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Abstract. In a functional language, the dominant control-flow mecha-
nism is function call and return. Most higher-order flow analyses, includ-
ing k -CFA, do not handle call and return well: they remember only a
bounded number of pending calls because they approximate programs
with control-flow graphs. Call/return mismatch introduces precision-
degrading spurious control-flow paths and increases the analysis time.
We describe CFA2, the first flow analysis with precise call/return match-
ing in the presence of higher-order functions and tail calls. We formulate
CFA2 as an abstract interpretation of programs in continuation-passing
style and describe a sound and complete summarization algorithm for
our abstract semantics. A preliminary evaluation shows that CFA2 gives
more accurate data-flow information than 0CFA and 1CFA.

1 Introduction

Higher-order functional programs can be analyzed using analyses such as the
k -CFA family [1]. These algorithms approximate the valid control-flow paths
through the program as the set of all paths through a finite graph of abstract
machine states, where each state represents a program point plus some amount
of abstracted environment and control context.

In fact, this is not a particularly tight approximation. The set of paths
through a finite graph is a regular language. However, the execution traces pro-
duced by recursive function calls are strings in a context-free language. Approx-
imating this control flow with regular-language techniques permits execution
paths that do not properly match calls with returns. This is particularly harm-
ful when analyzing higher-order languages, since flowing functional values down
these spurious paths can give rise to further “phantom” control-flow structure,
along which functional values can then flow, and so forth, in a destructive spiral
that not only degrades precision but drives up the cost of the analysis.

Pushdown models of programs can match an unbounded number of calls and
returns, tightening up the set of possible executions to strings in a context-free
language. Such models have long been used for first-order languages. The func-
tional approach of Sharir and Pnueli [2] computes transfer-functions for whole



procedures by composing transfer-functions of their basic blocks. Then, at a call-
node these functions are used to compute the data-flow value of the correspond-
ing return-node directly. This “summary-based” technique has seen widespread
use [3, 4]. Other pushdown models include Recursive State Machines [5] and
Pushdown Systems [6].

In this paper, we propose CFA2, a pushdown model of higher-order programs.
Our contributions can be summarized as follows:

– CFA2 is a flow analysis with precise call/return matching that can be used in
the compilation of both typed and untyped languages. No existing analysis
for functional languages enjoys all of these properties. k -CFA and its variants
do not provide call/return matching (section 3.1). Rehof and Fähndrich’s
analysis [7] supports limited call/return matching and applies to typed lan-
guages only (section 7).

– CFA2 uses a stack and a heap for variable binding. Variable references are
looked up in one or the other, depending on where they appear in the source
code. As it turns out, most references in typical programs are read from
the stack, which results in significant precision gains. Also, CFA2 can filter
certain bindings off the stack to sharpen precision (section 4). k -CFA with
abstract garbage collection [8] cannot infer that it is safe to remove these
bindings. Last, the stack makes CFA2 resilient to syntax changes like η-
expansion. It is well known that k -CFA is sensitive to such changes [9, 10].

– We formulate CFA2 as an abstract interpretation of programs in continuation-
passing style (CPS). The abstract semantics uses a stack of unbounded
height. Hence, the abstract state space is infinite, unlike k -CFA. To ana-
lyze the state space, we extend the tabulation algorithm of Reps et al. [3].
The resulting algorithm is a search-based variant of summarization that can
handle higher-order functions and tail recursion. Currently, CFA2 does not
handle first-class-control operators such as call/cc (section 5).

– We have implemented 0CFA, 1CFA and CFA2 in the Twobit Scheme com-
piler [11]. Our experimental results show that CFA2 is more precise than
0CFA and 1CFA. Also, CFA2 usually visits a smaller state space (section 6).

2 Preliminary definitions and notational conventions

We begin with a description of our CPS language and its small-step semantics.
For brevity, we develop the theory of CFA2 in the untyped λ-calculus. Primi-
tive data, explicit recursion and side-effects can be easily added using standard
techniques [1, ch. 3] [12, ch. 9]. Compilers that use CPS [13,14] usually partition
the terms in a program in two disjoint sets, the user and the continuation set,
and treat user terms differently from continuation terms.

We adopt this partitioning for our language (Fig. 1). Variables, lambdas and
calls are given labels from ULab or CLab. Labels are pairwise distinct. User
lambdas take a user argument and the current continuation; continuation lamb-
das take only a user argument. We apply an additional syntactic constraint: the
only continuation variable that can appear free in the body of a user lambda
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v ∈ Var = UVar + CVar

u ∈ UVar = a set of identifiers
k ∈ CVar = a set of identifiers
ψ ∈ Lab = ULab + CLab

l ∈ ULab = a set of labels
γ ∈ CLab = a set of labels

lam ∈ Lam = ULam + CLam

ulam ∈ ULam ::= (λl(u k) call)

clam ∈ CLam ::= (λγ(u) call)

call ∈ Call = UCall + CCall

ucall ∈ UCall ::= (f e q)l

ccall ∈ CCall ::= (q e)γ

g ∈ Exp = UExp + CExp

f, e ∈ UExp = ULam + UVar

q ∈ CExp = CLam + CVar

pr ∈ Program ::= ULam

Fig. 1. Partitioned CPS

(λl(u k) call) is k. This simple constraint forbids first-class control [15]. Intu-
itively, we get such a program by CPS-converting a direct-style program without
call/cc. We refer to this variant of CPS as “Restricted CPS” (RCPS).

We assume that all variables in a program have distinct names. Concrete
syntax enclosed in [[·]] denotes an item of abstract syntax. Functions with a ‘?’
subscript are predicates, e.g., Var?(e) returns true if e is a variable and false
otherwise. Labels can be split into disjoint sets according to the innermost user
lambda that contains them. For example, in the following program, which has
three user lambdas, these sets are {1, 6, 4, 8}, {2, 9, 5, 10} and {3, 7}.

(λ1(u1 k1) 6((λ2(u2 k2) 9((λ5(u5) 10(k2 u1)) u2))

(λ3(u3 k3) 7(k3 u3))

(λ4(u4) 8(k1 u4))))

The “label to variable” map LV (ψ) returns all the variables bound by any
lambdas that belong in the same set as ψ, e.g., LV (8) = {u1, k1, u4} and
LV (5) = {u2, k2, u5}. We use this map to model stack behavior, because all
the continuation lambdas that “belong” to a given user lambda λl get closed by
extending λl’s stack frame (cf. section 4). Notice that, for any ψ, LV (ψ) contains
exactly one continuation variable.

We use two notations for tuples, (e1, . . . , en) and 〈e1, . . . , en〉, to avoid confu-
sion when tuples are deeply nested. We use the latter for lists as well; ambiguities
will be resolved by the context. Lists are also described by a head-tail notation,
e.g., 3 :: 〈1, 3,−47〉.

The semantics of RCPS appears in Fig. 2. Execution traces alternate between
Eval and Apply states. At an Eval state, we evaluate the subexpressions of a
call site before performing a call. At an Apply state, we perform the call.

The last component of each state is a time, which is a sequence of call sites.
Eval to Apply transitions increment the time by recording the label of the cor-
responding call site. Apply to Eval transitions leave the time unchanged. Thus,
the time t of a state reveals the call sites along the execution path to that state.

Times indicate points in the execution when variables are bound. The binding
environment β is a partial function that maps variables to their binding times.
The variable environment ve maps variable-time pairs to values. To find the
value of a variable v, we look up the time v was put in β, and use that to search
for the actual value in ve.

