, ρ’, σ, κ)

where Clo(lam, ρ’) = σ!(ρ!x)

step (f :@ e, ρ, σ, κ) = (f, ρ, σ’, κ’)

where a’ = alloc(σ)

σ’ = σ // [a’ ==> Cont κ]

κ’ = Ar(e, ρ, a’)

step (Lam lam, ρ, σ, Ar(e, ρ’, a’)) = (e, ρ’, σ, Fn(lam, ρ, a’))

step (Lam lam, ρ, σ, Fn(x :=> e, ρ’, a)) =

(e, ρ’ // [x ==> a’], σ // [a’ ==> Clo(lam, ρ)], κ)

where Cont κ = σ!a

a’ = alloc(σ)



Systematic abstraction of abstract machines 717

The allocation function needs only to return an unused address, exactly as in

Section 2.4:

alloc :: Store -> Addr

alloc(σ) = (foldl max 0 $ keys σ) + 1

The reachable states semantics is defined along the same lines as those for the

CEK (Section 2.2) and CESK (Section 2.4) machines:

CESK �(e) = {ς | inj CESK �(e) �−→→CESK � ς}.

Like the CESK machine, it is easy to relate the CESK� machine to its predecessor;

from corresponding initial configurations, these machines operate in lock-step.

Lemma 2

CESK �(e) � CESK (e).

2.7 Addresses, abstraction, and allocation

The CESK� machine nondeterministically chooses addresses when it allocates a

location in the store, but because machine states are identified up to consistent

renaming of addresses, the transition system remains deterministic.

Looking ahead, an easy way to bound the state-space of this machine is to bound

the set of addresses.2 But once the store is finite, locations may need to be reused

and when multiple values are to reside in the same location, the store will have to

soundly approximate this by joining the values.

In our concrete machine, all that matters about an allocation strategy is that it

picks an unused address. In the abstracted machine, however, the strategy may have

to re-use previously allocated addresses. The abstract allocation strategy is therefore

crucial to the design of the analysis – it indicates when finite resources should be

doled out and decides when information should deliberately be lost in the service of

computing within bounded resources. In essence, the allocation strategy is the heart

of an analysis. Allocation strategies corresponding to well-known analyses are given

in Section 3.

For this reason, concrete allocation deserves a bit more attention. An old idea in

program analysis is that dynamically allocated storage can be represented by the

state of the computation at allocation time (Jones and Muchnick, 1982; Midtgaard,

to appear, Sec. 1.2.2). That is, allocation strategies may be formulated as functions

of machine history. These representations are often called time-stamps.

A common choice for a time-stamp, popularized by Shivers (1991), is to represent

the history of the computation as contours, finite strings encoding the calling context.

We present a concrete machine that uses a general time-stamp approach and is

parameterized by a choice of tick and alloc functions. We then instantiate tick and

alloc to obtain an abstract machine for computing a k-CFA-style analysis using the

contour approach.

2 A finite number of addresses leads to a finite number of environments, which leads to a finite number
of closures and continuations, which in turn, leads to a finite number of stores, and finally, a finite
number of states.
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2.8 The time-stamped CESK� machine

The machine states of the time-stamped CESK� machine include a time component,

which is intentionally left unspecified for the moment:

t, u ∈ Time

ς ∈ Σ = Exp × Env × Store × Addr × Time.

In Haskell, we fix times and addresses as integers for the moment:

type Σ = (Exp,Env,Store,Kont,Time)

data Storable = Clo (Lambda, Env) | Cont Kont

type Env = Var :-> Addr

type Store = Addr :-> Storable

data Kont = Mt | Ar (Exp,Env,Addr) | Fn (Lambda,Env,Addr)

type Addr = Int

type Time = Int

The machine is parameterized by the functions:

tick : Σ → Time alloc : Σ → Addr .

The tick function returns the next time; the alloc function allocates a fresh address

for a binding or continuation. We require tick and alloc that for all ς = 〈 , , σ, , t〉,
t are “less than” tick(ς) and alloc(ς) /∈ σ. In Haskell, these functions find the next

available integer:

alloc :: Σ -> Addr

alloc( , ,σ, , ) = (foldl max 0 $ keys σ) + 1

tick :: Σ -> Time

tick ( , , , ,t) = t + 1

The time-stamped CESK� machine transition relation, ς �−→CESK �
t
ς′, is defined

as

〈x, ρ, σ, κ, t〉 �−→
CESK�

t
〈v, ρ′, σ, κ, u〉 where (v, ρ′) = σ(ρ(x))

〈(e0 e1), ρ, σ, κ, t〉 �−→
CESK�

t
〈e0, ρ, σ[a �→ κ], ar(e1, ρ, a), u〉

〈v, ρ, σ, ar(e, ρ′, c), t〉 �−→
CESK�

t
〈e, ρ′, σ, fn(v, ρ, c), u〉

〈v, ρ, σ, fn((λx.e), ρ′, c), t〉 �−→
CESK�

t
〈e, ρ′[x �→ a], σ[a �→ (v, ρ)], κ, u〉 where κ = σ(c)
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where a = alloc(ς) and u = tick(ς). Or, in Haskell:

step :: Σ -> Σ

step ς@(Ref x, ρ, σ, κ, t) = (Lam lam, ρ’, σ, κ, t’)

where Clo(lam, ρ’) = σ!(ρ!x)

t’ = tick(ς)

step ς@(f :@ e, ρ, σ, κ, t) = (f, ρ, σ’, κ’, t’)

where a’ = alloc(ς)

σ’ = σ // [a’ ==> Cont κ]

κ’ = Ar(e, ρ, a’)

t’ = tick(ς)

step ς@(Lam lam, ρ, σ, Ar(e, ρ’, a’), t)

= (e, ρ’, σ, Fn(lam, ρ, a’), t’)

where t’ = tick(ς)

step ς@(Lam lam, ρ, σ, Fn(x :=> e, ρ’, a), t)

= (e, ρ’ // [x ==> a’], σ // [a’ ==> Clo(lam, ρ)], κ, t’)

where Cont κ = σ!a

a’ = alloc(ς)

t’ = tick(ς)

A program is injected into the initial machine state as

inj CESK �
t
(e) = 〈e, ∅, ∅,mt, t0〉.

Satisfying definitions for the parameters are

Time = Addr = �

a0 = t0 = 0 tick〈 , , , , t〉 = t + 1 alloc〈 , , , , t〉 = t.

Under these definitions, the time-stamped CESK� machine operates in lock-step

with the CESK� machine, and therefore with the CESK and CEK machines as well.

Lemma 3

CESK �
t (e) � CESK �(e).

The time-stamped CESK� machine forms the basis of our abstracted machine in

the following section.

2.9 The abstract time-stamped CESK� machine

As alluded to earlier, with the time-stamped CESK� machine, we now have a

machine ready for direct abstract interpretation via a single point of approximation:

the store. Our goal is a machine that resembles the time-stamped CESK� machine,

but operates over a finite state-space and is allowed to be nondeterministic. Once

the state-space is finite, the transitive closure of the transition relation becomes

computable, and this transitive closure constitutes a static analysis. Buried in a path
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through the transitive closure is a (possibly infinite) traversal that corresponds to

the concrete execution of the program.

The abstracted variant of the time-stamped CESK� machine comes from bounding

the address space of the store and the number of times available. By bounding these

sets, the state-space becomes finite,3 but for the purposes of soundness, an entry in

the store may be forced to hold several values simultaneously:

σ̂ ∈ 1Store = Addr →fin P (Storable).

Hence, stores now map an address to a set of storable values rather than a single

value. These collections of values model approximation in the analysis. If a location

in the store is reused, the new value is joined with the current set of values. When a

location is dereferenced, the analysis must consider any of the values in the set as a

result of the dereference. In Haskell, the new state-space is nearly the same:

type Σ = (Exp,Env,Store,Kont,Time)

data Storable = Clo(Lambda, Env) | Cont Kont

type Env = Var :-> Addr

type Store = Addr :-> �(Storable)

data Kont = Mt | Ar(Exp,Env,Addr) | Fn(Lambda,Env,Addr)

type Time = -- some finite set

type Addr = -- some finite set

where � is a type synonym for Data.Set.Set:

type � s = Data.Set.Set s

The nondeterministic abstract transition relation changes little compared with

the concrete machine. We only have to modify it to account for the possibility

that multiple storable values (which includes continuations) may reside together in

the store, which we handle by letting the machine nondeterministically choose a

particular value from the set at a given store location.

