CS4910: Deep Learning for Robotics

David Klee klee.d@northeastern.edu

> T/F, 3:25-5:05pm Behrakis Room 204

https://www.ccs.neu.edu/home/dmklee/cs4910_s22/index.html

https://piazza.com/northeastern/spring2022/cs4910a/home

Reinforcement Learning: Q-Learning

Today's Agenda

- 1. HW2 Questions
- 2. MDPs and Environment
- 3. TD-Learning
- 4. Q-Learning

Reinforcement Learning (RL) is learning through trial-and-error without a model of the world

Instead, we learn value functions...

$$V(s) = \mathbb{E}[r|s] \qquad V^{\pi}(s_t) = \mathbb{E}_{\pi}[G_t|s_t]$$

$$Q(a) = \mathbb{E}[r|a] \qquad Q^{\pi}(s_t, a_t) = \mathbb{E}_{\pi}[G_t|s_t, a_t]$$

To extend to temporal sequences, we place value on the return (i.e. future rewards) and the value is defined by a policy (i.e. how future actions are chosen)

Markov Decision Process

 $MDP = \langle S, A, R, T, gamma \rangle$

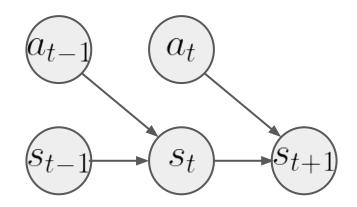
State: state of the system

Action: action space

R: reward function R(s,a,s')

T: transition function T(s'|s,a)

Gamma: discount factor



The objective of RL is to learn a policy that maximizes discounted future rewards

Deterministic policy maps state to action

$$\pi(s) \to a$$

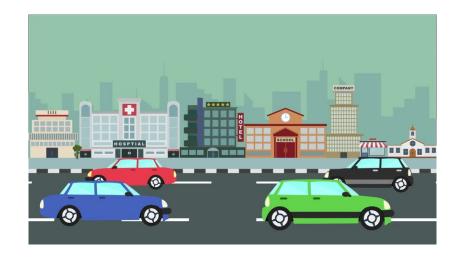
Stochastic policy assigns probability to each action

$$\pi(a|s) \to (0,1)$$

The key insight here is that the policy will only be effective if the Markov property holds: the current state contains all information needed to make a decision

Example: express driving to the store as MDP

Multiple levels of abstraction are possible Ensure that the Markov property holds



Implementing MDP as an Environment

Attributes:

```
observation_space action_space
```

Methods:

```
reset -> obs
step (action) -> obs, reward, done, info
render -> None
```

Grid world environment

See 'examples/tabular_rl.py'

Let's add an avoid state, where the agent receives a reward of -1. We will place it in the same column as the goal state

```
self.reset_state = np.array((0,0), dtype=int)
self.goal_state = np.array((width-2,width-2), dtype=int)
self.avoid_state = np.array((width-2, 1), dtype=int)
```

Value of a state is the expected return when following a given policy from the state

$$V^{\pi}(s) = \mathbb{E}_{\pi}[G_t|s_t = s]$$

Return (G) is the sum of future discounted rewards

$$G_{t} = r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots$$
$$= \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1}$$

Exercise: calculate returns for trajectories

Trajectory 1

S _t	r _{t+1}	G _t
s ₁	-0.1	
s ₂	0.5	
s ₃	0	
S ₄	0	
S ₅	-1	

Trajectory 2

S _t	r _{t+1}	G _t
s ₁	1	
s ₃	0	
s ₄	0.1	
S ₅	-2	

Exercise: calculate returns for trajectories

Trajectory 1

S _t	r _{t+1}	G _t
s ₁	-0.1	$-0.1+\gamma 0.5+\gamma^2 0+\gamma^3 0+\gamma^4 (-2)$
s ₂	0.5	$0.5+\gamma 0+\gamma^2 0+\gamma^3 (-2)$
s ₃	0	$0+\gamma 0+\gamma^2(-2)$
S ₄	0	0+γ(-1)
S ₅	-1	-1

Trajectory 2

S _t	r _{t+1}	G _t
s ₁	1	$1 + \gamma 0 + \gamma^2 0.1 + \gamma^3 (-2)$
s ₃	0	$0+\gamma 0.1+\gamma^2(-2)$
s ₄	0.1	0.1+γ(-2)
s ₅	-2	-2

$$V^{\pi}(s_3) = ?$$

Exercise: calculate returns for trajectories

Trajectory 1

S _t	r _{t+1}	G _t
s ₁	-0.1	$-0.1+\gamma 0.5+\gamma^2 0+\gamma^3 0+\gamma^4 (-1)$
s ₂	0.5	$0.5+\gamma 0+\gamma^2 0+\gamma^3 (-1)$
s ₃	0	$0+\gamma 0+\gamma^2(-1)$
S ₄	0	0+γ(-1)
S ₅	-1	-1

