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An obvious approach to adapting deep reinforcement learning methods such as DQN to continuous
domains is to to simply discretize the action space. However, this has many limitations, most no-
tably the curse of dimensionality: the number of actions increases exponentially with the number
of degrees of freedom. For example, a 7 degree of freedom system (as in the human arm) with the
coarsest discretization a; € {—k, 0, k} for each joint leads to an action space with dimensionality:
37 = 2187. The situation is even worse for tasks that require fine control of actions as they require
a correspondingly finer grained discretization, leading to an explosion of the number of discrete
actions. Such large action spaces are difficult to explore efficiently, and thus successfully training
DQN-like networks in this context is likely intractable. Additionally, naive discretization of action
spaces needlessly throws away information about the structure of the action domain, which may be
essential for solving many problems.
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In this work we present a model-free, off-policy actor-critic algorithm using deep function approx-
imators that can learn policies in high-dimensional, continuous action spaces. Our work 1s based
on the deterministic policy gradient (DPG) algorithm (Silver et al.||2014) (itself similar to NFQCA
(Hafner & Riedmiller,2011), and similar ideas can be found in (Prokhorov et al.||1997)). However,
as we show below, a naive application of this actor-critic method with neural function approximators

1s unstable for challenging problems.

Page 1&2: Lillicrap, Timothy P., et al. "Continuous control with deep reinforcement learning." arXiv preprint arXiv:1509.02971 (2015).



Background



Algorithm

https:/medium.com/geekculture/introduction-to-deterministic-policy-gradient-dp
g-e/229d5248e?2



https://medium.com/geekculture/introduction-to-deterministic-policy-gradient-dpg-e7229d5248e2
https://medium.com/geekculture/introduction-to-deterministic-policy-gradient-dpg-e7229d5248e2




Comparison to baselines and ablations
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Figure 2: Performance curves for a selection of domains using variants of DPG: original DPG
algorithm (minibatch NFQCA) with batch normalization (light grey), with target network (dark
grey), with target networks and batch normalization (green), with target networks from pixel-only
inputs (blue). Target networks are crucial.



Investigation into Q-value estimates
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Figure 3: Density plot showing estimated Q values versus observed returns sampled from test
episodes on 5 replicas. In simple domains such as pendulum and cartpole the Q values are quite
accurate. In more complex tasks, the Q estimates are less accurate, but can still be used to learn
competent policies. Dotted line indicates unity, units are arbitrary.



Takeaways about paper organization

Introduction: motivates the work by situating it in relation to literature

Backaround: formulates the problem (e.g. describes MDP, whether it addresses
partial observability, reward scheme, etc.)

Algorithm/Method: proposes new way to approach said problem; provides new
loss function, or training algorithm; often includes description of task

Results: compares proposed method to state of the art baselines; highlights
nuances/limitations of method; performs ablations

Conclusion: summarize paper, provides suggestions for next steps

Appendix: includes details needed to replicate results or lengthy proofs; anything
that would interrupt the flow of the paper should go here
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DDPG for xArm Reacher
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Extending to Image Observations...

- Common to share encoder weights
encoder actor ’/T(S) (only send critic loss to encoder)
- Use techniques to pretrain encoder
BT{ critic }—Q (S? (l.)
a

12



State of the Art for Continuous Control RL

Soft Actor Critic:

1
1(7‘—) = ZIE(S,.H‘)N;), [r(sf-at) oy “H(T‘—( ¢ gsf))]

t=0

For PyTorch implementations: see stable-baselines3
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http://proceedings.mlr.press/v80/haarnoja18b/haarnoja18b.pdf
https://stable-baselines3.readthedocs.io/en/master/guide/algos.html

Soft target update in PyTorch

param, target_param rip(net.parameters(),

target_param.data.copy_(
tau * param.data + (1 - tau) * target_param.data

)

_update_params(net: nn.Module, target_net: nn.Module, tau: )

target_net.parameters()):
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Next Class (3.4.22)

e General guidance on how to approach a deep learning problem
e Discussion about Project Proposal Feedback
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Survey (3.1.22)

https://forms.gle/9JLYeDdrbX8vJoP76
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