The abstract time-stamped CESK� machine ς̂ �−→
1CESK �

t

ς̂′ is defined as

〈x, ρ, σ̂, κ, t〉 �−→
1

CESK
�
t

〈v, ρ′, σ̂, κ, u〉 where (v, ρ′) ∈ σ̂(ρ(x))

〈(e0 e1), ρ, σ̂, κ, t〉 �−→
1

CESK
�
t

〈e0, ρ, σ̂ � [a �→ {κ}], ar(e1, ρ, a), u〉

〈v, ρ, σ̂, ar(e, ρ′, c), t〉 �−→
1

CESK
�
t

〈e, ρ′, σ̂, fn(v, ρ, c), u〉

〈v, ρ, σ̂, fn((λx.e), ρ′, c), t〉 �−→
1

CESK
�
t

〈e, ρ′[x �→ a], σ̂ � [a �→ {(v, ρ)}], κ, u〉

where κ ∈ σ̂(c)

where a = balloc(ς̂) and u = btick(ς̂). To make sense of the join operator �, we assume

the natural lifting of a partial order over sets and maps.

Haskell requires that we be explicit about the “natural” lifting. Fortunately, we

can specify the natural lifting through type classes. First, we define a class for lattices,

3 Syntactic sets like Exp are infinite, but finite for any given program.
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sets partially ordered by a relation �, and for which any two elements have both a

least upper bound (�) and a greatest lower bound (�):

class Lattice a where

bot :: a

top :: a

(�) :: a -> a -> Bool

(�) :: a -> a -> a

(�) :: a -> a -> a

Then, we assert that for a flat set X ordered by equality, the set P (X) is a lattice

ordered by set inclusion:

instance (Ord s, Eq s) => Lattice (� s) where

bot = Data.Set.empty

top = error "no representation of universal set"

x � y = x ‘Data.Set.union‘ y

x � y = x ‘Data.Set.intersection‘ y

x � y = x ‘Data.Set.isSubsetOf‘ y

(As with maps, we made a small concession to efficiency by requiring the set X to

be ordered.) This allows us to treat sets of Storable objects as a lattice. Next, we lift

maps into lattices point-wise into lattices:

instance (Ord k, Lattice v) => Lattice (k :-> v) where

bot = Data.Map.empty

top = error "no representation of top map"

f � g = Data.Map.isSubmapOfBy (�) f g

f � g = Data.Map.unionWith (�) f g

f � g = Data.Map.intersectionWith (�) f g

To provide the illusion of infinite maps, we also define a new look-up operator that

returns the bottom element of the range by default:

(!!) :: (Ord k, Lattice v) => (k :-> v) -> k -> v

f !! k = Data.Map.findWithDefault bot k f

At this point, abstract stores are now lattices with a sensibly defined join operation

�:

σ̂1 � σ̂2 = λa.σ̂1(a) � σ̂2(a).

To render the transition relation in code requires lifting the range of the step

function to a sequence, since the abstract relation is truly nondeterministic:
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step :: Σ -> [Σ]

step ς@(Ref x, ρ, σ, κ, t) = [ (Lam lam, ρ’, σ, κ, t’)

| Clo(lam, ρ’) <- Data.Set.toList $ σ!!(ρ!x) ]

where t’ = tick(ς)

step ς@(f :@ e, ρ, σ, κ, t) = [ (f, ρ, σ’, κ’, t’) ]

where a’ = alloc(ς)

σ’ = σ
⊔

[a’ ==> s(Cont κ)]

κ’ = Ar(e, ρ, a’)

t’ = tick(ς)

step ς@(Lam lam, ρ, σ, Ar(e, ρ’, a’), t)

= [ (e, ρ’, σ, Fn(lam, ρ, a’), t’) ]

where t’ = tick(ς)

step ς@(Lam lam, ρ, σ, Fn(x :=> e, ρ’, a), t)

= [ (e, ρ’ // [x ==> a’], σ
⊔

[a’ ==> s(Clo(lam, ρ))], κ, t’)

| Cont κ <- Data.Set.toList $ σ!!a ]

where t’ = tick(ς)

a’ = alloc(ς)

For convenience, we override the big join operator
⊔

to serve as a special operator

for merging a few entries into a large map lattice:

(
⊔
) :: (Ord k, Lattice v) => (k :-> v) -> [(k,v)] -> (k :-> v)

f
⊔

[(k,v)] = Data.Map.insertWith (�) k v f

and made s a synonym for singleton:

s x = Data.Set.singleton x

A program is injected into the initial abstract machine state just as before:

inj
1CESK �

t

(e) = inj CESK �
t
(e) = 〈e, ∅, ∅,mt, t0〉.

The analysis is parameterized by abstract variants of the functions that parame-

terized the concrete version:

btick : Σ̂ → 1Time, balloc : Σ̂ → 1Addr ,

where 1Time ⊂ Time and 1Addr ⊂ Addr . In the concrete, these parameters determine

allocation and stack behavior. In the abstract, they are the arbiters of precision: They

determine when an address gets re-allocated, how many addresses get allocated, and

which values have to share addresses.

The abstract semantics computes the set of reachable states:

2CESK �
t (e) = {ς̂ | inj

1CESK �
t

(e) �−→→
1CESK �

t

ς̂}.

In Haskell, computing the analysis is (naively) just a graph exploration:
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aval :: Exp -> �(Σ)

aval(e) = explore step (inject(e))

explore :: (Ord a) => (a -> [a]) -> a -> �(a)

explore f ς0 = search f Data.Set.empty [ς0]

(∈) :: Ord a => a -> �(a) -> Bool

(∈) = Data.Set.member

search :: (Ord a) => (a -> [a]) -> �(a) -> [a] -> �(a)

search f seen [] = seen

search f seen (hd:tl)

| hd ∈ seen = search f seen tl

| otherwise = search f (Data.Set.insert hd seen) (f(hd) ++ tl)

2.10 Soundness and computability

The finiteness of the abstract state-space ensures decidability.

Theorem 1 (Decidability of the Abstract CESK� Machine)

ς̂ ∈ 1CESK �
t
(e) is decidable.

Proof

The state-space of the machine is non-recursive with finite sets at the leaves on

the assumption that addresses are finite. Hence , reachability is decidable since the

abstract state-space is finite. �

We have endeavored to evolve the abstract machine gradually so that its fidelity

in soundly simulating the original CEK machine is both intuitive and obvious. But

to formally establish soundness of the abstract time-stamped CESK� machine, we

use an abstraction function, defined below, from the state-space of the concrete

time-stamped machine into the abstracted state-space.

α : ΣCESK �
t

→ Σ̂
1CESK �

t

α(e, ρ, σ, a, t) = (e, α(ρ), α(σ), α(κ), α(t)) [states]

α(ρ) = λx.α(ρ(x)) [environments]

α(σ) = λâ.
⊔

α(a)=â

{α(σ(a))} [stores]

α((λx.e), ρ) = ((λx.e), α(ρ)) [closures]

α(mt) = mt [continuations]

α(ar(e, ρ, a)) = ar(e, α(ρ), α(a))

α(fn(v, ρ, a)) = fn(v, α(ρ), α(a)),
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The abstraction map over times and addresses is defined so that the parameters
balloc and btick are sound simulations of the parameters alloc and tick, respectively.4

We also define the partial order (�) on the abstract state-space as the natural point-

wise, element-wise, component-wise, and member-wise lifting, wherein the partial

orders on the sets Exp and Addr are flat. Then, we can prove that the abstract

machine’s transition relation simulates the concrete machine’s transition relation.

Theorem 2 (Soundness of the Abstract CESK� Machine)

If ς �−→CEK ς′ and α(ς) � ς̂, then there exists an abstract state ς̂′, such that

ς̂ �−→
1CESK �

t

ς̂′ and α(ς′) � ς̂′.

Proof

By Lemmas 1, 2, and 3, it suffices to prove soundness with respect to �−→CESK �
t
.