3



ς ∈ State = Eval + Apply

ς ∈ Eval = UEval + CEval

ς ∈ UEval = UCall× BEnv×VEnv× Time

ς ∈ CEval = CCall× BEnv×VEnv× Time

ς ∈ Apply = UApply + CApply

ς ∈ UApply = UClos×UClos× CClos×
VEnv× Time

ς ∈ CApply = CClos×UClos×VEnv× Time

Clos = UClos + CClos

d ∈ UClos = ULam× BEnv

c ∈ CClos = (CLam× BEnv) + halt

β ∈ BEnv = Var ⇀ Time

ve ∈ VEnv = Var× Time ⇀ Clos

t ∈ Time = Lab∗

Acs(g, β, ve) ,

(

(g, β) Lam?(g)

ve(g, β(g)) Var?(g)

UEval to UApply :

([[(f e q)l]], β, ve, t) → (proc, d, c, ve, l :: t)
proc = Acs(f, β, ve)
d = Acs(e, β, ve)
c = Acs(q, β, ve)

CEval to CApply :
([[(q e)γ ]], β, ve, t) → (proc, d, ve, γ :: t)
proc = Acs(q, β, ve)
d = Acs(e, β, ve)

UApply to Eval :
(proc, d, c, ve, t) → (call , β′, ve ′, t)
proc = 〈[[(λl(u k) call)]], β〉
β′ = β[u 7→ t][k 7→ t]
ve ′ = ve[(u, t) 7→ d][(k, t) 7→ c]

CApply to Eval :
(proc, d, ve, t) → (call , β′, ve ′, t)
proc = 〈[[(λγ(u) call)]], β〉
β′ = β[u 7→ t]
ve ′ = ve[(u, t) 7→ d]

Fig. 2. Concrete semantics and domains for Restricted CPS

Let’s look at the transitions more closely. At a UEval state with call site
(f e q)l, we evaluate f , e and q using the function Acs . Lambdas are paired up
with β to become closures, while variables are looked up in ve using β. We add
the label l in front of the current time and transition to a UApply state.

From UApply to Eval , we bind the formals of a procedure 〈[[(λl(u k) call)]], β〉
to the arguments and jump to its body. The new binding environment β′ is an
extension of the procedure’s environment, with u and k mapped to the current
time. The new variable environment ve ′ maps (u, t) to the user argument d, and
(k, t) to the continuation argument c.

The remaining two transitions are similar. We use halt to denote the top-level
continuation of a program pr . The initial state I(pr) is ((pr , ∅), input, halt , ∅, 〈〉),
where input is a closure of the form 〈[[(λl(u k) call)]], ∅〉. Note that the initial
time is the empty sequence of call sites.

In the terminology of abstract interpretation, this semantics is called the
concrete semantics. In order to find properties of a program at compile time, one
needs to derive a computable approximation of the concrete semantics, called
the abstract semantics. CFA2 and k -CFA are such approximations.

CPS-based compilers may or may not use a control stack for the final code.
Steele’s view, illustrated in the Rabbit compiler [13], is that argument evaluation
pushes stack and function calls are GOTOs. Since arguments in CPS are not calls,
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E 1 A len h A 11

A len 9 E 2 E 12

E 8 A 3 A 9

A 7 E 4 A h

E 6 A 5 E 10

(define (len l k)

2(pair? l

(λ3(test)

4(if test

(λ5()

6(cdr l

(λ7(rest)

8(len rest

(λ9(ans) 10(+ 1 ans k))))))

(λ11() 12(k 0))

1(len ’(3) halt)

Fig. 3. 0CFA on len

argument evaluation is always trivial and Rabbit never needs to push stack. By
this approach, every call in CPS is a tail call.

An alternative style was used in the Orbit compiler [14]. At every function
call, Orbit pushes a frame for the arguments. By this approach, tail calls are
only the calls where the continuation argument is a variable. These CPS call
sites were in tail position in the initial direct-style program. CEval states where
the operator is a variable are calls to the current continuation with a return value.
Orbit pops the stack at tail calls and before calling the current continuation.

We will see later that the abstract semantics of CFA2 uses a stack, like
Orbit. However, CFA2 computes safe flow information which can be used by
both aforementioned approaches. The workings of the abstract interpretation
are independent of what style an implementor chooses for the final code.

3 Limitations of k-CFA

In this section, we discuss the main causes of imprecision and inefficiency in k -
CFA. Our motivation in developing CFA2 is to create a higher-order flow analysis
that overcomes these limitations.

We assume some familiarity with k -CFA, and abstract interpretation in gen-
eral. Detailed descriptions on these topics can be found in [1,12]. We use Scheme
syntax for our example programs.

3.1 k-CFA does not match calls and returns

In order to make the state space of k -CFA finite, Shivers chose a mechanism
similar to the call-strings of Sharir and Pnueli [2]. Thus, recursive programs
introduce approximation by folding an unbounded number of recursive calls
down to a fixed-size call-string. In effect, by applying k -CFA on a higher-order
program, we turn it into a finite-state machine. Taken to the extreme, when k
is zero, a function can return to any of its callers, not just to the last one.
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For example, consider the function that computes the length of a list, written
in CPS (Fig. 3). 0CFA on len produces the graph in Fig. 3. Eval states (marked
with “E”) mention the corresponding call site. Apply states are marked with
“A”. UApply states mention the callee and the continuation argument. The
continuation variable k is bound to either halt or λ9. The cycle on the left is
taken when the test is true, and it leads to a recursive call. The cycle on the right
is taken by returning to λ9 after a recursive call. Every path from the start to the
end node is a valid 0CFA execution. In particular, we cannot exclude the path
that recurs four times but applies λ9 twice. By following such a path, the program
will terminate with a non-empty stack. It is clear that k -CFA cannot help much
with optimizations that require accurate calculation of the stack change between
program states, such as stack allocation of closure environments.

Spurious flows caused by call/return mismatch affect traditional data-flow
information as well. For instance, 0CFA-constant-propagation for the program
below cannot spot that n2 is the constant 2, because 1 also flows to x and
is mistakenly passed to the continuation λ2. 1CFA helps in this example, but
repeated η-expansion of the identity function can trick k -CFA for any k.

(let ((id (λ(x k) (k x))))

(id 1 (λ1(n1) (id 2 (λ2(n2) (+ n1 n2 halt))))))

In a non-recursive program, a large enough k can provide accurate call/return
matching, but this is not desirable because the analysis becomes intractably
slow even when k is 1 [10]. Moreover, the ubiquity of recursion in higher-order
programs calls for a static analysis that can match an unbounded number of
calls and returns. This can be done if we approximate programs using pushdown
models instead of finite-state machines.

3.2 The environment problem and fake rebinding

In higher-order languages, many bindings of the same variable can be simultane-
ously live. Determining at compile time whether two references to some variable
will be bound in the same run-time environment is referred to as the environ-
ment problem [1]. For example, trace through the execution of the following
direct-style code:

(let ((f (λ(x thunk) (if (integer? x) (thunk) (λ1() x)))))

(f 0 (f "foo" "bar")))

In the inner call to f, x is bound to "foo" and λ1 is returned. We call f again; this
time, x is an integer, so we jump through (thunk) to (λ1() x), and reference
x, which, despite the just-completed test, is not an integer: it is the earlier-
bound string "foo". Thus, during abstract interpretation, it is generally unsafe
to assume that a variable reference has some property just because an earlier
reference had that property.

This has an unfortunate consequence: sometimes an earlier reference provides
safe information about the reference at hand and k -CFA does not spot it:
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(define (compose-same f x) 2(f 1(f x)))

In compose-same, both references to f are always bound at the same time.
However, if multiple closures flow to f, k -CFA may call one closure at call site
1 and a different closure at call site 2. This flow never happens at run time.

