CS4910: Deep Learning for Robotics

David Klee klee.d@northeastern.edu

> T/F, 3:25-5:05pm Behrakis Room 204

https://www.ccs.neu.edu/home/dmklee/cs4910_s22/index.html

https://piazza.com/northeastern/spring2022/cs4910a/home

Simulating Robots

Today's Agenda

- 1. Understand how robots are modeled in simulators
- 2. Learn commands for interacting with robot
- 3. Compete in a drag race
- 4. Learn how to place sensors in simulator
- 5. Hand out robots

Why use a simulator?

Why use a simulator?

The Good:

- Much cheaper than real world
- Some algorithms are not safe to run on real robot
- Faster ideation and testing of new setups or robot parts
- Data collection is much faster
- Access to privileged information

The Bad:

- Difficult to achieve photorealism
- Contact dynamics are not perfect
- Researchers are less impressed

The Ugly:

Why use a simu

The Good

- Much cheaper tha
- Some algorithms
- Faster ideation an
- Data collection is
- Access to privileg

The Bad:

- Difficult to achieve
- Contact dynamics
- Researchers are less impressed

Simulators in a nutshell

- 1. Simulating Physics (rigid-body)
- 2. Rendering

Abstractions to create Environments/Tasks

May support Motion Planning

Rotations and Translations

Talk about Euler angles, quaternions, rotation matrices

Yaw Poll Pitch

Roto-translation matrices

Transformation Matrices

$$\mathbf{T} \in \mathcal{R}^{4 \times 4} \leftarrow \text{transformation matrix}$$

$$\mathbf{R} \in \mathcal{R}^{3 \times 3} \leftarrow \text{rotation matrix}$$

$$\vec{t} \in \mathcal{R}^3 \leftarrow \text{translation vector}$$

$$\tilde{x} = \begin{bmatrix} \vec{x} \\ 1 \end{bmatrix} \in \mathcal{R}^4 \leftarrow \text{homogeneous vector}$$

$$\mathbf{T} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

$$\tilde{x}' = \mathbf{T}\tilde{x} = \mathbf{R}\vec{x} + \vec{t}$$

in-class exercise:

$$T^{-1} = ?$$

Transformation Matrices

$$\mathbf{T} \in \mathcal{R}^{4 \times 4} \leftarrow \text{transformation matrix}$$

$$\mathbf{R} \in \mathcal{R}^{3 \times 3} \leftarrow \text{rotation matrix}$$

$$\vec{t} \in \mathcal{R}^3 \leftarrow \text{translation vector}$$

$$\tilde{x} = \begin{bmatrix} \vec{x} \\ 1 \end{bmatrix} \in \mathcal{R}^4 \leftarrow \text{homogeneous vector}$$

$$\mathbf{T} = \begin{bmatrix} \mathbf{R} & \mathbf{t} \\ \mathbf{0}^T & 1 \end{bmatrix}$$

$$\tilde{x}' = \mathbf{T}\tilde{x} = \mathbf{R}\vec{x} + \vec{t}$$

$$\mathbf{T}^{-1} = \begin{bmatrix} \mathbf{R}^T \middle| -\mathbf{R}^T \mathbf{t} \\ \mathbf{0}^T \middle| 1 \end{bmatrix}$$

Make example of rotation in xy plane

Furthering your understanding

Scipy.spatial.rotations Library

Visualizing transformations:

\$ python examples/rotation_translation_visualizer.py

A robot is described as a set of links and joints

<u>Links</u>: physical body with appearance, inertia and collision shape

Joints: constraint on how two links interact

(fixe

Information on links and joints are described in a Unified Robot Description Format (URDF), and saved as a ".urdf" file.

Onl

- the links must form a tree
- # links = # joints

Links

```
nk name="my_link">
      <inertial>
        <origin xyz="0 0 0.5" rpy="0 0 0"/>
       <mass value="1"/>
        <inertia ixx="100" ixy="0" ixz="0" iyy="100" iyz="0" izz="100" />
      </inertial>
      <visual>
 8
        <origin xyz="0 0 0" rpy="0 0 0" />
 9
10
        <geometry>
11
          <box size="1 1 1" />
12
        </geometry>
        <material name="Cyan">
13
          <color rgba="0 1.0 1.0 1.0"/>
14
        </material>
15
16
      </visual>
17
18
      <collision>
       <origin xyz="0 0 0" rpy="0 0 0"/>
19
       <geometry>
20
21
          <cylinder radius="1" length="0.5"/>
22
        </geometry>
      </collision>
23
24 </link>
```