Assume ς �−→CESK �
t
ς′ and α(ς) � ς̂. Because ς transitioned, exactly one of the rules

from the definition of ( �−→
1CESK �

t

) applies. We split by cases on these rules. The rule

for the second and third cases are deterministic and follow by calculation. For the

remaining (nondeterministic) cases, we must show an abstract state exists such that

the simulation is preserved. By examining the rules for the first and fourth cases, we

see that both hinge on the abstract store in ς̂ soundly approximating the concrete

store in ς, which follows from the assumption that α(ς) � ς̂. �

3 An approximation like k-CFA

In this section, we instantiate the time-stamped CESK� machine to obtain a contour-

based machine; this instantiation forms the basis of a context-sensitive abstract

interpreter with polyvariance like that found in k-CFA (Shivers, 1991). In preparation

for abstraction, we first refine the time-stamped machine to link the allocation of

times and addresses. Under abstraction, this link defines the relationship between

context-sensitivity and polyvariance in static analysis.

3.1 A machine with time-based allocation

We can take the last concrete machine and refine it so that the allocation of times

and addresses are linked. We do so by creating two kinds of addresses: variable

binding addresses and continuation addresses:

Addr =

binding addr.︷ ︸︸ ︷
Var × Time +

cont. addr.︷ ︸︸ ︷
Exp × Time

When a variable is bound, the address it receives is a combination of itself and

the time of its binding. When a continuation is stored, the address it receives is a

combination of the expression forcing the storing of the continuation plus the time

of its creation. In both cases, the freshness of the time ensures the freshness of the

address.

4 A function f̂ is a sound simulation of f if α(x) � x̂ implies α(f(x)) � f̂(x̂).
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With all the domains together in Haskell:

type Σ = (Exp,Env,Store,Kont,Time)

data Storable = Clo (Lambda, Env) | Cont Kont

type Env = Var :-> Addr

type Store = Addr :-> Storable

data Kont = Mt | Ar (Exp,Env,Addr) | Fn (Lambda,Env,Addr)

type Time = Int

data Addr = KAddr (Exp, Time)

| BAddr (Var, Time)

The formal concrete semantics does not change with this machine. In Haskell,

however, it helps to split allocation into two functions – one that allocates addresses

for variables, and the other for continuations:

allocBind :: (Var,Time) -> Addr

allocBind (v,t) = BAddr (v,t)

allocKont :: (Exp,Time) -> Addr

allocKont (e,t) = KAddr (e,t)

so that the step function invokes each as appropriate:

step :: Σ -> Σ

step ς@(Ref x, ρ, σ, κ, t) = (Lam lam, ρ’, σ, κ, t’)

where Clo(lam, ρ’) = σ!(ρ!x)

t’ = tick(ς)

step ς@(f :@ e, ρ, σ, κ, t) = (f, ρ, σ’, κ’, t’)

where a’ = allocKont(f :@ e, t’)

σ’ = σ // [a’ ==> Cont κ]

κ’ = Ar(e, ρ, a’)

t’ = tick(ς)

step ς@(Lam lam, ρ, σ, Ar(e, ρ’, a’), t)

= (e, ρ’, σ, Fn(lam, ρ, a’), t’)

where t’ = tick(ς)

step ς@(Lam lam, ρ, σ, Fn(x :=> e, ρ’, a), t)

= (e, ρ’ // [x ==> a’], σ // [a’ ==> Clo(lam, ρ)], κ, t’)

where Cont κ = σ!a

a’ = allocBind(x, t’)

t’ = tick(ς)

3.2 Instantiating time as context

Up to this point, we have left time opaque (or used the integers in Haskell). In this

section, we will change the structure of time so as to (1) encode execution context,

and (2) make it more easily abstractable.
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Call strings have long served as a measure of execution contexts in program

analysis (Sharir & Pnueli, 1981). To take this approach in the abstract machine

framework, we set time to the sequence of expressions seen since the start of

execution:

Time = Exp∗.

Then, we modify the tick function to prepend the current expression:

tick〈e, , , ,t〉 = e : t

Of course, this definition captures expression strings rather than call strings. Call

strings are recoverable by ignoring the non-application terms in the sequence.

In Haskell, only the definition of the type Time and the function tick change:

type Time = [Exp]

tick :: Σ -> Time

tick (e, , , ,t) = e : t

3.3 A machine for k-CFA-like approximation

Bounding the length of the time in the previous machine to at most k and then

applying the abstraction process yields a k-CFA-like machine.

Formally, the tick function restricts itself to the last k call sites:

tick〈e, , , ,t〉 = �e : t�k

or, in Haskell:

tick :: Σ -> Time

tick (e, , , ,t) = take k (e : t)

Comparison to k-CFA. We say “k-CFA-like” rather than “k-CFA” because there

are distinctions between the machine just described and k-CFA:

1. k-CFA focuses on “what flows where”; the ordering between states in the

abstract transition graph produced by our machine produces “what flows

where and when.”

2. Standard presentations of k-CFA implicitly inline a global approximation of

the store into the algorithm (Shivers, 1991); ours uses one store per state to

increase precision at the cost of complexity. We can explicitly inline the store

to achieve the same complexity, as shown in Section 3.5.

3. On function call, k-CFA merges argument values together with previous in-

stances of those arguments from the same context; our “minimalist” evolution

of the abstract machine takes a higher-precision approach: It forks the machine

for each argument value, rather than merging them immediately.

4. k-CFA does not recover explicit information about stack structure; our

machine contains an explicit model of the stack for every machine state.
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3.4 A machine for 0-CFA-like approximation

Let k = 0. Note that 1Time collapses to a constant, and 1Addr collapses to variables

and expressions. Since time-stamps have collapsed, they may be eliminated from the

machine entirely:

1Addr = Exp + Var

By in-lining the allocation function and observing environments in the in-lined

0-CFA machine are always the identity environment, they can be eliminated, we

obtain a machine for 0-CFA:

ς̂ ∈ Σ̂ = Exp × 1Store × Cont

s ∈ Storable = Lam + Cont

κ ∈ Cont = mt | ar(e, a) | fn(lam , a)

a ∈ 1Addr = Exp + Var

In Haskell:
type Σ = (Exp,Store,Kont)

data Storable = Clo Lambda | Cont Kont

type Store = Addr :-> �(Storable)

data Kont = Mt | Ar(Exp,Addr) | Fn(Lambda,Addr)

data Addr = KAddr Exp | BAddr Var

〈x, σ̂, κ〉 �−→0CFA 〈v, σ̂, κ〉 where v ∈ σ̂(x)

〈(e0 e1), σ̂, κ〉 �−→0CFA 〈e0, σ̂ � [a �→ {κ}], ar(e1, a)〉 where a = (e0 e1)

〈v, σ̂, ar(e, a)〉 �−→0CFA 〈e, σ̂, fn(v, a)〉
〈v, σ̂, fn((λx.e), a)〉 �−→0CFA 〈e, σ̂ � [x �→ {v}], κ〉 where κ ∈ σ̂(a)

In Haskell:
step :: Σ -> [Σ]

step (Ref x, σ, κ) =

[ (Lam lam, σ, κ)

| Clo(lam) <- Data.Set.toList $ σ!!(BAddr x) ]

step (f :@ e, σ, κ) = [ (f, σ’, Ar(e,a’)) ]

where σ’ = σ � [a’ ==> s(Cont κ)]

a’ = KAddr (f :@ e)

step (Lam lam, σ, Ar(e, a’)) = [ (e, σ, Fn(lam, a’)) ]

step (Lam lam, σ, Fn(x :=> e, a))

= [ (e, σ � [BAddr x ==> s(Clo(lam))], κ)

| Cont κ <- Data.Set.toList $ σ!!a ]

3.5 Widening to improve complexity

If implemented näıvely, it takes time exponential in the size of the input program

to compute the reachable states of the abstracted machines. Consider the size of the
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state-space for the abstract time-stamped CESK� machine:

|Exp × Env × 1Store × Kont ×1Time|

= |Exp| × |1Addr ||Var | × |Storable||
bAddr | × |Kont | × |1Time|.

Without simplifying any further, we clearly have an exponential number of abstract

states.

To reduce complexity, we can employ widening in the form of Shivers’s single-

threaded store (Shivers, 1991). To use a single threaded store, we have to reconsider

the abstract evaluation function itself. Instead of seeing it as a function that returns

the set of reachable states, it is a function that returns a set of partial states plus a

single globally approximating store, i.e., aval : Exp → System , where:

System = P
(
Exp × Env × Kont ×1Time

)
× 1Store.