Trajectory 2

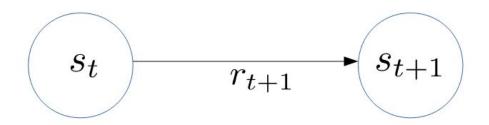
S _t	r _{t+1}	G _t
s ₁	1	$1 + \gamma 0 + \gamma^2 0.1 + \gamma^3 (-2)$
s ₃	0	$0+\gamma 0.1+\gamma^2(-2)$
s ₄	0.1	0.1+γ(-2)
S ₅	-2	-2

Do you notice any pattern in the calculation of returns?

$$V^{\pi}(s_3) = ?$$

$$V^{\pi}(s_3) = \frac{1}{2} [\gamma 0.1 + \gamma^2(-1) + \gamma^2(-2)]_{13}$$

More efficient value function calculations with dynamic programming



How can we express the value function of s_t in terms of the value function of s_{t+1} ?

More efficient value function calculations with dynamic programming

$$S_{t} \longrightarrow S_{t+1}$$

$$V^{\pi}(s_{t}) = \mathbb{E}_{\pi} [G_{t}|s_{t}]$$

$$V^{\pi}(s_{t}) = \mathbb{E}_{\pi} [r_{t+1} + \gamma r_{t+2} + \gamma^{2} r_{t+3} + \dots |s_{t}]$$

$$V^{\pi}(s_{t}) = \mathbb{E}_{\pi} [r_{t+1} + \gamma G_{t+1}|s_{t}]$$

$$V^{\pi}(s_{t}) = \mathbb{E}_{\pi} [r_{t+1} + \gamma V^{\pi}(s_{t+1})|s_{t}]$$

Bellman Update Equation

Express in terms of $\pi(a|s)$ and p(s', r|s, a):

$$V^{\pi}(s_t = s) = \mathbb{E}_{\pi} [r_{t+1} + \gamma V^{\pi}(s_{t+1}) | s_t]$$

$$V^{\pi}(s_t = s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r_{t+1} + \gamma V^{\pi}(s_{t+1} = s')]$$

Why is it impractical to calculate value functions like this?

Learning without transition model using temporal difference learning (TD-learning)

$$V^{\pi}(s_{t}) \leftarrow (1 - \alpha)V^{\pi}(s_{t}) + \alpha[r_{t+1} + \gamma V^{\pi}(s_{t+1})]$$

$$V^{\pi}(s_{t}) \leftarrow V^{\pi}(s_{t}) + \alpha[r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_{t})]$$
TD error

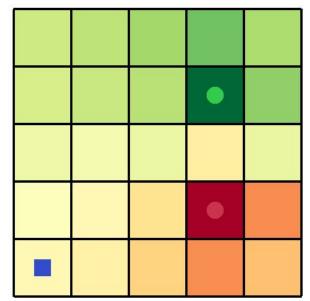
Policy evaluation: learn value function associated with a given policy

```
Input: the policy \pi to be evaluated
Initialize V(s) arbitrarily (e.g., V(s) = 0, for all s \in S^+)
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
      A \leftarrow action given by \pi for S
      Take action A, observe R, S'
      V(S) \leftarrow V(S) + \alpha [R + \gamma V(S') - V(S)]
      S \leftarrow S'
   until S is terminal
```

Implement policy evaluation for 2d grid world

```
policy_evaluation(env: gym.Env,
                 policy: Callable,
                 alpha: float=0.1,
                 gamma: float=0.99,
                 num_steps: int=10000,
                render_freq: int=20, # in terms of episodes
                ) -> np.ndarray:
'''Use TD-learning to learn a value function for a given policy
V = np.zeros(env.observation_space.n, dtype=np.float32)
s = env.reset()
episode_id = 0
for t in range(num_steps):
    if render_freq and episode_id % render_freq == 0:
       env.render(values=V)
       time.sleep(0.05)
   a = policy(s)
   s_p, r, d, _= env.step(a)
   V[s] += alpha*(r + gamma * V[s_p] - V[s])
   s = s p
   if d:
       s = env.reset()
       episode id += 1
```

Result of running policy_evaluation



Extending to policy evaluation to action-value function

$$V^{\pi}(s_t) \leftarrow V^{\pi}(s_t) + \alpha[r_{t+1} + \gamma V^{\pi}(s_{t+1}) - V^{\pi}(s_t)]$$

$$Q^{\pi}(s_t, a_t) \leftarrow Q^{\pi}(s_t, a_t) + \alpha[r_{t+1} + \gamma Q^{\pi}(s_{t+1}, a_{t+1}) - Q^{\pi}(s_t, a_t)]$$