CFA2 tackles this problem by treating references for a variable v differently
from one another, depending on their location in the source code. If v appears
in a static context where we know the current stack frame is its environment
record, we can be precise. If v appears free in some possibly escaping lambda,
we cannot predict its extent so we fall back to a conservative approximation.

3.3 Imprecision increases the running time of the analysis

It is known that k -CFA for k > 0 is not a cheap analysis, both in theory [10]
and in practice [16]. Counterintuitively, imprecision in higher-order control-flow
analyses can increase their running time: imprecision induces spurious control-
flow paths, along which the analysis must then flow data, thus creating further
spurious paths, and so on, in a vicious cycle which creates extra work whose only
function is to degrade the precision of the analysis. This is why techniques that
aggressively prune the search space, such as abstract garbage collection [8], not
only increase the precision, but can also improve the speed of the analysis.

In the previous subsections, we saw examples of information known at com-
pile time that k -CFA cannot exploit. CFA2 uses this information. The enhanced
precision of CFA2 has a positive effect on its running time (cf. section 6).

4 The CFA2 semantics

4.1 Abstract semantics

The CFA2 semantics is an abstract interpreter that executes a program in RCPS,
using a stack for variable binding and return-point information.

We describe the stack-management policy with an example. Assume that we
run the len program of section 3. When calling (len ’(3) halt) we push a
frame [l 7→ (3)][k 7→ halt ] on the stack. The test (pair? l) is true, so we add
the binding [test 7→ true] to the top frame and jump to the true branch. We
take the cdr of l and add the binding [rest 7→ ()] to the top frame. We call
len again, push a new frame for its arguments and jump to its body. This time
the test is false, so we extend the top frame with [test 7→ false] and jump to the
false branch. The call to k is a function return, so we pop a frame and pass 0

to λ9. Call site 10 is also a function return, so we pop the remaining frame and
pass 1 to the top-level continuation halt .

In general, we push a frame at function entries and pop at tail calls and
at function returns. Results of intermediate computations are stored in the top
frame. This policy enforces two invariants about the abstract interpreter. First,
when executing inside a user function (λl(u k) call), the domain of the top frame
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ÛEval to ÛApply:

([[(f e q)l]], st , h) ; (ulam, d̂, ĉ, st ′, h)

ulam ∈ Au(f, st , h)

d̂ = Au(e, st , h)
ĉ = Ak (q, st)

st ′ =

8

>

<

>

:

pop(st) Var?(q)

st Lam?(q) ∧(H?(f)∨Lam?(f))

setTop([f 7→{ulam}], st) Lam?(q) ∧ S?(f)

ÛApply to dEval:

([[(λl(u k) call)]], d̂, ĉ, st , h) ; (call , st ′, h ′)

st ′ = push([u 7→ d̂][k 7→ ĉ], st)

h ′ =

(

h ⊔ [u 7→ d̂] H?(u)

h S?(u)

ĈEval to ĈApply:

([[(q e)γ ]], st , h) ; (clam, d̂, st ′, h)

clam = Ak (q, st)

d̂ = Au(e, st , h)

st ′ =

(

pop(st) Var?(q)

st Lam?(q)

ĈApply to dEval:

([[(λγ(u) call)]], d̂, st , h) ; (call , st ′, h ′)

st ′ = setTop([u 7→ d̂], st)

h ′ =

(

h ⊔ [u 7→ d̂] H?(u)

h S?(u)

Au(e, st , h) ,

8

>

<

>

:

{e} Lam?(e)

st(e) S?(e)

h(e) H?(e)

Ak (q, st) ,

(

q Lam?(q)

st(q) Var?(q)

Abstract domains:

ς̂ ∈ ÛEval =UCall× Stack×Heap

ς̂ ∈ ÛApply = ULam× ÛClos× ĈClos× Stack×Heap

ς̂ ∈ ĈEval =CCall× Stack×Heap

ς̂ ∈ ĈApply = ĈClos× ÛClos× Stack× Heap

d̂ ∈ ÛClos =Pow(ULam)

ĉ ∈ ĈClos =CLam + halt

fr , tf ∈ Frame = (UVar ⇀ÛClos)∪ (CVar ⇀ ĈClos)
st ∈ Stack =Frame∗

h ∈ Heap =UVar ⇀ ÛClos

Stack operations:

pop(tf :: st) ,st

push(fr , st) , fr :: st

(tf :: st)(v) , tf (v)

setTop([u 7→ d̂], tf ::st) , tf [u 7→ d̂] ::st

Fig. 4. Abstract semantics and relevant definitions

is a subset of LV (l). Second, the frame below the top frame is the environment
of the current continuation.

Each variable v in our example was looked up in the top frame, because each
lookup happened while we were executing inside the lambda that binds v. This
is not always the case; in the first snippet of section 3.2 there is a reference to
x inside λ1. When control reaches that reference, the top frame does not belong
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to the user lambda that binds x. CFA2 uses a heap to look up such references.
The following definition makes these concepts precise.

Definition 1 (Stack and heap references).

– Let ψ be a call site that refers to a variable v. The predicate S?(v) holds iff
v ∈ LV (ψ). We call v a stack reference.

– Let ψ be a call site that refers to a variable v. The predicate H?(v) holds iff
v /∈ LV (ψ). We call v a heap reference.

– v is a stack variable iff all its references satisfy S?.
– v is a heap variable iff some of its references satisfy H?.

Put differently, if the innermost user lambda that contains ψ is the one that
binds v, then v is a stack reference. In addition, if v is bound by a continuation
lambda λγ , and the innermost user lambda that contains ψ also contains λγ ,
then v is a stack reference. Intuitively, only heap references may escape. We look
up stack references in the top frame, and heap references in the heap. Stack
lookups below the top frame never happen.

The CFA2 semantics appears in Fig. 4. An abstract value is either an ab-

stract user closure (member of the set ÛClos) or an abstract continuation closure

(member of ĈClos). An abstract user closure is a set of user lambdas. An ab-
stract continuation closure is either a continuation lambda or halt . A frame is a
map from variables to abstract values, and a stack is a sequence of frames. All
stack operations except push are defined for non-empty stacks only. A heap is a
map from variables to abstract values. It contains only user bindings because in
RCPS every continuation variable is a stack variable.

On transition from a ÛEval state ς̂ to a ÛApply state ς̂ ′, we first evaluate f ,
e and q. We evaluate user terms using Au and continuation terms using Ak . We
non-deterministically choose one of the lambdas that flow to f as the operator
in ς̂ ′.The change to the stack depends on q and f . If q is a variable, the call is
a tail call so we pop the stack (case 1). If q is a lambda, it evaluates to a new
continuation closure whose environment is the top frame, hence we do not pop
the stack (cases 2, 3). Moreover, if f is a lambda or a heap reference then we
leave the stack unchanged. However, if f is a stack reference, we set f ’s value
on the top frame to be {ulam}, possibly forgetting other lambdas that may flow
to f . This “stack filtering” prevents fake rebinding (cf. section 3.2): when we
return to ĉ, we may reach more stack references of f . These references and the
current one are all bound at the same time. Since we are committing to ulam in
this transition, these references must also be bound to ulam.

In the ÛApply-to-Êval transition, we push a frame for the procedure’s argu-
ments. In addition, if u is a heap variable we must update its binding in the
heap. The join operation ⊔ is defined in the usual way.