We compute this as a fixed point of a monotonic function, f : System → System:5

f(C, σ̂) = (C ′, σ̂′′) where

Q′ = {(c′, σ̂′) : c ∈ C and (c, σ̂) �−→ (c′, σ̂′)}
(c0, σ̂0) ∼= inj (e)

C ′ = C ∪ {c′ : (c′, ) ∈ Q′} ∪ {c0}

σ̂′′ = σ̂ �
⊔

( ,σ̂′)∈Q′

σ̂′,

so that aval (e) = lfp(f). The maximum number of iterations of the function f times

the cost of each iteration bounds the complexity of the analysis.

3.6 Polynomial complexity for monovariance

It is straightforward to compute the cost of a monovariant (in our framework, a

“0CFA-like”) analysis with this widening. In a monovariant analysis, environments

disappear; the system-space simplifies to

System0 = P (Exp × Cont) × 1Store

∼= (Exp → P (Cont)) × (1Addr → P (Storable)).

If ascended monotonically, one could add one new partial state each time or

introduce a new entry into the global store. Thus, the maximum number of

monovariant iterations is

|Exp| × |Cont | + |1Addr | × |Storable|

5 The metavariable c identifies with non-store components of a machine; the metavariable C identifies
with sets of these; and the metavariable Q identifies with sets of states.



Systematic abstraction of abstract machines 729

which is polynomial in the size of the program

|Exp| ×

|Cont |︷ ︸︸ ︷
(1 + |Exp|2 + |Exp|2) +

|bAddr |︷ ︸︸ ︷
(|Var | + |Exp|) ×

|Storable|︷ ︸︸ ︷
(|Lam| + (1 + |Exp|2 + |Exp|2))

4 Analyzing by-need with Krivine’s machine

Even though the abstract machines of the prior section have advantages over

traditional CFAs, the approach we took (store-allocated continuations) yields more

novel results when applied in a different context. Specifically, we present an abstract

analog to a lazy and properly tail-recursive variant of Krivine’s machine (Krivine,

1985, 2007) derived by Ager et al. (2004). The derivation from Ager et al.’s (2004)

machine to the abstract interpreter follows the same outline as that of Section 2:

We apply a pointer refinement by store-allocated continuations and carry out

approximation by bounding the store.

The by-need variant of Krivine’s machine (Krivine, 1985, 2007) considered here

uses the common implementation technique of store-allocating thunks and forced

values. When an application is evaluated, a thunk is created that will compute the

value of the argument when forced. Evaluating a variable bound to a thunk causes

the thunk to be forced, which updates the store to point to the value produced

by evaluating the thunk, then produces that value. Otherwise, evaluating a variable

bound to a forced value just produces that value.

Storable values include delayed computations (thunks) d(e, ρ), and computed val-

ues c(v, ρ), which are just tagged closures. There are two continuation constructors:

c1(a, κ) is induced by a variable occurrence whose binding has not yet been forced

to a value. The address a is where we want to write the given value when this

continuation is invoked. The other: c2(a, κ) is induced by an application expression,

which forces the operator expression to a value. The address a is the address of the

argument.

The concrete state-space and transition relation are defined as follows:

ς ∈ Σ = Exp × Env × Store × Cont

s ∈ Storable = d(e, ρ) | c(v, ρ)

κ ∈ Cont = mt | c1(a, κ) | c2(a, κ)

〈x, ρ, σ, κ〉 �−→LK 〈e, ρ′, σ, c1(ρ(x), κ)〉, if σ(ρ(x)) = d(e, ρ′)

〈x, ρ, σ, κ〉 �−→LK 〈v, ρ′, σ, κ〉, if σ(ρ(x)) = c(v, ρ′)

〈(e0 e1), ρ, σ, κ〉 �−→LK 〈e0, ρ, σ[a �→ d(e1, ρ)], c2(a, κ)〉where a /∈ dom(σ)

〈v, ρ, σ, c1(a, κ)〉 �−→LK 〈v, ρ, σ[a �→ c(v, ρ)], κ〉
〈(λx.e), ρ, σ, c2(a, κ)〉 �−→LK 〈e, ρ[x �→ a], σ, κ〉

When the control component is a variable, the machine looks up its stored value,

which is either computed or delayed. If delayed, a c1 continuation is pushed and the

frozen expression is put in control. If computed, the value is simply returned. When

a value is returned to a c1 continuation, the store is updated to reflect the computed
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value. When a value is returned to a c2 continuation, its body is put in control and

the formal parameter is bound to the address of the argument.

We now refactor the machine to use store-allocated continuations; storable values

are extended to include continuations:

ς ∈ Σ = Exp × Env × Store × Addr

s ∈ Storable = d(e, ρ) | c(v, ρ) | κ
κ ∈ Cont = mt | c1(a, a) | c2(a, a).

It is straightforward to perform a pointer-refinement of the LK machine to store-

allocated continuations as done for the CESK machine in Section 2.6 and observe

the lazy variant of Krivine’s machine (Krivine, 1985, 2007) and its pointer-refined

counterpart (not shown) operate in lock-step:

Lemma 4

LK (e) � LK �(e).

After threading time-stamps through the machine as done in Section 2.8 and

defining btick and balloc analogously to the definitions given in Section 2.9, the

pointer-refined machine abstracts directly to yield the abstract LK� machine:

〈x, ρ, σ̂, κ, t〉 �−→
LK �

t
〈e, ρ′, σ̂ � [a0 �→ κ], c1(ρ(x), a), u〉 if d(e, ρ′) ∈ σ̂(ρ(x))

〈x, ρ, σ̂, κ, t〉 �−→
LK �

t
〈v, ρ′, σ̂, κ, u〉 if c(v, ρ′) ∈ σ̂(ρ(x))

〈(e0 e1), ρ, σ̂, κ, t〉 �−→
LK �

t
〈e0, ρ, σ̂ � [a �→ d(e1, ρ), a �→ κ], c2(c, a), u〉

〈v, ρ, σ̂, c1(a
′, c), t〉 �−→

LK �
t

〈v, ρ′, σ̂ � [a′ �→ c(v, ρ)], κ, u〉 if κ ∈ σ̂(c)

〈(λx.e), ρ, σ̂, c2(a, c), t〉 �−→
LK �

t
〈e, ρ′[x �→ a], σ̂, κ, u〉 if κ ∈ σ̂(c)

where a = balloc(ς̂) and u = btick(ς̂).

This machine relies on a slight trick in evaluating an application term in that it

allocates both a delay and a continuation to the same address. Since these sorts do

not overlap, the machine operates as if they were allocated to separate addresses and

avoids the need for balloc to return multiple addresses. A more robust, but verbose,

solution would be for balloc to produce a vector of addresses that is of appropriate

length for each kind of machine state.

The abstraction map for this machine is a straightforward structural abstraction

similar to that given in Section 2.10 (and hence omitted). The abstracted machine is

sound with respect to the LK� machine, and therefore the original LK machine.

Theorem 3 (Soundness of the Abstract LK� Machine)

If ς �−→LK ς′ and α(ς) � ς̂, then there exists an abstract state ς̂′, such that ς̂ �−→
bLK �

t

ς̂′

and α(ς′) � ς̂′.

4.1 Optimizing the machine through specialization

Ager et al. (2004) optimize the LK machine by specializing application transitions.

When the operand of an application is a variable, no delayed computation needs

to be constructed, thus “avoiding the construction of space-leaky chains of thunks.”
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Likewise, when the operand is a λ-abstraction, “we can store the corresponding

closure as a computed value rather than as a delayed computation.” Both of these

optimizations, which conserve valuable abstract resources, can be added with no

trouble:

〈(e x), ρ, σ̂, κ, t〉 �−→
bLK �

〈e, ρ, σ̂ � [a �→ κ], c2(ρ(x), a), u〉
〈(e v), ρ, σ̂, κ, t〉 �−→

bLK �
〈e0, ρ, σ̂ � [a �→ c(v, ρ), a �→ κ], c2(a, a), u〉

where a = balloc(ς̂) and u = btick(ς̂).

4.2 Varying the machine through postponed thunk creation

Ager et al. (2004) also vary the LK machine by postponing the construction of a

delayed computation from the point at which an application is the control string

to the point at which the operator has been evaluated and is being applied. The c2

continuation is modified to hold, rather than the address of a delayed computation,

the constituents of the computation itself:

κ ∈ Cont = mt | c1(a, a) | c2(e, ρ, a).