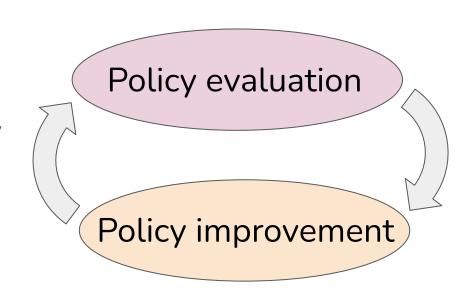
Extending to policy evaluation to action-value function

```
Initialize Q(s, a), for all s \in S, a \in A(s), arbitrarily, and Q(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Choose A from S using policy derived from Q (e.g., \epsilon-greedy)
   Repeat (for each step of episode):
      Take action A, observe R, S'
      Choose A' from S' using policy derived from Q (e.g., \epsilon-greedy)
      Q(S, A) \leftarrow Q(S, A) + \alpha [R + \gamma Q(S', A') - Q(S, A)]
      S \leftarrow S'; A \leftarrow A';
   until S is terminal
```

Policy Evaluation: given policy, estimate action-value function based on trajectories

Policy Improvement: generate a new policy by selection actions that have higher values in a given state

$$\pi'(s) = \arg\max_{a} Q^{\pi}(s, a)$$



Q-learning update for off-policy learning

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

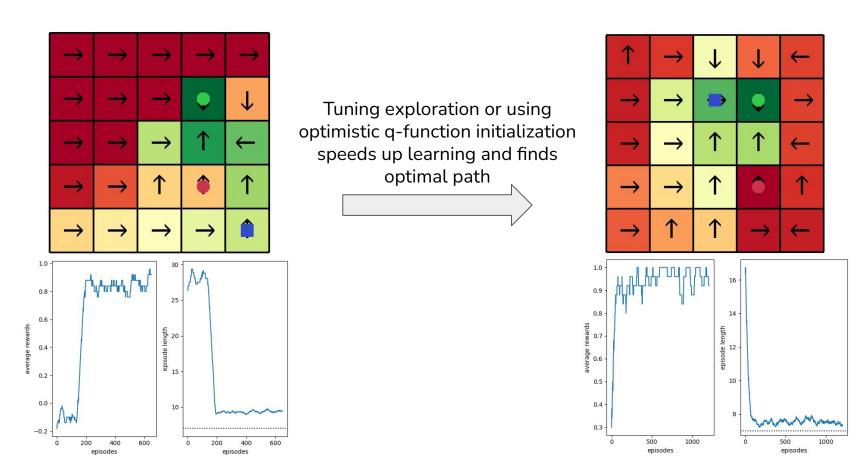
Q-learning Algorithm

```
Algorithm parameters: step size \alpha \in (0,1], small \varepsilon > 0
Initialize Q(s,a), for all s \in S^+, a \in A(s), arbitrarily except that Q(terminal, \cdot) = 0
Loop for each episode:
   Initialize S
   Loop for each step of episode:
       Choose A from S using policy derived from Q (e.g., \varepsilon-greedy)
       Take action A, observe R, S'
       Q(S, A) \leftarrow Q(S, A) + \alpha \left[ R + \gamma \max_{a} Q(S', a) - Q(S, A) \right]
       S \leftarrow S'
   until S is terminal
```

Implement Q-learning for 2d navigation problem

```
0 = np.zeros((env.observation_space.n, env.action_space.n), dtype=np.float32)
0[:] += 2
rewards data = []
episode_lengths = []
s = env.reset()
episode id = 0
for t in range(num_steps):
    if render_freq and episode_id % render_freq == 0:
        env.render(values=np.max(Q, axis=1), actions=np.argmax(Q, axis=1))
        time.sleep(0.05)
    if np.random.random() < epsilon:
       a = env.action space.sample()
       a = np.argmax(Q[s])
    s_p, r, d, _= env.step(a)
    O[s,a] += alpha*(r + gamma * np.max(O[s p]) - O[s,a])
    S = S D
    if d:
        rewards_data.append(r)
        episode lengths.append(env.t step)
        s = env.reset()
        episode id += 1
```

Implement Q-learning for 2d navigation problem



Maximization bias of Q-learning

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

Double Q-learning reduces overestimation of q-targets and improves learning

```
Initialize Q_1(s,a) and Q_2(s,a), for all s \in S, a \in A(s), arbitrarily
Initialize Q_1(terminal-state, \cdot) = Q_2(terminal-state, \cdot) = 0
Repeat (for each episode):
   Initialize S
   Repeat (for each step of episode):
       Choose A from S using policy derived from Q_1 and Q_2 (e.g., \varepsilon-greedy in Q_1 + Q_2)
       Take action A, observe R, S'
       With 0.5 probability:
          Q_1(S, A) \leftarrow Q_1(S, A) + \alpha \left(R + \gamma Q_2(S', \operatorname{arg\,max}_a Q_1(S', a)) - Q_1(S, A)\right)
       else:
          Q_2(S, A) \leftarrow Q_2(S, A) + \alpha \left(R + \gamma Q_1(S', \operatorname{arg\,max}_a Q_2(S', a)) - Q_2(S, A)\right)
       S \leftarrow S'
   until S is terminal
```

Next Class

- 1. Tabular to Deep Q-learning
- 2. Debugging DQN and relevant hyperparameters
- 3. Case studies on formulating environments

Survey to provide feedback

https://forms.gle/a2KasSG5UsPzVzqQ6