In a ĈEval-to-ĈApply transition, we are preparing for a call to a continuation
so we must reset the stack to the stack of its birth. When q is a variable, the

ĈEval state is a function return and the continuation’s environment is the second
stack frame. Therefore, we pop a frame before calling clam. When q is a lambda,
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|([[(h1 . . . hn)
ψ]], β, ve, t)|ca = ([[(h1 . . . hn)

ψ]], toStack(LV (ψ), β, ve), |ve|ca)

|(〈[[(λl(u k) call)]], β〉, d, c, ve, t)|ca = ([[(λl(u k) call)]], |d|ca , |c|ca , st , |ve|ca)

where st =

(

〈〉 c = halt

toStack(LV (γ), β′, ve) c = ([[(λγ(u
′)call ′)]], β′)

|(〈[[(λγ(u) call)]], β〉, d, ve, t)|ca = ([[(λγ(u) call)]], |d|ca , toStack(LV (γ), β, ve), |ve|ca)

|(halt , d, ve, t)|ca = (halt , |d|ca , 〈〉, |ve|ca)

|([[(λl(u k) call)]], β)|ca = {[[(λl(u k) call)]]}

|([[(λγ(u) call)]], β)|ca = [[(λγ(u) call)]]

|halt |ca = halt

|ve|ca = { (u,
F

t
|ve(u, t)|ca) : H?(u)}

toStack({u1, . . . , un, k}, β, ve) ,
8

>

>

>

>

<

>

>

>

>

:

〈[ui 7→ d̂i ][k 7→ halt ]〉 d̂i = |ve(ui, β(ui))|ca ∧

halt = ve(k, β(k))

[ui 7→ d̂i ][k 7→ [[(λγ(u) call)]]] :: toStack(LV (γ), β′, ve) d̂i = |ve(ui, β(ui))|ca ∧

([[(λγ(u) call)]], β′) = ve(k, β(k))

Fig. 5. From concrete states to abstract states

it is a newly created closure thus the stack does not change. Note that the

transition is deterministic, unlike ÛEval-to-ÛApply. Since we always know which
continuation we are about to call, call/return mismatch never happens. For
instance, the function len may be called from many places in a program, so
multiple continuations may flow to k. But, by retrieving k’s value from the
stack, we always return to the correct continuation.

In the ĈApply-to-Êval transition, our stack policy dictates that we extend
the top frame with the binding for the continuation’s parameter u. If u is a heap
variable, we also update the heap.

4.2 Correctness of CFA2

In this section, we show that the CFA2 semantics safely approximates the con-
crete semantics. First, we define a map |·|ca from concrete to abstract states.
Next, we show that if a state ς transitions to ς ′ in the concrete semantics, the
abstract counterpart |ς|ca of ς transitions to a state ς̂ ′ which approximates |ς ′|ca .
By proving this, we ensure that the possible behaviors of the abstract interpreter
include the actual run-time behavior of the program.

The map |·|ca appears in Fig. 5. The abstraction of an Eval state ς of the

form ([[(h1 . . . hn)
ψ]], β, ve, t) is an Êval state ς̂ with the same call site. Since ς

does not have a stack, we must expose stack-related information hidden in β and
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ve. Assume that λl is the innermost user lambda that contains ψ. To reach ψ,

control passed from a ÛApply state ς̂ ′ over λl. According to our stack policy, the
top frame must contain bindings for the formals of λl and any temporaries added
along the path from ς̂ ′ to ς̂. Therefore, the domain of the top frame is a subset
of LV (l), i.e., a subset of LV (ψ). For each user variable ui ∈ (LV (ψ)∩dom(β)),
the top frame contains [ui 7→ |ve(ui, β(ui))|ca ]. Let k be the sole continuation
variable in LV (ψ). If ve(k, β(k)) is halt (the return continuation is the top-level
continuation), the rest of the stack is empty. If ve(k, β(k)) is ([[(λγ(u) call)]], β′),
the second frame is for the user lambda in which λγ was born, and so forth:
proceeding through the stack, we add a frame for each live activation of a user
lambda until we reach the top-level continuation.

The abstraction of a UApply state over 〈[[(λl(u k) call)]], β〉 is a ÛApply state
ς̂ whose operator is [[(λl(u k) call)]]. The stack of ς̂ is the stack in which the
continuation argument was created, and we compute it using toStack as above.

Abstracting a CApply is similar to the UApply case, only now the top frame
is the environment of the continuation operator. Note that the abstraction maps
drop the time of the concrete states, since the abstract states do not use times.

We can now state our simulation theorem. The proof proceeds by case anal-
ysis on the concrete transition relation. The relation ς̂1 ⊑ ς̂2 is a partial ordering
on abstract states and can be read as “ς̂1 is more precise than ς̂2”. The proof
and the definition of ⊑ can be found in the appendix.

Theorem 1 (Simulation). If ς → ς ′ and |ς|ca ⊑ ς̂, then there exists ς̂ ′ such
that ς̂ ; ς̂ ′ and |ς ′|ca ⊑ ς̂ ′.

5 Computing CFA2

In the previous section we saw how CFA2 addresses the problems of k -CFA,
but did not discuss how to explore its state space. Since the size of the stack
is unbounded, the state space of CFA2 is infinite and the standard workset
algorithms for k -CFA [1, 12] will diverge. For this reason, we have designed
a new algorithm based on summarization, a dynamic-programming technique
widely used in the interprocedural analysis of first-order programs [2–4] and in
context-free language (CFL) reachability algorithms [17].

The difficulty with analyzing programs in a way that respects call/return
matching is that the reachable program points from a point n do not depend
solely on n, but on the stack contents as well. The intuition behind summariza-
tion is to flow facts from n with an empty stack to another point n′ in the same
procedure. We say that n′ is same-context reachable from n. These facts are then
suitably combined to get flow facts for the whole program.

Let’s do the simplest data-flow analysis for the first-order program of Fig. 6,
namely find which nodes are reachable from the entry of the main function. We
will do so by using path edges, i.e., edges whose source is the entry of a procedure
and target is some program point in the same procedure. Path edges represent
intraprocedural paths, hence the name. We write nf for the entry node and xf
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nm

1

x ← 2
y ← 3

2

sum( )

3

ret

4

x ← 4
y ← 5

5

sum( )

6

ret

7

xm

8

nsum

9

z ← x+y
print z

10

xsum

11

Fig. 6. Interprocedural flow-graph for a simple program

for the exit node of a procedure f . Solid arrows are intraprocedural steps. Dotted
arrows go from call nodes to the corresponding return nodes. Dashed arrows go
from call nodes to entries and from exits to return nodes.

We first scan the program to identify the call sites of each procedure and then
start the reachability analysis. Obviously, from 1 we can go to 2 and then to 3,
so we record 〈1, 1〉, 〈1, 2〉 and 〈1, 3〉. Then 3 calls sum, so we jump to its body.
Analysing sum produces 〈9, 9〉, 〈9, 10〉 and 〈9, 11〉. Node 11 is an exit reachable
from 9, so each caller of sum can reach its corresponding return point. We keep
track of this fact by recording the summary edges 〈3, 4〉 and 〈6, 7〉. Now 4 is
reachable from 1, so we discover a new path edge 〈1, 4〉. We go on to discover
〈1, 5〉 and 〈1, 6〉. Reachability inside sum does not depend on its calling context,
so from the summary edge 〈6, 7〉 we infer that we can reach 7, so we add 〈1, 7〉 to
the set of path edges. Finally, we record 〈1, 8〉 which is the end of the program.