The transitions for applications and functions are replaced with

〈(e0 e1), ρ, σ̂, κ, t〉 �−→
bLK ′�

〈e0, ρ, σ̂ � [a �→ κ], c2(e1, ρ, a), u〉
〈(λx.e), ρ, σ̂, c2(e

′, ρ′, c), t〉 �−→
bLK ′�

〈e, ρ[x �→ a], σ̂ � [a �→ d(e′, ρ′)], κ, u〉 if κ ∈ σ̂(c)

where a = balloc(ς̂) and u = btick(ς̂). This allocates thunks when a function is applied,

rather than when the control string is an application.

As Ager et al. (2004) remark, each of these variants gives rise to an abstract

machine. From each of these machines, we are able to systematically derive their

abstractions.

5 State and control

We have shown that store-allocated continuations make abstract interpretation of

the CESK machine and a lazy variant of Krivine’s machine (Krivine, 1985, 2007)

straightforward. In this section, we want to show that the tight correspondence

between concrete and abstract persists after the addition of language features such

as conditionals, mutation, exceptions, and continuations. We tackle each feature,

and present the additional machinery required to handle each one. In most cases,

the path from a canonical concrete machine to pointer-refined abstraction of the

machine is so simple that we only show the abstracted system. In doing so, we

are arguing that this abstract machine-oriented approach to abstract interpretation

represents a flexible and viable framework for building abstract interpreters.
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5.1 Conditionals, mutation, and control

To handle conditionals, we extend the language with a new syntactic form, (if e e e),

and introduce a base value #f, representing false. Conditional expressions induce

a new continuation form: if (e′
0, e

′
1, ρ, a), which represents the evaluation context

E[(if [ ] e0 e1)] where ρ closes e′
0 to represent e0, ρ closes e′

1 to represent e1, and a

is the address of the representation of E.

Mutation is fully amenable to our approach; we introduce Scheme’s set! for

mutating variables using the (set! x e) syntax. The set! form evaluates its

subexpression e and assigns the value to the variable x. Although set! expressions

are evaluated for effect, we follow Felleisen et al. (2009, p. 166) and specify that

set! expressions evaluate to the value of x before it was mutated. The evaluation

context E[(set! x [ ])] is represented by set(a0, a1), where a0 is the address of x’s

value and a1 is the address of the representation of E.

First-class control is introduced by adding a new base value callcc which reifies

the continuation as a new kind of applicable value. Denoted values are extended to

include representations of continuations. Since continuations are store-allocated, we

choose to represent them by address. When an address is applied, it represents the

application of a continuation (reified via callcc) to a value. The continuation at

that point is discarded and the applied address is installed as the continuation.

The resulting grammar is

e ∈ Exp = . . . | (if e e e) | (set! x e)

κ ∈ Cont = . . . | if (e, e, ρ, a) | set(a, a)

v ∈ Val = . . . | #f | callcc | κ.

We show only the abstract transitions, which result from store-allocated contin-

uations, time-stamping, and abstracting the concrete transitions for conditionals,

mutation, and control. The first three machine transitions deal with conditionals;

here we follow the Scheme tradition of considering all non-false values as true. The

fourth and fifth transitions deal with mutation:

〈(if e0 e1 e2), ρ, σ̂, κ, t〉 �−→
1CESK �

t

〈e0, ρ, σ̂ � [a �→ κ], if (e1, e2, ρ, a), u〉

〈#f, ρ, σ̂, if (e0, e1, ρ
′, c), t〉 �−→

1CESK �
t

〈e1, ρ
′, σ̂, κ, u〉 if κ ∈ σ̂(c)

〈v, ρ, σ̂, if (e0, e1, ρ
′, c), t〉 �−→

1CESK �
t

〈e0, ρ
′, σ̂, κ, u〉 if κ ∈ σ̂(c) and v = #f

〈(set! x e), ρ, σ̂, κ, t〉 �−→
1CESK �

t

〈e, ρ, σ̂ � [a �→ κ], set(ρ(x), a), u〉

〈v, ρ, σ̂, set(a′, c), t〉 �−→
1CESK �

t

〈v′, ρ, σ̂ � [a′ �→ v], κ, u〉

if κ ∈ σ̂(c) and v′ ∈ σ̂(a′)

〈(λx.e), ρ, σ̂, fn(callcc, ρ′, c), t〉 �−→
1CESK �

t

〈e, ρ[x �→ a], σ̂ � [a �→ κ], κ, u〉 if κ ∈ σ̂(c)

〈κ, ρ, σ̂, fn(callcc, ρ′, c), t〉 �−→
1CESK �

t

〈fn(callcc, ρ′, c), ρ, σ̂, κ, u〉

〈v, ρ, σ̂, fn(κ, ρ′, c), t〉 �−→
1CESK �

t

〈v, ρ, σ̂, κ, u〉
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where a = balloc(ς̂) and u = btick(ς̂).

The remaining three transitions deal with first-class control. In the first of these

cases, callcc is being applied to a closure ((λx.e), ρ). The closure is then “called with

the current continuation”, i.e., the machine jumps to the body of the function, e, in

the environment ρ extended with x bound to a value that represents the continuation

at this point. In the second case, callcc is being applied to a continuation. When

this value is applied to the reified continuation, it aborts the current computation,

installs itself as the current continuation, and puts the reified continuation “in the

hole.” Finally, in the third case, a continuation is being applied; c gets thrown away,

and v gets plugged into the continuation κ.

In all cases, these transitions result from pointer-refinement, time-stamping, and

abstraction of the usual machine transitions.

5.2 Exceptions and handlers

To analyze exceptional control flow, we extend the CESK machine with a register

to hold a stack of exception handlers. This models a reduction semantics in which

we have two additional kinds of evaluation contexts:

E = [ ] | (E e) | (v E) | (catch E v)

F = [ ] | (F e) | (v F)

H = [ ] | H[F[(catch [ ] v)]],

and the additional, context-sensitive, notions of reduction:

(catch E[(throw v)] v′) → (v′ v)

(catch v v′) → v.

Here, H contexts represent a stack of exception handlers, while F contexts represent

a “local” continuation, i.e., the rest of the computation (with respect to the hole) up

to an enclosing handler, if any. Contexts for evaluation, E, represent the entire rest

of the computation, including handlers.

The language is extended with expressions for raising and catching exceptions.

A new kind of continuation is introduced to represent a stack of handlers. In

each frame of the stack, there is a procedure for handling an exception and a

(handler-free) continuation:

e ∈ Exp = . . . | (throw v) | (catch e (λx.e))

η ∈ Handl = mt | hn(v, ρ, κ, η)

An η continuation represents a stack of exception handler contexts, i.e., hn(v′, ρ, κ, η)

represents H[F[(catch [ ] v)]], where η represents H, κ represents F, and ρ closes

v′ to represent v.

The machine includes all of the transitions of the CESK machine extended with

an η component; these transitions are omitted for brevity. The additional transitions
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are

〈v, ρ, σ, hn(v′, ρ′, κ, η),mt〉 �−→CESHK 〈v, ρ, σ, η, κ〉
〈(throw v), ρ, σ, hn((λx.e), ρ′, κ′, η), κ〉 �−→CESHK 〈e, ρ′[x �→ a], σ[a �→ (v, ρ)], η, κ′〉

where a /∈ dom(σ)

〈(catch e v), ρ, σ, η, κ〉 �−→CESHK 〈e, ρ, σ, hn(v, ρ, κ, η),mt〉

This presentation is based on a textbook treatment of exceptions and han-

dlers (Felleisen et al., 2009, p. 135). To be precise, Felleisen et al.present the CHC

machine, a substitution-based machine that uses evaluation contexts in place of

continuations. Deriving the CESHK machine from it is an easy exercise.

The initial configuration is given by

inj CESHK (e) = 〈e, ∅, ∅,mt,mt〉.

In the pointer-refined machine, the grammar of handler continuations changes to

the following:

η ∈ Handl = mt | hn(v, ρ, a),

where a is used to range over addresses pointing to a pair of η and κ continuations.

