
CS4910: Deep Learning for Robotics

David Klee
klee.d@northeastern.edu

T/F, 3:25-5:05pm
Behrakis Room 204

https://www.ccs.neu.edu/home/dmklee/cs4910_s22/index.html

https://piazza.com/northeastern/spring2022/cs4910a/home

mailto:klee.d@northeastern.edu
https://www.ccs.neu.edu/home/dmklee/cs4910_s22/index.html
https://piazza.com/northeastern/spring2022/cs4910a/home

Reinforcement Learning:
Q-Learning

Some slide material taken from CS7180 F18
For more details see: Sutton & Barto 2018

https://www.ccs.neu.edu/home/rplatt/cs7180_fall2018/slides/intro_rl.pdf
http://incompleteideas.net/book/the-book-2nd.html

Today’s Agenda

1. Deep Q-Network
2. IK from scratch
3. HW3

Reinforcement Learning (RL) is learning through
trial-and-error without a model of the world

4

Extending to Deep Q-learning…

1. Q-function will be implemented as neural network (Q-network)

2. We want to use batch gradient descent. However, consecutive transitions
from the environment will be tightly correlated and will bias the gradient.

3. We rely on the Q-network for predicting q_target and q_pred, which
introduces instability sa the network updates weights

5

Deep Q-Network (DQN) implementations

6

State as input State & Action as input

s q

s

a

q

Consider how to calculate max Q(s,a)...

Q-function as neural network (Deep Q-Network)

7

State as input State & Action as input

s q

s

a

q

Outputting q-values for all actions
associated with a state is the common
practice, as it simple to find the maxQ

Storing transitions in replay buffer reduces the correlation
between samples in a batch

8

The gradient of a single batch is a
sample estimate of the true gradient.
If the batch is correlated then the
estimated gradient will be biased

replay buffer = {(s,a,s’,r,d)}1:N

new transition from environment

batch

The replay buffer acts like a ‘moving
average’ of the agent’s experience. There
should be some turnover, since learning is
faster if distribution is closer to that of
optimal agent

Target network (frozen copy of Q-network) is used to
calculate more stable values

9

Q-Network

Target Q-Network

copy weights

The frequency with which you copy weights from the Q-network to the target
Q-network is a hyperparameter (often performed every 1000 optimization steps)

Reacher Environment as MDP
GOAL: move joints to achieve desired end-effector position as fast as possible

10

STATE:

ACTION:

REWARD:

GAMMA:

*these next slides refer to example script: `examples/dqn_reacher.py`

Reacher Environment ass MDP
GOAL: move joints to achieve desired end-effector position as fast as possible

11

STATE: joint positions for [base,shoulder,elbow,wrist];
ignore wristRotation and gripper since we only want
end-effector position

ACTION: move single joint ±𝛥𝜃 (total 2*4=8 actions)

REWARD: sparse (+1 if at goal); dense (~1/dist2goal)

GAMMA: 0.98 (should be <1 for urgency)

Reacher Environment as gym.Env

__init__: create pybullet, add robot, create observation space & action space, set
goal end-effector position

reset: set joint state of robot randomly within joint limits

step: adjust single joint position accordingly, prevent robot from moving outside
joint limits

get_obs: return current joint states

get_reward: calculate end-effector position, calculate reward based on distance
between end-effector position and goal position

is_done: True if t_steps > episode_length or end-effector at goal position

12

Implementing Deep Q-Network as MLP

* ReLU between each layer

13

In addition to forward, it is often useful to have a
method called predict which returns the action that
maximizes the q-function. This is used during training
to select actions so the gradient does not need to be
computed

As an exercise, instantiate the layers in QNetwork.__init__ and
implement QNetwork.forward

Creating Replay Buffer

__init__: creates data arrays to store a set number of transitions

add_transition: stores <s,a,r,s’,d> in data array; if needed choose
oldest transition to replace (circular indexing)]

sample: samples a random batch of transitions from data arrays;
it is common to return numpy arrays (but torch.Tensors would
work)

14

replay buffer = {(s,a,s’,r,d)}1:N

new transition from environment

batch

Agent class

__init__: stores hyperparameters, instantiates ReplayBuffer, Q-Network, target
Q-Network and optimizer to train Q-network

train: runs given number of environment steps, adding transitions to buffer, and
optimizes Q-network to minimize TD-error on batches from buffer (make sure the
target network is updated accordingly)

optimize: samples batch from buffer, calculates td-error, and back propagates
td-error loss to network

select_action: performs epsilon-greedy action selection

policy: calculates action as the argmax of the q-network for a given state, input is
numpy array provided by environment

15

Hyper Parameters

Deep Learning

Architecture (linear vs conv, etc)

Model capacity (hidden units or channels)

Loss function (mse, bce, huber)

Input (one-hot encodings, normalized
imgs, etc.)

Output (activation function?)

Data augmentation

Learning rate

16

Deep Reinforcement Learning

Replay Buffer Size

Target Network Update Frequency

Discount factor (gamma)

Epsilon Schedule

MDP formulation (state and action space,
reward scheme)

Typical Hyperparameter Values for DQN
Learning rate (1e-3 to 1e-4): decreasing may improve stability

Target update freq (~1000 opt steps): decreasing may improve stability; you should see
the td-loss flatten out between updates

Epsilon schedule (usually linear from 1 to 0 for 90% of training); learning is faster with
less epsilon, but insufficient exploration may end at local optima; remember that the
reward curve is impacted by exploration

Gamma (0.98 is common); for tasks that take fewer time steps you may want to
decrease it; if you are using

Buffer size: aim for a few turn-overs during training (if you train for 100k steps, then
50k buffer size will turn-over twice). If buffer is too small, it can cause catastrophic
forgetting; if it is too large it will slow down training since most samples will be from
bad policy

17

Training DQN: Debugging Techniques

- Make sure to plot rewards and loss during training; if rewards suddenly drop
off or td-loss rises rapidly, then the learning is unstable

- In addition, it may be insightful to log the number of steps per episode or the
success rate (especially for complex reward function)

- It is almost always worth writing a ‘render’ function so that you can watch
the policy’s actions and understand the failure modes

- In some cases, it is also useful to log or plot the q-values, which can indicate
how confident the model is

- There can be a lot of variance between different seeds, so it is best to run
multiple trials before making a conclusion

18

HW3: Top-Down Grasping with Pixel-wise Action Space

In pixel-wise action space, each pixel (px,py) corresponds to performing a grasp at the
corresponding position in the real world. Thus, we predict a q-map, that represents the
q-value of grasping at each pixel. A fully-convolutional network (FCN) is very effective at
predicting q-maps.

19

FCN

q-mapstate input simulator

A common FCN is called a U-Net, which is designed to
process information at multiple receptive fields

20

local features
(edges, corners)

global features
(object pose)

Concatenation along channel
dimension, torch.cat([*, *], dim=1)

Up-convolution layers that increase
image size and decrease channel depth.
nn.ConvTranspose2d(stride>1) or
nn.Upsample -> nn.Conv2d

Down-convolution layers that decrease
image size and increase depth. Performed
with nn.Conv2d(stride>1)

Legend

21

Survey to provide feedback

22

https://forms.gle/3XjKf1U4hvT3cSup8