We cannot apply summarization to higher-order languages out of the box,
because we do not know the call sites of a function by looking at a program’s
source code. We need a search-based variant of summarization, that records
callers as it discovers them. Specifically, in the previous example we can record
the call 〈3, 9〉 when we reach 3. On reaching 11, we record the summary edge
〈9, 11〉. To find possible return points for sum, we look at the set of callers. Since
3 calls 9, 11 can return to 4. Later, when we reach 6, we look at the set of
summaries and see that sum reaches its exit, so 6 can reach 7. Note that our
search-based variant of summarization uses entry-to-exit summaries instead of
call-to-return summaries.

5.1 Local semantics

Summarization-based algorithms operate on a finite set of program points. Hence,
we cannot use (an infinite number of) abstract states as program points. For this
reason, we introduce local states and define a map |·|al from abstract to local
states (Fig. 7). Intuitively, a local state is like an abstract state but with a single
frame instead of a stack. Discarding the rest of the stack makes the local state
space finite; keeping the top frame allows precise lookups for stack references.

Essentially, the local semantics describes executions that do not touch the
rest of the stack (in other words, executions where functions do not return).

12



ŨEval to ŨApply:

([[(f e q)l]], tf , h) ≈> (ulam, d̂, h)

ulam ∈ Âu(f, tf , h)

d̂ = Âu(e, tf , h)

ŨApply to gEval:

([[(λl(u k) call)]], d̂, h)≈> (call , [u 7→ d̂], h ′)

h ′ =

(

h ⊔ [u 7→ d̂] H?(u)

h S?(u)

C̃Eval to C̃Apply:

([[(clam e)γ ]], tf , h) ≈> (clam, d̂, tf , h)

d̂ = Âu(e, tf , h)

C̃Apply to gEval:

([[(λγ(u) call)]], d̂, tf , h) ≈> (call , tf ′, h ′)

tf ′ = tf [u 7→ d̂]

h ′ =

(

h ⊔ [u 7→ d̂] H?(u)

h S?(u)

Âu(e, tf , h) ,

8

>

<

>

:

{e} Lam?(e)

tf (e) S?(e)

h(e) H?(e)

Local domains:

ς̃ ∈ gEval = Call× S̃tack×Heap

ς̃ ∈ ŨApply = ULam× ÛClos×Heap

ς̃ ∈ C̃Apply = ĈClos× ÛClos× S̃tack×
Heap

F̃rame = UVar ⇀ ÛClos

S̃tack = F̃rame + 〈〉

Abstract to local maps:

|(call , st , h)|al = (call , |st |al , h)

|(ulam, d̂, ĉ, st , h)|al = (ulam, d̂, h)

|(ĉ, d̂, st , h)|al = (ĉ, d̂, |st |al , h)

|tf :: st ′|al = { (u, tf (u)) : UVar?(u)}

|〈〉|al = 〈〉

Fig. 7. Local semantics

Thus, a C̃Eval state with call site (k e)γ has no successor in this semantics.
Since functions do not call their continuations, the frames of local states con-
tain only user bindings. Local steps are otherwise similar to abstract steps. The
metavariable ς̃ ranges over local states. We define the map |·|cl from concrete to
local states to be |·|al ◦ |·|ca .

We can now see the emerging connection between local semantics and sum-
marization: the local semantics is used for intraprocedural steps and function
calls, and we discover return points by recording callers and summary edges.

Next, our algorithm needs to distinguish between different kinds of local
states: entries, exits, calls, returns and inner states. CPS lends itself naturally
to such a categorization:

– A ŨApply state corresponds to an entry node—control is about to enter the
body of a function.

– A C̃Eval state where the operator is a variable is an exit node—a function
is about to pass its result to its context.

– A ŨEval state where the continuation argument is a variable is also an
exit—at tail calls control does not return to the caller.

– A ŨEval state where the continuation argument is a lambda is a call.

– A C̃Eval state where the operator is a lambda is an inner state.
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– A C̃Apply state is a return if its predecessor is an exit, or an inner state if its
predecessor is also an inner state. Our algorithm will not need to distinguish

between the two kinds of C̃Applys; the difference is just conceptual.

Last, we generalize the notion of summary edges to handle tail recursion. In
the following, we rewrite sum in a functional style and place it in a context where
it gets called three times:

(let ((sum (λ(x y k) (+ x y (λ(z) 1(print z k))))))

...2(sum 2 3 (λ3(u1) call3))...

...4(sum 4 5 (λ5(u2) call5))...

...((λ6(n k2) 7(sum n 1 k2)) 9 (λ8(u3) call8))...)

The first time (site 2), we record a summary edge from the entry of sum to its
exit at call site 1, and return to λ3. Then, at the second call (site 4) we use the
summary edge to find that sum will pass its result to λ5. The third call is a tail
call, so no continuation is born at call site 7. Upon return from sum, we must
be careful to pass the result to λ8. Also, we must restore the environment of the
call to λ6, not the environment of the tail call. We achieve these by recording
a “cross-procedure” summary edge from the entry of λ6 to call site 1. This
transitive nature of summaries is essential for tail recursion.

5.2 Summarization

The algorithm for CFA2 is shown in Fig. 8. It is a search-based summarization for
higher-order programs with tail calls. Its goal is to compute which local states
are reachable from the initial state of a program through paths that respect
call/return matching.

An edge (ς̃1, ς̃2) is an ordered pair of local states. We call ς̃1 the source and
ς̃2 the target of the edge. The results of the analysis are stored in the set Seen. It
contains path edges (from a procedure entry to a state in the same procedure)

and summary edges (from an entry to a C̃Eval exit, not necessarily in the same
procedure). The target of an edge in Seen is reachable from the source and from
the initial state (cf. theorem 2). Summaries are also stored in Summary .

The workset W contains path edges and summaries to be examined. Final

records C̃Apply states that call halt with a return value for the whole program.
Callers contains triples 〈ς̃1, ς̃2, ς̃3〉, where ς̃1 is an entry, ς̃2 is a call in the same
procedure and ς̃3 is the entry of the callee. TCallers contains triples 〈ς̃1, ς̃2, ς̃3〉,
where ς̃1 is an entry, ς̃2 is a tail call in the same procedure and ς̃3 is the entry
of the callee. The initial state Ĩ(pr) is defined as |I(pr)|cl . The helper function
succ(ς̃) returns the successor(s) of ς̃ according to the local semantics.

At every iteration, we remove an edge (ς̃1, ς̃2) from W and branch depending
on ς̃2. If ς̃2 is an entry, a return or an inner state (line 6), then its successor ς̃3 is
a state in the same procedure. Since ς̃2 is reachable from ς̃1, ς̃3 is also reachable
from ς̃1. If we have not already recorded the edge (ς̃1, ς̃3), we do it now (line 25).