The pointer-refined machine is

〈v, ρ, σ, hn(v′, ρ′, c),mt〉 �−→
CESHK � 〈v, ρ, σ, η, κ〉 if (η, κ) = σ(c)

〈(throw v), ρ, σ, hn((λx.e), ρ′, c), κ〉 �−→
CESHK � 〈e, ρ′[x �→ a], σ[a �→ (v, ρ)], η, κ′〉

if (η, κ′) = σ(c)

〈(catch e v), ρ, σ, η, κ〉 �−→
CESHK � 〈e, ρ, σ[a �→ (η, κ)], hn(v, ρ, a),mt〉

where a = alloc(ς).

After threading time-stamps through the machine as done in Section 2.8, the

machine abstracts as expected:

〈v, ρ, σ̂, hn(v′, ρ′, c),mt, t〉 �−→
2CESHK �

t

〈v, ρ, σ̂, η, κ, u〉 if (η, κ) ∈ σ̂(c)

〈(throw v), ρ, σ̂, hn((λx.e), ρ′, c), κ, t〉 �−→
2CESHK �

t

〈e, ρ′[x �→ a], σ̂ � [a �→ (v, ρ)],

η, κ′, u〉
if (η, κ′) ∈ σ(c)

〈(catch e v), ρ, σ̂, η, κ, t〉 �−→
2CESHK �

t

〈e, ρ, σ̂ � [a �→ (η, κ)], hn(v, ρ, a),

mt, u〉

where a = balloc(ς̂) and u = btick(ς̂).

6 Abstract garbage collection

Garbage collection determines when a store location has become unreachable and

can be reallocated. This is significant in the abstract semantics because an address

may be allocated to multiple values due to finiteness of the address space. Without

garbage collection, the values allocated to this common address must be joined,

introducing imprecision in the analysis (and inducing further, perhaps spurious,
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computation). By incorporating garbage collection in the abstract semantics, the

location may be proved to be unreachable and safely overwritten rather than joined,

in which case no imprecision is introduced.

Like the rest of the features addressed in this paper, we can incorporate abstract

garbage collection into our static analyzers by a straightforward pointer-refinement

of textbook accounts of concrete garbage collection, followed by a finite store

abstraction.

Concrete garbage collection is defined in terms of a GC machine that computes

the reachable addresses in a store (Morrisett et al., 1995; Felleisen et al., 2009,

p. 172):

〈G,B, σ〉 �−→GC 〈(G ∪ LLσ(σ(a)) \ (B ∪ {a})),B ∪ {a}, σ〉, if a ∈ G.

This machine iterates over a set of reachable but unvisited “grey” locations G. On

each iteration, an element is removed and added to the set of reachable and visited

“black” locations B. Any newly reachable and unvisited locations, as determined by

the “live locations” function LLσ , are added to the grey set. When there are no grey

locations, the black set contains all reachable locations. Everything else is garbage.

The live locations function computes a set of locations which may be used in

the store. Its definition will vary based on the particular machine being garbage

collected, but the definition that appropriates for the CESK� machine of Section

2.6 is

LLσ(e) = ∅
LLσ(e, ρ) = LLσ(ρ|fv(e))

LLσ(ρ) = rng(ρ)

LLσ(mt) = ∅
LLσ(fn(v, ρ, a)) = {a} ∪ LLσ(v, ρ) ∪ LLσ(σ(a))

LLσ(ar(e, ρ, a)) = {a} ∪ LLσ(e, ρ) ∪ LLσ(σ(a)).

We write ρ|fv(e) to mean ρ restricted to the domain of free variables in e. We assume

the least-fixed-point solution in the calculation of the function LL in cases where it

recurs on itself.

The pointer-refinement of the machine requires parameterizing the LL function

with a store used to resolve pointers to continuations. A nice consequence of this

parameterization is that we can reuse LL for abstract garbage collection by supplying

it an abstract store for the parameter. Doing so only necessitates extending LL to

the case of sets of storable values:

LLσ(S) =
⋃
s∈S

LLσ(s)

The CESK� machine incorporates garbage collection by a transition rule that

invokes the GC machine as a subroutine to remove garbage from the store. The

garbage collection transition introduces nondeterminism to the CESK� machine

because it applies to any machine state and thus overlaps with the existing transition
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rules. The nondeterminism is interpreted as leaving the choice of when to collect

garbage up to the machine.

The abstract CESK� incorporates garbage collection by the concrete garbage

collection transition, i.e., we reuse the definition below, only with an abstract store, σ̂,

in place of the concrete one. Consequently, it is easy to verify that abstract garbage

collection approximates its concrete counterpart:

〈e, ρ, σ, κ〉 �−→
CESK � 〈e, ρ, {〈b, σ(b)〉 | b ∈ L}, κ〉

if 〈LLσ(e, ρ) ∪ LLσ(κ), ∅, σ〉 �−→→GC 〈∅,L, σ〉

The CESK� machine may collect garbage at any point in the computation. Thus,

an abstract interpretation must soundly approximate all possible choices of when to

trigger a collection, which the abstract CESK� machine does correctly. This may be

a useful analysis of garbage collection; however, it fails to be a useful analysis with

garbage collection: for soundness, the abstracted machine must consider the case

in which garbage is never collected, implying no storage is reclaimed to improve

precision.

However, we can leverage abstract garbage collection to reduce the state-space

explored during analysis and to improve precision and analysis time. This is achieved

(again) by considering properties of the concrete machine, which abstracts directly;

in this case, we want the concrete machine to deterministically collect garbage.

Determinism of the CESK� machine is restored by defining the transition relation as

a non-GC transition followed by the GC transition. This state-space of this concrete

machine is “garbage free” and consequently the state-space of the abstracted machine

is “abstract garbage free.”

In the concrete semantics, a nice consequence of this property is that although

continuations are allocated in the store, they are deallocated as soon as they

become unreachable, which corresponds to when they would be popped from the

stack in a non-pointer-refined machine. Thus, the concrete machine really manages

continuations like a stack.

Similarly, in the abstract semantics, continuations are deallocated as soon as

they become unreachable, which often corresponds to when they would be popped.

We say often, because of the finiteness of the store, this correspondence cannot

always hold. However, this approach gives a good finite approximation to infinitary

stack analyses that can always match calls and returns. More specifically, abstract

garbage collection and infinitary stack analyses coincide when all of the calls in

a program are tail calls. The reasoning is straightforward: in a program in which

all calls are tail calls, the height of the stack and (thus the number of co-live

continuations) is bounded; the tail-call constraint guarantees that one continuation

for a given procedure will never be co-live with a different continuation for that

same procedure.

7 Abstract stack inspection

In this section, we derive an abstract interpreter for the static analysis of a higher-

order language with stack inspection. Following the outline of Sections 2 and 3,
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we start from the tail-recursive CM machine of Clements and Felleisen (2004),

perform a pointer refinement on continuations, then abstract the semantics by a

parameterized bounding of the store.

7.1 The λsec-calculus and stack-inspection

The λsec-calculus of Pottier et al. (2005) is a call-by-value λ-calculus model of higher-

order stack inspection. We present the language as given by Clements and Felleisen

(2004).

All code is statically annotated with a given set of permissions R, chosen from

a fixed set P. A computation whose source code was statically annotated with a

permission may enable that permission for the dynamic extent of a subcomputation.

The subcomputation is privileged so long as it is annotated with the same permission,

and every intervening procedure call has likewise been annotated with the privilege:

e ∈ Exp = . . . | fail | (grant R e) | (test R e e) | (frame R e)

A fail expression signals an exception if evaluated; by convention it is used to signal

a stack-inspection failure. A (frame R e) evaluates e as the principal R, representing

the permissions conferred on e given its origin. A (grant R e) expression evaluates

as e but with the permissions extended with R enabled. A (test R e0 e1) expression

evaluates to e0 if R is enabled and e1 otherwise.

A trusted annotator consumes a program and the set of permissions it will operate

under and inserts frame expressions around each λ-body and intersects all grant

expressions with this set of permissions. We assume all programs have been properly

annotated.

Stack inspection can be understood in terms of an OK predicate on evaluation

contexts and permissions. The predicate determines whether the given permissions

are enabled for a subexpression in the hole of the context. The OK predicate

holds whenever the context can be traversed from the hole outwards and, for each

permission, find an enabling grant context without first finding a denying frame

context.

7.2 The CM machine

The CM machine of Clements and Felleisen (2004) is a properly tail-recursive ex-

tended CESK machine for interpreting higher-order languages with stack-inspection.

