
CS4910: Deep Learning for Robotics

David Klee
klee.d@northeastern.edu

T/F, 3:25-5:05pm
Behrakis Room 204

https://www.ccs.neu.edu/home/dmklee/cs4910_s22/index.html

https://piazza.com/northeastern/spring2022/cs4910a/home

mailto:klee.d@northeastern.edu
https://www.ccs.neu.edu/home/dmklee/cs4910_s22/index.html
https://piazza.com/northeastern/spring2022/cs4910a/home

Simulating Robots

Today’s Agenda

1. Understand how robots are modeled in simulators
2. Learn commands for interacting with robot
3. Compete in a drag race
4. Learn how to place sensors in simulator
5. Hand out robots

Why use a simulator?

4

https://docs.google.com/file/d/1P4yHSx1-Lbb0y6GnT6yxIK6D8j8pspcC/preview

Why use a simulator?

The Good:

● Much cheaper than real world
● Some algorithms are not safe to run on real robot
● Faster ideation and testing of new setups or robot parts
● Data collection is much faster
● Access to privileged information

The Bad:

● Difficult to achieve photorealism
● Contact dynamics are not perfect
● Researchers are less impressed

6

Why use a simulator?

The Good:

● Much cheaper than real world
● Some algorithms are not safe to run on real robot
● Faster ideation and testing of new setups or robot parts
● Data collection is much faster
● Access to privileged information

The Bad:

● Difficult to achieve photorealism
● Contact dynamics are not perfect
● Researchers are less impressed

7

The Ugly:

Simulators in a nutshell

1. Simulating Physics (rigid-body)
2. Rendering

Abstractions to create Environments/Tasks

May support Motion Planning

8

Rotations and Translations

Talk about Euler angles, quaternions, rotation matrices

Roto-translation matrices

9

Transformation Matrices

10

in-class exercise:

Transformation Matrices

Make example of rotation in xy plane

T =

 \left[{\begin{array}{c|c}

 \mathbf{R} & \mathbf{t} \\

\mathbf{0}^T & 1 \\

 \end{array} } \right]

11

Furthering your understanding

Scipy.spatial.rotations Library

Visualizing transformations:

$ python examples/rotation_translation_visualizer.py

12

https://docs.scipy.org/doc/scipy/reference/generated/scipy.spatial.transform.Rotation.html

A robot is described as a set of links and joints

Links : physical body with appearance, inertia
and collision shape

Joints : constraint on how two links interact
(fixed, floating, continuous, prismatic, revolute)

Only one ‘base’ link
● the links must form a ‘tree’
● # links = # joints

13

Information on links and joints are described in a Unified Robot
Description Format (URDF), and saved as a “.urdf” file.

Links

14
Slide material from: http://wiki.ros.org/urdf/XML/link

Types of geometry

15

box
size reflects side length
origin at center

cylinder
has radius and length
origin at center

sphere
has radius
origin at center

mesh
uses .obj or .dae file
can be slow for collision checking

Joints

16
Slide material from: http://wiki.ros.org/urdf/XML/joint

Types of Joints

17

revolute
has upper, lower limits continuous

no limits
fixed

no movement

prismatic
slides along single axis,
has upper, lower limits

floating
rarely used, since there are

no constraints

Most common for
robotic arms

Relevant Pybullet Commands

pb.getNumJoints -> gets number of joints/links

pb.getJointInfo -> allows you to match joint/link names to ids

pb.resetBasePositionAndOrientation -> moves base of robot

pb.getLinkStates -> provides pose and velocity of robot links

pb.getJointState -> provides joint position, velocity, and forces

18For details on args and output, see Quickstart Guide

https://docs.google.com/document/d/10sXEhzFRSnvFcl3XxNGhnD4N2SedqwdAvK3dsihxVUA/edit

Drag racing in Pybullet

Play around with URDF, points for speed and style:

$ python examples/drag_racing.py

You can change anything but MAX_FORCE

19

For more details…

General Tutorials [using ROS]