14



01 Summary, Callers, TCallers, Final ←− ∅
02 Seen, W ←− {(Ĩ(pr), Ĩ(pr))}
03 while W 6= ∅
04 remove (ς̃1, ς̃2) from W

05 switch ς̃2
06 case ς̃2 of Entry, CApply, Inner-CEval

07 for each ς̃3 in succ(ς̃2) Propagate(ς̃1, ς̃3)

08 case ς̃2 of Call

09 for each ς̃3 in succ(ς̃2)
10 Propagate(ς̃3, ς̃3)

11 insert (ς̃1, ς̃2, ς̃3) in Callers

12 for each (ς̃3, ς̃4) in Summary Update(ς̃1, ς̃2, ς̃3, ς̃4)

13 case ς̃2 of Exit-CEval

14 if ς̃1 = Ĩ(pr) then

15 Final(ς̃2)

16 else

17 insert (ς̃1, ς̃2) in Summary

18 for each (ς̃3, ς̃4, ς̃1) in Callers Update(ς̃3, ς̃4, ς̃1, ς̃2)

19 for each (ς̃3, ς̃4, ς̃1) in TCallers Propagate(ς̃3, ς̃2)

20 case ς̃2 of Exit-TC

21 for each ς̃3 in succ(ς̃2)
22 Propagate(ς̃3, ς̃3)

23 insert (ς̃1, ς̃2, ς̃3) in TCallers

24 for each (ς̃3, ς̃4) in Summary Propagate(ς̃1, ς̃4)

Propagate(ς̃1, ς̃2) ,

25 if (ς̃1, ς̃2) not in Seen then insert (ς̃1, ς̃2) in Seen and W

Update(ς̃1, ς̃2, ς̃3, ς̃4) ,

26 ς̃1 of the form ([[(λl1(u1 k1) call1)]] , d̂1, h1)

27 ς̃2 of the form ([[(f e2 (λγ2 (u2) call2))
l2 ]], tf 2, h2)

28 ς̃3 of the form ([[(λl3(u3 k3) call3)]] , d̂3, h2)
29 ς̃4 of the form ([[(k4 e4)

γ4 ]], tf 4, h4)

30 d̂ ←− Âu (e4, tf 4, h4)

31 tf ←−

(

tf 2[f 7→ {[[(λl3(u3 k3) call3)]]}] S?(f)

tf 2 H?(f) ∨ Lam?(f)

32 ς̃ ←− ([[(λγ2(u2) call2)]], d̂, tf , h4)
33 Propagate(ς̃1, ς̃)

Final(ς̃) ,

34 ς̃ of the form ([[(k e)γ ]], tf , h)

35 insert (halt , Âu (e, tf , h), 〈〉, h) in Final

Fig. 8. CFA2 workset algorithm

If ς̃2 is a call (line 8) then ς̃3 is an entry of a new procedure, so we propagate
(ς̃3, ς̃3) instead of (ς̃1, ς̃3) (line 10). Next, we record the call in Callers. If an exit
ς̃4 is reachable from ς̃3, it should return its result to the continuation born at ς̃2
(line 12). The function Update is responsible for computing the return state. We

find the return value d̂ by evaluating the expression e4 passed to the continuation
(lines 29-30). Since we are returning to λγ2 , we must restore the environment of
its creation which is tf 2 (possibly with stack filtering, line 31). The new state ς̃
is the corresponding return node of ς̃2, so we propagate (ς̃1, ς̃) (lines 32-33).
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If ς̃2 is a C̃Eval exit and ς̃1 is the initial state (lines 14-15), then ς̃2’s successor
is a final state (lines 34-35). If ς̃1 is some other entry, we record the edge in
Summary and pass the result of ς̃2 to the callers of ς̃1 (lines 17-18). Last, consider
the case of a tail call ς̃4 to ς̃1 (line 19). No continuation is born at ς̃4. Thus,
we must find where ς̃3 (the entry that led to the tail call) was called from.
Then again, it is possible that all calls to ς̃3 are tail calls, in which case we
keep searching further back in the call chain to find a return point. We do this
backward search by transitively adding a summary edge from ς̃3 to ς̃2 (line 25).

If ς̃2 is a tail call (line 20), we find its successors and record the call in TCallers
(lines 21-23). If a successor of ς̃2 goes to an exit, we propagate a summary
transitively (line 24).

The local state space is finite, so there is a finite number of path and summary
edges. We record edges as seen when we insert them in W , which ensures that
no edge is inserted in W twice. Therefore, the algorithm terminates.

We obviously cannot visit an infinite number of abstract states. To establish
the soundness of our flow analysis, we show that if an abstract state ς̂ is reachable
from the initial state, then the algorithm visits |ς̂|al (cf. theorem 2). For instance,
CFA2 on len (cf. section 3) will tell us that we reach program point 10, not that
we reach 10 with a stack of size 1, 2, 3 etc.

Soundness guarantees that the CFA2 algorithm does not miss any flows, but
it could also compute flows that do not happen in the abstract semantics. For
example, a sound but useless algorithm would add all pairs of local states in
Seen. We establish the completeness of our algorithm by proving that every
visited edge has a corresponding abstract flow (cf. theorem 3).

The theorems use two definitions. The first associates a state ς̂ with its cor-
responding entry, i.e., the entry of the procedure that contains ς̂. The second
finds all entries that reach the corresponding entry of ς̂ through tail calls. We
include the proofs of the theorems in the appendix.

Definition 2. The Corresponding Entry CEp(ς̂) of a state ς̂ in a path p is:

– ς̂, if ς̂ is an Entry
– ς̂1, if ς̂ is not an Entry, ς̂2 is not an Exit-CEval,
p ≡ p1 ; ς̂1 ;

∗ ς̂2 ; ς̂ ; p2, and CEp(ς̂2) = ς̂1
– ς̂1, if ς̂ is not an Entry, p ≡ p1 ; ς̂1 ;

+ ς̂2 ; ς̂3 ;
+ ς̂4 ; ς̂ ; p2,

ς̂2 is a Call and ς̂4 is an Exit-CEval, CEp(ς̂2) = ς̂1, and ς̂3 ∈ CE∗

p(ς̂4)

Definition 3. For a state ς̂ and a path p, CE∗

p(ς̂) is the smallest set such that:

– CEp(ς̂) ∈ CE∗

p(ς̂)
– CE∗

p(ς̂1) ⊆ CE∗

p(ς̂), when p ≡ p1 ; ς̂1 ; ς̂2 ;
∗ ς̂ ; p2,

ς̂1 is a Tail Call, ς̂2 is an Entry, and ς̂2 = CEp(ς̂)

Theorem 2 (Soundness). If p ≡ Î(pr) ;
∗ ς̂ then, after summarization:

– if ς̂ is not a final state then (|CEp(ς̂)|al , |ς̂|al) ∈ Seen
– if ς̂ is a final state then |ς̂|al ∈ Final
– if ς̂ is an Exit-CEval and ς̂ ′∈CE∗

p(ς̂) then (|ς̂ ′|al , |ς̂|al)∈Seen
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0CFA 1CFA CFA2
S? H? visited constants visited constants visited constants

len 9 0 81 0 126 0 55 2

rev-iter 17 0 121 0 198 0 82 4

len-Y 15 4 199 0 356 0 131 2

tree-count 33 0 293 2 2856 6 183 10

ins-sort 33 5 509 0 1597 0 600 4

DFS 94 11 1337 8 6890 8 1719 16

flatten 37 0 1520 0 6865 0 478 5

sets 90 3 3915 0 54414 0 4251 4

church-nums 46 23 19130 0 19411 0 22671 0

Fig. 9. Benchmark results

Theorem 3 (Completeness). After summarization:

– For each (ς̃1, ς̃2) in Seen, there exist ς̂1, ς̂2 and p such that
p ≡ Î(pr) ;

∗ ς̂1 ;
∗ ς̂2 and ς̃1 = |ς̂1|al and ς̃2 = |ς̂2|al and ς̂1 ∈ CE∗

p(ς̂2)
– For each ς̃ in Final , there exist ς̂ and p such that
p ≡ Î(pr) ;

+ ς̂ and ς̃ = |ς̂|al and ς̂ is a final state.

6 Evaluation

We implemented CFA2, 0CFA and 1CFA for the Twobit Scheme compiler [11]
and used them to do constant propagation and folding. In this section we report
on some initial measurements and comparisons.

We compared the effectiveness of the analyses on a small set of benchmarks
(Fig. 9). We measured the number of stack and heap references in each program
and the number of constants found by each analysis. We also recorded what
goes in the workset in each analysis, i.e., the number of abstract states visited
by 0CFA and 1CFA, and the number of path and summary edges visited by
CFA2. The running time of an abstract interpretation is proportional to the
amount of things inserted in the workset.