In the CM machine, continuations are annotated with marks (Clements et al., 2001),

which, for the purposes of stack-inspection, are finite maps from permissions to

{deny, grant}:
κ= mtm | arm(e, ρ, κ) | fnm(v, ρ, κ).

We use R to denote the complement of R and write κ[R �→ c] to mean the marks

on κ are updated to m[R �→ c].

The CM machine is defined as follows: Where transitions that are straightforward

adaptations of the corresponding CESK� transitions to incorporate continuation
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marks are omitted:

〈fail, ρ, σ, κ〉 �−→CM 〈fail, ρ, σ,mt∅〉
〈(frame R e), ρ, σ, κ〉 �−→CM 〈e, ρ, σ, κ[R �→ deny]〉
〈(grant R e), ρ, σ, κ〉 �−→CM 〈e, ρ, σ, κ[R �→ grant]〉

〈(test R e0 e1), ρ, σ, κ〉 �−→CM

{
〈e0, ρ, σ, κ〉 if OK (R, κ),

〈e1, ρ, σ, κ〉 otherwise

The machine relies on the OK predicate to determine whether the permissions in R

are enabled. The OK predicate performs the traversal of the context (represented as

a continuation) using marks to determine which permissions have been granted or

denied:

OK (∅, κ)

OK (R,mtm) ⇐⇒ (R ∩ m−1(deny) = ∅)

OK (R, fnm(v, ρ, κ))

OK (R, arm(e, ρ, κ))

}
⇐⇒ (R ∩ m−1(deny) = ∅) ∧ OK (R \ m−1(grant), κ)

The semantics of a program is given by the set of reachable states from an initial

machine configuration:

inj CM (e) = 〈e, ∅, ∅,mt∅〉.

7.3 The abstract CM� machine

Store-allocating continuations, time-stamping, and bounding the store yields the

transition system given below. It is worth noting that continuation marks are

updated, not joined, in the abstract transition system, just as in the concrete:

〈fail, ρ, σ̂, κ〉 �−→
cCM

〈fail, ρ, σ̂,mt∅〉
〈(frame R e), ρ, σ̂, κ〉 �−→

cCM
〈e, ρ, σ̂, κ[R �→ deny]〉

〈(grant R e), ρ, σ̂, κ〉 �−→
cCM

〈e, ρ, σ̂, κ[R �→ grant]〉

〈(test R e0 e1), ρ, σ̂, κ〉 �−→
cCM

{
〈e0, ρ, σ̂, κ〉 if 1OK �(R, κ, σ̂),

〈e1, ρ, σ̂, κ〉 otherwise.

The1OK � predicate approximates the pointer refinement of its concrete counterpart

OK , which can be understood as tracing a path through the store corresponding to

traversing the continuation. The abstract predicate holds whenever there exists such

a path in the abstract store that would satisfy the concrete predicate:

1OK �(∅, κ, σ̂)

1OK �(R,mtm, σ̂) ⇐⇒ (R ∩ m−1(deny) = ∅)

1OK �(R, fnm(v, ρ, a), σ̂)
1OK �(R, arm(e, ρ, a), σ̂)

}
⇐⇒ (R ∩ m−1(deny) = ∅) ∧1OK �(R \ m−1(grant), κ, σ̂)

where κ ∈ σ̂(a)
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Consequently, in analyzing (test R e0 e1), e0 is reachable only when the analysis

can prove that the OK � predicate holds on some path through the abstract store.

It is straightforward to define a structural abstraction map and verify the abstract

CM� machine is a sound approximation of its concrete counterpart.

Theorem 4 (Soundness of the Abstract CM� Machine)

If ς �−→CM ς′ and α(ς) � ς̂, then there exists an abstract state ς̂′, such that ς̂ �−→
bCM �

t

ς̂′ and α(ς′) � ς̂′.

8 Pushdown abstractions

Pushdown analysis is an alternative paradigm for the analysis of programs in which

the run-time program stack is precisely modeled with the stack of a pushdown

system. Consequently, a pushdown analysis can exactly match control flow transfers

from calls to returns, from throws to handlers, and from breaks to labels. This

is in contrast with the traditional approaches of finite-state abstractions we have

considered so far, which necessarily model the control stack with finite bounds.

Although pushdown abstractions have been well known in the setting of first-

order languages (Bouajjani et al., 1997; Reps, 1998; Kodumal & Aiken, 2004), they

have eluded extension to a higher-order setting until the recent work of Vardoulakis

and Shivers (2011).

In this section, we show that pushdown analysis has a natural expression as an

abstraction of a classical abstract machine. We revisit our recipe for abstracting

the CESK machine and demonstrate that by store-allocating bindings but not

continuations, a computable pushdown model is obtained. The pushdown model

more closely resembles its concrete counterpart, hence establishing soundness is even

easier. But since the resulting state-space is potentially infinite, decidability becomes

less straightforward. We show that the resulting abstract machine is equivalent to

a pushdown automata, making it clear that reachability of machine states is a

decidable property.

8.1 The abstract pushdown CESK� machine

We have seen that store-allocating bindings and continuations is a powerful technique

for transforming abstract machines into their computable, finite-state approxima-

tions. The key to obtaining a pushdown model is to simply replay the same steps

but to keep continuations on the control stack rather than moving them to the store.

In other words, starting from the CESK machine, which puts bindings in the store,

all that is needed for a pushdown analysis is to bound the store:

ς ∈ Σ = Exp × Env × Store × Cont

ρ ∈ Env = Var →fin Addr

σ ∈ Store = Addr →fin Storable

s ∈ Storable = Lam × Env

a, b, c ∈ Addr an infinite set.
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The machine is defined as follows:

〈x, ρ, σ̂, κ〉 �−→
1CESK

〈v, ρ′, σ̂, κ〉 where (v, ρ′) ∈ σ̂(ρ(x))

〈(e0 e1), ρ, σ̂, κ〉 �−→
1CESK

〈e0, ρ, σ̂, ar(e1, ρ, κ)〉
〈v, ρ, σ̂, ar(e, ρ′, κ)〉 �−→

1CESK
〈e, ρ′, σ̂, fn(v, ρ, κ)〉

〈v, ρ, σ̂, fn((λx.e), ρ′, κ)〉 �−→
1CESK

〈e, ρ′[x �→ a], σ̂ � [a �→ {(v, ρ)}], κ〉,
where a = balloc(ς̂).

The abstract pushdown CESK machine makes a nondeterministic choice when

dereferencing a variable. However, it is completely deterministic in its choice of

continuations, since the control stack is modeled as a stack just as in the concrete

CESK machine. Since the stack has no bound, we no longer have a finite-state

space, but as we will see, it is still possible to decide whether a given machine state

is reachable from the initial configuration.

8.2 Soundness and computability

Theorem 5 (Soundness of the Abstract Pushdown CESK Machine)

If ς �−→CEK ς′ and α(ς) � ς̂, then there exists an abstract state ς̂′, such that

ς̂ �−→
1CESK

ς̂′ and α(ς′) � ς̂′.

The proof follows the same structure as that of Theorem 2, and is in fact simplified

since the continuation frames of the machines exactly correspond, eliminating the

need to consider the nondeterministic choice of a continuation residing at a store

location.

The more interesting aspect of the pushdown abstraction is decidability. Note that

since the stack has a recursive, unbounded structure, the state-space of the machine

is potentially infinite, so deciding reachability by enumerating the reachable states

will no longer suffice.

Theorem 6 (Decidability of the Abstract Pushdown CESK� Machine)

ς̂ ∈ 2CESK (e) is decidable.

Proof

Observe that the control string, environment, and store components of a machine

state are drawn from finite sets. Continuations may be represented isomorphically

as a list of stack frames:

κ = [f, . . . ] f = ar(e, ρ) | fn(v, ρ)

Furthermore, stack frames are drawn from a finite set since expressions and

environments are finite. But now observe that the abstract pushdown CESK machine

is a pushdown automata: states of the PDA are CES triples from the CESK machine;

the PDA stack alphabet is the alphabet of stack frames; and PDA transitions easily

encode machine transitions by mapping from a CES triple and stack frame to a new

CES triple and pushing/popping the stack appropriately. �
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9 Related work

The study of abstract machines for the λ-calculus began with the SECD machine

of Landin (1964), the systematic construction of machines from semantics with the

definitional interpreters of Reynolds (1972), the theory of abstract interpretation

with the POPL papers of Cousot and Cousot (1977, 1979), and static analysis of

the λ-calculus with the coupling of abstract machines and abstract interpretation

by Jones (1981). All have been active areas of research since their inception, but

only recently have well-known abstract machines been connected with abstract

interpretation by Midtgaard and Jensen (2008, 2009). We strengthen the connection

by demonstrating a general technique for abstracting abstract machines.