Parametrizing URDF with xacro

Creating Robots programmatically with Pybullet\

20

http://wiki.ros.org/urdf/Tutorials
http://wiki.ros.org/urdf/Tutorials/Using%20Xacro%20to%20Clean%20Up%20a%20URDF%20File
https://github.com/bulletphysics/bullet3/blob/master/examples/pybullet/examples/createMultiBodyLinks.py

Rendering images with virtual camera

21
Material taken from: http://ksimek.github.io/2013/08/13/intrinsic/

Intrinsic Matrix (Projection Matrix)

Rendering images with virtual camera

22
Material taken from: http://ksimek.github.io/2013/08/13/intrinsic/

Extrinsic Matrix (View Matrix)

Converting world point to pixel space

23
Material taken from: http://ksimek.github.io/2013/08/13/intrinsic/

View Matrix in Pybullet (Two ways)

pb.computeViewMatrix(cameraEyePosition,
 cameraTargetPosition,
 cameraUpVector)

24

cameraEyePosition cameraTargetPosition

(cameraUpVector is usually <0,1,0>)

pb.computeViewMatrixFromYawPitchRoll(
cameraTargetPosition,
distance,
yaw,
pitch,
roll,
upAxisIndex=2,

)

View Matrix is a flattened version of the full transformation
matrix that converts from world to camera coordinates:

 T_world2cam = np.reshape(view_mtx, (4,4), order=’F’)

Projection Matrix in Pybullet

pb.computeProjectionMatrixFOV(fov, #degrees
 aspect=1,
 nearVal,

 farVal)

25

nearVal & farVal are especially important if you are using a
depth sensor since they define the range of output

Rendering an Image in Pybullet

w, h, rgb_img, depth_img, seg_img = pb.getCameraImage(width,
 height,
 view_matrix,
 proj_matrix,
 **kwargs)

26

More information about rendering

Useful discussion of how pybullet constructs intrinsic matrix

Script for placing camera in Pybullet with GUI:

$ python examples/easy_pybullet_camera_placement.py

27

https://stackoverflow.com/questions/60430958/understanding-the-view-and-projection-matrix-from-pybullet/60450420#60450420

Changing Visual Appearance

pb.loadTexture(“example_texture.png”)
pb.changeVisualShape(objectUniqueId: int, linkIndex: int,

 textureUniqueId: int,
 rgbaColor: vec4)

28

To avoid creating new URDF’s for all possible appearances, it is often easier to use
Python commands

Note: rgbaColor will not work if a texture is already loaded

Note: for advanced textures, it is best to use 3D design software

Detecting Collisions

● Collision information is generated during each `pb.stepSimulation()`

● Alternatively, use `pb.performCollisionDetection()` to avoid stepping simulator
○ useful for motion planning to check if a collision might occur

● To access collision information, use `pb.getContactPoints` or
`pb.getClosestPoints`

● URDF_USE_SELF_COLLISION in pb.loadURDF

29

minXYZ, maxXYZ ← pb.getAABB

30

Name Maintained by Uses/Known for Appearance

PyBullet Google Brain This class

DRAKE MIT & TRI Robotics/Optimization

Habitat FAIR + Navigation

RLBench Imperial College Robotic Manipulation

SAPIEN UCSD + Mobile robotics

Mujoco DeepMind RL environments

Gazebo OSRF With ROS

Selection of alternative simulators for robotics/learning

https://pybullet.org/wordpress/
https://drake.mit.edu/
https://aihabitat.org/
https://sites.google.com/view/rlbench
https://sapien.ucsd.edu/publication
https://mujoco.org/
http://gazebosim.org/

Survey to provide feedback

https://forms.gle/9pTWc3EAY8LtPvF98

31

https://forms.gle/9pTWc3EAY8LtPvF98

Handing out robots

32

URDFs : robots first (joints/links, material), then objects

Positioning and rotations

Performing motor commands (with inverse kinematics)

Adjusting dynamics (drag race a car)

Adjusting apperance, adding materials

Sensors : fundamentals of rendering, view matrix, proj matrix

Example (mounting sensor on robot arm)

Example: implement suction cup

Additionals: mention support for soft body physics, custom constraint for walking

Mention other simulators out there 33