We chose programs that exhibit a variety of control-flow patterns. Len com-
putes the length of a list recursively. Rev-iter reverses a list tail-recursively.
Len-Y computes the length of a list using the Y-combinator instead of explicit
recursion. Tree-count counts the nodes in a binary tree. Ins-sort sorts a list
of numbers using insertion-sort. DFS does depth-first search of a graph. Flatten
turns arbitrarily nested lists into a flat list. Sets defines the basic set operations
and tests De Morgan’s laws on sets of numbers. Church-nums tests distributivity
of multiplication over addition for a few Church numerals.

CFA2 finds the most constants, followed by 1CFA. 0CFA is the least precise.
CFA2 is also more efficient at exploring its abstract state space. In five out of
nine cases, it visits fewer paths than 0CFA does states. The visited set of CFA2
can be up to 3.2 times smaller (flatten), and up to 1.3 times larger (DFS) than
the visited set of 0CFA. 1CFA is less efficient than both 0CFA (9/9 cases) and
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CFA2 (8/9 cases). The visited set of 1CFA can be significantly larger than that
of CFA2 in some cases (15.6 times in tree-count, 14.4 times in flatten, 12.8
times in sets).

Naturally, the number of stack references in a program is much higher than
the number of heap references; most of the time, a variable is referenced only by
the lambda that binds it. Thus, CFA2 uses the precise stack lookups more often
than the imprecise heap lookups.

7 Related work

We were particularly influenced by Chaudhuri’s recent paper on subcubic al-
gorithms for recursive state machines [4]. His clear and intuitive description of
summarization helped us realize that we can use this technique to explore the
state space of CFA2.

Reps et al. [3] used summarization to reduce certain data-flow problems for
first-order languages to a graph-reachability problem. Our workset algorithm is
a variant of their tabulation algorithm, extended for tail recursion and higher-
order functions. The reader may have noticed that CFA2 essentially produces
a pushdown system. Then, one may wonder why we designed a new algorithm
instead of using an existing one like post∗ [6, ch. 3]. The reason is that callers
cannot be identified syntactically in higher-order languages. Hence, algorithms
that analyze higher-order programs must be based on search. The tabulation
algorithm can be changed to use search fairly naturally. It is unclear to us how
to do that for post∗. In a way, CFA2 creates a pushdown system and analyzes it
at the same time, much like what k -CFA does with control-flow graphs.

Melski and Reps [18] reduced Heintze’s set-constraints [19] to an instance of
CFL reachability, which they solve using summarization. Therefore, their solu-
tion has the same precision as 0CFA.

CFL reachability has also been used for points-to analysis of imperative
higher-order languages. For instance, Sridharan and Bod́ık’s points-to analysis
for Java [20] uses CFL reachability to match writes and reads to object fields.
Precise call/return matching is achieved only for programs without recursive
methods. Hind’s survey [21] discusses many other variants of points-to analysis.

Debray and Proebsting [22] used ideas from parsing theory to design an
interprocedural analysis for first-order programs with tail calls. They describe
control-flow with a context-free grammar. Then, the FOLLOW set of a proce-
dure represents its possible return points. Our approach is quite different on
the surface, but similar in spirit; we handle tail calls by computing summaries
transitively.

Analyses that match an unbounded number of calls and returns have been
neglected by the functional language community. The type-based flow analysis
of Rehof and Fähndrich [7] is a notable exception. They encode flow information
in a type system and then recast the type inference problem to an instance
of CFL reachability. The type system uses let-polymorphism. As a result, it
provides precise call/return matching for let- and letrec-bound variables but not
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for lambda-bound variables. For instance, if we lambda-bind id in our earlier
example, their type system will not find n2 to be constant:

((λ(id) (let ((n1 (id 1))

(n2 (id 2)))

(+ n1 n2)))

(λ(x) x))

CFA2 does not distinguish between let and lambda; in fact, the AST of Twobit
contains no lets.

Midtgaard and Jensen [23] created a flow analysis for direct-style higher-order
programs that keeps track of “return flow”. They point out that continuations
make return-point information explicit in CPS and show how to recover this
information in direct-style programs. Their work does not address the issue of
unbounded call/return matching.

Might and Shivers [8] proposed ΓCFA (abstract garbage collection) and
µCFA (abstract counting) to increase the precision of k -CFA. ΓCFA removes un-
reachable bindings from the variable environment, and µCFA counts how many
times a variable is bound during the analysis. The two techniques combined
reduce the number of spurious flows and give precise environment information.
Stack references in CFA2 have a similar effect, because different calls to the
same function use different frames. However, we can utilize ΓCFA and µCFA to
improve precision in the heap.

Recently, Kobayashi [24] proposed a way to statically verify properties of
typed higher-order programs using model-checking. He models a program by a
higher-order recursion scheme G, expresses the property of interest in the modal
µ-calculus and checks if the infinite tree generated by G satisfies the property.
This technique can do flow analysis, since flow analysis can be encoded as a
model-checking problem. The target language of this work is the simply-typed
lambda calculus. Programs in a Turing-complete language must be approximated
in the simply-typed lambda calculus in order to be model-checked.

8 Conclusions

In this paper we propose CFA2, a pushdown model of higher-order programs, and
prove it correct. CFA2 provides precise call/return matching and has a better
approach to variable binding than k -CFA. Our evaluation shows that CFA2 gives
more accurate data-flow information than 0CFA and 1CFA.

CFA2 is monovariant in the heap. It can be easily extended with call-strings
polyvariance, like k -CFA, to produce a family of analyses CFA2.0, CFA2.1 and
so on. Then, any instance of CFA2.k would be strictly more precise than the
corresponding instance of k -CFA. Another possibility is to add contours in the
style of Agesen [25] or Wright and Jagannathan [9]. Note that CFA2 already has
most of the above polyvariance “accidentally”, because of the stack lookups.

We believe that pushdown models are a better tool for higher-order flow
analysis than control-flow graphs, and are working on providing more empirical
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support to this thesis. We plan to use CFA2 for environment analysis and stack-
related optimizations. We also plan to add support for call/cc in CFA2.
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A Appendix

In section 2, we mentioned that labels in a program can be split into disjoint
sets according to the innermost user lambda that contains them. The “label to
label” map LL(ψ) returns the labels that are in the same set as ψ. For example,
in the following program, LL(1) = {1, 6, 4, 8} and LL(10) = {2, 9, 5, 10}.

(λ1(u1 k1) 6((λ2(u2 k2) 9((λ5(u5) 10(k2 u1)) u2))

(λ3(u3 k3) 7(k3 u3))

(λ4(u4) 8(k1 u4))))

Definition 4. For every term g, the map BV (g) returns the variables bound by
lambdas which are subterms of g. The map has a simple inductive definition:
BV ([[(λψ(v1 . . . vn)call)]]) = {v1, . . . , vn} ∪ BV (call)

BV ([[(g1 . . . gn)
ψ]]) = BV (g1) ∪ · · · ∪ BV (gn)

BV (v) = ∅ ⊓⊔

The following lemma is a simple consequence of alphatisation and lexical scope.

Lemma 1. A concrete state ς has the form (. . . , ve, t).

– For any closure ([[(λψ(v1 . . . vn)call)]], β) ∈ range(ve), it holds that dom(β)∩
BV ([[(λψ(v1 . . . vn)call)]]) = ∅.