9.1 Abstract interpretation of abstract machines

The approximation of abstract machine states for the analysis of higher-order

languages goes back to Jones (1981), who argued that abstractions of regular

tree automata could solve the problem of recursive structure in environments. We

reinvoked that wisdom to eliminate the recursive structure of continuations by

allocating them in the store.

Ashley and Dybvig (1998) use a non-standard abstract machine as the basis

for their concrete semantics. The machine is a CES machine; continuations in the

machine are eliminated by transforming programs into explicit continuation-passing

style. The machine also collects a cache, which maps execution contexts (roughly

time-stamps in our setting) to a store describing that context. To abstract, the cache

is restricted to a finite function, which is ensured by allocating from a finite set of

addresses just as we have done.

Midtgaard and Jensen (2008) present a 0-CFA for a CPS λ-calculus language.

The approach is based on the Cousot-style calculational abstract interpretation

(Cousot, 1999), applied to a functional language. Like the present work, Midtgaard

and Jensen (2008) start with an “off-the-shelf” abstract machine for the concrete

semantics – in this case, the CE machine of Flanagan et al. (1993) – and employ a

reachable-states model. They then compose well-known Galois connections to reveal

a 0-CFA with reachability in the style of Ayers (1993).6 The CE machine is not

sufficient to interpret direct-style programs, so the analysis is specialized to programs

in continuation-passing style. Later work by Midtgaard & Jensen (2009) went on to

present a similar calculational abstract interpretation treatment of a monomorphic

CFA for an ANF λ-calculus. The concrete semantics is based on reachable states

of the CaEK machine (Flanagan et al., 1993). The abstract semantics approximates

the control stack component of the machine by its top element, which is similar to

the labeled machine abstraction given in Section 3 when k = 0.

Although our approach is not calculational like Midtgaard and Jensen’s

(2008, 2009), it continues in their tradition by applying abstract interpretation to

6 Ayers (1993) derived an abstract interpreter by transforming (the representation of) a denotational
continuation semantics of Scheme into a state transition system (an abstract machine), which he then
approximated using Galois connections.
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off-the-shelf tail-recursive machines. We extend the application to direct-style ma-

chines for a k-CFA-like abstraction that handles tail calls, laziness, state, exceptions,

first-class continuations, and stack inspection. We have extended return flow analysis

to a completely direct style (no ANF or CPS needed) within a framework that

accounts for polyvariance.

Harrison (1989) gives an abstract interpretation for a higher-order language with

control and state for the purposes of automatic parallelization. Harrison maps

Scheme programs into an imperative intermediate language, which is interpreted on

a novel abstract machine. The machine uses a procedure string approach similar to

that given in Section 3 in that the store is addressed by procedure strings. Harrison’s

first machine employs higher-order values to represent functions and continuations,

and he notes, “the straightforward abstraction of this semantics leads to abstract

domains containing higher-order objects (functions) over reflexive domains, whereas

our purpose requires a more concrete compile-time representation of the values

assumed by variables. We therefore modify the semantics such that its abstraction

results in domains which are both finite and non-reflexive.” Because of the reflexivity

of denotable values, a direct abstraction is not possible, so he performs closure

conversion on the (representation of) the semantic function. Harrison then abstracts

the machine by bounding the procedure string space (and hence the store) via an

abstraction he calls stack configurations, which is represented by a finite set of

members, each of which describes an infinite set of procedure strings.

To prove that Harrison’s (1989) abstract interpreter is correct he argues that

the machine interpreting the translation of a program in the intermediate language

corresponds to interpreting the program as written in the standard semantics – in this

case, the denotational semantics of R3RS. On the other hand, our approach relies

on well-known machines with well-known relations to calculi, reduction semantics,

and other machines (Felleisen, 1987; Danvy, 2006). These connections, coupled with

the strong similarities between our concrete and abstract machines, result in minimal

proof obligations in comparison. Moreover, programs are analyzed in direct-style

under our approach.

9.2 Abstract interpretation of lazy languages

Jones has analyzed non-strict functional languages (Jones, 1981; Jones & Andersen,

2007), but that work has only focused on the by-name aspect of laziness and does

not address memoization as done here. Sestoft (1991) examines flow analysis for

lazy languages and uses abstract machines to prove soundness. In particular, Sestoft

(1991) presents a lazy variant of Krivine’s machine (Krivine, 1985, 2007) similar to

that given in Section 4 and proves that analysis is sound with respect to the machine.

Likewise, Sestoft (1991) uses Landin’s (1964) SECD machine as the operational basis

for proving globalization optimizations correct. Sestoft’s (1991) work differs from

ours in that analysis is developed separately from the abstract machines, whereas

we derive abstract interpreters directly from machine definitions. Faxén (1995) uses

a type-based flow analysis approach to analyze a functional language with explicit

thunks and evals, which is intended as the intermediate language for a compiler of
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a lazy language. In contrast, our approach makes no assumptions about the typing

discipline and analyzes source code directly.

9.3 Realistic language features and garbage collection

Static analyzers typically hemorrhage precision in the presence of exceptions and

first-class continuations: they jump to the top of the lattice of approximation when

these features are encountered. Conversion to continuation- and exception-passing

style can handle these features without forcing a dramatic ascent of the lattice of ap-

proximation (Shivers, 1991). The cost of this conversion, however, is lost knowledge –

both approaches obscure static knowledge of stack structure by desugaring it into

syntax.

Might and Shivers (2006) introduced the idea of using abstract garbage collection

to improve precision and efficiency in flow analysis. They develop a garbage collecting

abstract machine for a CPS language and prove it correct. We extend abstract

garbage collection to direct-style languages interpreted on the CESK machine.

9.4 Static stack inspection

Most work on the static verification of stack inspection has focused on type-based

approaches. Skalka and Smith (2000) present a type system for static enforcement

of stack-inspection. Pottier et al. (2005) present type systems for enforcing stack-

inspection developed via a static correspondence to the dynamic notion of security-

passing style. Skalka et al. (2008) present type and effect systems that use linear

temporal logic to express regular properties of program traces and show how to

statically enforce both stack- and history-based security mechanisms. Our approach,

in contrast, is not type-based and focuses only on stack-inspection, although it seems

plausible that the approach in Section 7 extends to the more general history-based

mechanisms.

10 Conclusions and perspective

We have established a broad yet simple framework that provides a theoretical uni-

fication of many static analyses for higher-order languages. We have demonstrated

the utility of store-allocated continuations by deriving novel abstract interpretations

of the CEK, a lazy variant of Krivine’s (1985, 2007), and the stack-inspecting CM

machines. These abstract interpreters are obtained by a straightforward pointer

refinement and structural abstraction that bound the address space, making the

abstract semantics safe and computable. Our technique allows concrete implemen-

tation technology to be mapped straightforwardly into that of static analysis, which

we demonstrated by incorporating abstract garbage collection and optimizations to

avoid abstract space leaks, both of which are based on existing accounts of concrete

GC and space efficiency. Moreover, the abstract interpreters properly model tail-

calls by virtue of their concrete counterparts being properly tail-call optimizing. By

narrowing the gap between concrete and abstract interpreters, we hope to make it

easier for non-specialists to design, implement, and verify program analyzers.
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In terms of applicability, our technique may be applied to produce many of

the pointer and flow analyses existing in the literature. For the moment, two

broad categories of analysis seem beyond its reach: analyses built on relational

(non-structural) abstractions and unification-based analyses. We speculate that this

methodology may provide a starting point for developing a relational abstraction,

since relational abstractions tend to focus on a few key domains and then apply

a structural abstraction to the remainder. We also speculate that, with sufficient

widening, it will be possible to represent unification-based analyses in this framework.

Finally, our technique uniformly scales up to both richer language features and

richer analyses. To support the first claim, we extended the abstract CESK machine

to analyze conditionals, first-class control, exception handling, and state. To support

the second, we have shown how to adapt the CESK machine for a pushdown

analysis. We speculate that store-allocating bindings and continuations is sufficient

for a straightforward abstraction of most existing machines.
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