Types of geometry

box size reflects side length origin at center

cylinder has radius and length origin at center

spherehas radius
origin at center

mesh uses .obj or .dae file can be slow for collision checking

Joints Child frame Child = Joint frame Child Joint axis in joint frame Joint Joint origin <joint name="my_joint" type="floating"> <origin xyz="0 0 1" rpy="0 0 3.1416"/> <parent link="link1"/> <child link="link2"/> <calibration rising="0.0"/> <dynamics damping="0.0" friction="0.0"/> dimit effort="30" velocity="1.0" lower="-2.2" upper="0.7" /> <safety_controller k_velocity="10" k_position="15" soft_lower_limit="-2.0" soft_upper_</pre> limit="0.5" /> 10 </joint>

Parent frame

Types of Joints

continuous no limits

fixed no movement

prismatic slides along single axis, has upper, lower limits

floating rarely used, since there are no constraints

Relevant Pybullet Commands

pb.getNumJoints -> gets number of joints/links
pb.getJointInfo -> allows you to match joint/link names to ids
pb.resetBasePositionAndOrientation -> moves base of robot
pb.getLinkStates -> provides pose and velocity of robot links
pb.getJointState -> provides joint position, velocity, and forces

Drag racing in Pybullet

Play around with URDF, points for speed and style:

\$ python examples/drag_racing.py

You can change anything but MAX_FORCE

For more details...

General Tutorials [using ROS]

Parametrizing URDF with xacro

Creating Robots programmatically with Pybullet\

Rendering images with virtual camera

Intrinsic Matrix (Projection Matrix)

$$K=\left(egin{array}{ccc} f_x & s & x_0 \ 0 & f_y & y_0 \ 0 & 0 & 1 \end{array}
ight)$$

$$f_x = f_y = \text{focal length}$$

 $x_0, y_0 = \text{center of pixel space}$

Rendering images with virtual camera

Extrinsic Matrix (View Matrix)

$$V = \left[\mathbf{R} \middle| \vec{t} \right]$$

 \mathbf{R} = rotation from world to camera \vec{t} = translation from world to camera

Converting world point to pixel space

$$\vec{x}_{pixel} = \mathbf{K} \mathbf{V} \vec{x}_{world}$$

View Matrix in Pybullet (Two ways)

pb.computeViewMatrix(cameraEyePosition, cameraTargetPosition, cameraUpVector)

(cameraUpVector is usually <0,1,0>)

```
pb.computeViewMatrixFromYawPitchRoll(
    cameraTargetPosition,
    distance,
    yaw,
    pitch,
    roll,
    upAxisIndex=2,

T work
```

View Matrix is a flattened version of the full transformation matrix that converts from world to camera coordinates:

T_world2cam = np.reshape(view_mtx, (4,4), order='F')

Projection Matrix in Pybullet

pb.computeProjectionMatrixFOV(fov, #degrees aspect=1, nearVal, farVal)

nearVal & farVal are especially important if you are using a depth sensor since they define the range of output

Rendering an Image in Pybullet

w, h, rgb_img, depth_img, seg_img = pb.getCameralmage(width, height, view_matrix, proj_matrix, **kwargs)

More information about rendering

<u>Useful discussion of how pybullet constructs intrinsic matrix</u>

Script for placing camera in Pybullet with GUI:

\$ python examples/easy_pybullet_camera_placement.py

Changing Visual Appearance

To avoid creating new URDF's for all possible appearances, it is often easier to use Python commands

Note: rgbaColor will not work if a texture is already loaded

Note: for advanced textures, it is best to use 3D design software

Detecting Collisions

- Collision information is generated during each `pb.stepSimulation()`
- Alternatively, use `pb.performCollisionDetection()` to avoid stepping simulator
 - o useful for motion planning to check if a collision might occur
- To access collision information, use `pb.getContactPoints` or `pb.getClosestPoints`
- URDF_USE_SELF_COLLISION in pb.loadURDF

minXYZ, $maxXYZ \leftarrow pb.getAABB$

Selection of alternative simulators for robotics/learning

Name	Maintained by	Uses/Known for	Appearance
<u>PyBullet</u>	Google Brain	This class	A CONTRACTOR OF THE PARTY OF TH
<u>DRAKE</u>	MIT & TRI	Robotics/Optimization	
<u>Habitat</u>	FAIR +	Navigation	
RLBench	Imperial College	Robotic Manipulation	
SAPIEN	UCSD +	Mobile robotics	
<u>Mujoco</u>	DeepMind	RL environments	
Gazebo	OSRF	With ROS	

Survey to provide feedback

https://forms.gle/9pTWc3EAY8LtPvF98

Handing out robots

URDFs: robots first (joints/links, material), then objects

Positioning and rotations

Performing motor commands (with inverse kinematics)

Adjusting dynamics (drag race a car)

Adjusting apperance, adding materials

Sensors: fundamentals of rendering, view matrix, proj matrix

Example (mounting sensor on robot arm)

Example: implement suction cup

Additionals: mention support for soft body physics, custom constraint for walking

Mention other simulators out there