– If ς is an Eval state with call site [[(g1 . . . gn)
ψ]] and environment β, then

dom(β) ∩ BV ([[(g1 . . . gn)
ψ]]) = ∅.

– If ς is an Apply state, for any closure ([[(λψ(v1 . . . vn)call)]], β) in operator
or argument position, then dom(β) ∩ BV ([[(λψ(v1 . . . vn)call)]]) = ∅.

Proof It suffices to show that the lemma holds for the initial state and it’s
maintained by transition. ⊓⊔

Theorem 4 (Simulation). If ς → ς ′ and |ς|ca ⊑ ς̂, then there exists ς̂ ′ such
that ς̂ ; ς̂ ′ and |ς ′|ca ⊑ ς̂ ′.

Proof By cases on the concrete transition.

a) UEval to UApply
([[(f e q)l]], β, ve, t) → (proc,d, c, ve, l :: t)
proc = Acs(f, β, ve)
d = Acs(e, β, ve)
c = Acs(q, β, ve)

Since |ς|ca ⊑ ς̂, ς̂ is of the form ([[(f e q)l]], st , h), where |ve|ca ⊑ h, ts =
toStack(LV (l), β, ve), ts ⊑ st .

The abstract transition is
([[(f e q)l]], st , h) ; (f ′, d̂, ĉ, st ′, h)
f ′ ∈ Au(f, st , h)

d̂ = Au(e, st , h)
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(call1, st1, h1) ⊑ (call2, st2, h2) iff call1 = call2 ∧ st1 ⊑ st2 ∧ h1 ⊑ h2

(ulam1, d̂1, ĉ1, st1, h1) ⊑ (ulam2, d̂2, ĉ2, st2, h2) iff ulam1 = ulam2 ∧ d̂1 ⊑
d̂2 ∧ ĉ1 = ĉ2 ∧ st1 ⊑ st2 ∧ h1 ⊑ h2

(ĉ, d̂1, st1, h1) ⊑ (ĉ′, d̂2, st2, h2) iff ĉ = ĉ′ ∧ d̂1 ⊑ d̂2 ∧ st1 ⊑ st2 ∧ h1 ⊑ h2

h1 ⊑ h2 iff h1(u) ⊑ h2(u) for each u ∈ dom(h1)

tf
1

:: st1 ⊑ tf
2

:: st2 iff tf
1
⊑ tf

2
∧ st1 ⊑ st2

〈〉 ⊑ 〈〉

tf
1
⊑ tf

2
iff tf

1
(v) ⊑ tf

2
(v) for each v ∈ dom(tf

1
)

d̂1 ⊑ d̂2 iff d̂1 ⊆ d̂2

ĉ ⊑ ĉ

Fig. 10. The ⊑ relation on abstract states

ĉ = Ak (q, st)

st ′=





pop(st) Var?(q)

st Lam?(q)∧(H?(f)∨Lam?(f))

setTop([f 7→ {f ′}], st) Lam?(q) ∧ S?(f)

We must show that there is a state ς̂ ′ such that |ς ′|ca ⊑ ς̂ ′. The variable
environment and the heap remain unchanged in the transitions, so for ς ′ and
ς̂ ′ we know that |ve|ca ⊑ h. We proceed by cases for the rest components of
ς.

• Var?(q) and c = ve(q, β(q)) = halt
Then, ts(q) = halt .
Also, ĉ = st(q) ⊒ ts(q) = halt ⇒ ĉ = halt and |c|ca ⊑ ĉ.
The stack of |ς ′|ca is ts ′ = 〈〉.
But ts and st have the same size, and st ′ = pop(st), so st ′ = 〈〉, thus
ts ′ ⊑ st ′.

• Var?(q) and c = ve(q, β(q)) = ([[(λγ(u1) call1)]], β
′)

Then, ts(q) = [[(λγ(u1) call1)]].
Also, ĉ = st(q) ⊒ ts(q) = [[(λγ(u1) call1)]] ⇒ ĉ = [[(λγ(u1) call1)]] and
|c|ca ⊑ ĉ.
The stack of |ς ′|ca is ts ′ = toStack(LV (γ), β′, ve) = pop(ts).
But st ′ = pop(st), and ts ⊑ st which implies pop(ts) ⊑ pop(st), thus
ts ′ ⊑ st ′.

• Lam?(q)
Then, c = (q, β), ĉ = q and |c|ca ⊑ ĉ. There are two cases for st ′ depend-
ing on f , and we examine them below.
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• Lam?(f)
Then, proc = (f, β) and f ′ = f , thus |proc|ca ⊑ {f ′}.
Moreover, if Lam?(q) then ts ′ = ts and st ′ = st , so ts ′ ⊑ st ′.

• H?(f)
Then, proc = ve(f, β(f)),
a closure of the form ([[(λl′(u2 k2) call2)]], β2).
Therefore, |proc|ca = {[[(λl′(u2 k2) call2)]]}.
Since |ve|ca ⊑ h and [[(λl′(u2 k2) call2)]] ∈ |ve|ca(f),
we get [[(λl′(u2 k2) call2)]] ∈ h(f).
So, we pick f ′ to be [[(λl′(u2 k2) call2)]].
Also, if Lam?(q), the argument for the stacks is analogous to the previous
case.

• S?(f)
Then, proc = ve(f, β(f)),
a closure of the form ([[(λl′(u2 k2) call2)]], β2).
Therefore, |proc|ca = {[[(λl′(u2 k2) call2)]]}
and also ts(f) = {[[(λl′(u2 k2) call2)]]},
which implies that [[(λl′(u2 k2) call2)]] ∈ st(f).
So, we pick f ′ to be [[(λl′(u2 k2) call2)]].
In the case when Lam?(q), we want to show that ts ′ ⊑ st ′.
If q = [[(λγ(u1) call1)]], then LV (γ) = LV (l) and ts ′ = ts.
Also, st ′ = setTop([f 7→ {[[(λl′(u2 k2) call2)]]}], st).
Since, pop(ts) ⊑ pop(st) we only need to show that the top frames of ts ′

and st ′ are in ⊑.
For this it suffices to show that ts ′(f) ⊑ st ′(f) which holds.

• Lam?(e) ∨ H?(e) ∨ S?(e)

Showing that |d|ca ⊑ d̂ is similar to showing it for f ′ or c.

b) UApply to Eval
(proc,d, c, ve, t) → (call , β′, ve ′, t)
proc = 〈[[(λl(u k) call)]], β〉
β′ = β[u 7→ t][k 7→ t]
ve ′ = ve[(u, t) 7→ d][(k, t) 7→ c]

Since |ς|ca ⊑ ς̂, ς̂ is of the form ([[(λl(u k) call)]], d̂, ĉ, st , h),

where |d|ca ⊑ d̂, |c|ca = ĉ, ts ⊑ st , |ve|ca ⊑ h, and

ts =

{
〈〉 c = halt

toStack(LV (γ), β1, ve) c = ([[(λγ(u1) call1)]], β1)

The abstract transition is
([[(λl(u k) call)]], d̂, ĉ, st , h) ; (call , st ′, h ′)

st ′ = push([u 7→ d̂][k 7→ ĉ], st)

h ′ =

{
h ⊔ [u 7→ d̂] H?(u)

h S?(u)

We must show that |ς ′|ca ⊑ ς̂ ′ i.e. that ts ′ ⊑ st ′ and |ve ′|ca ⊑ h ′, where
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ts ′ is the stack of |ς ′|ca . The innermost user lambda that contains call is λl,
therefore ts ′ = toStack(LV (l), β′, ve ′).
We assume that c = ([[(λγ(u1) call1)]], β1) and that H?(u) holds, the other
cases are simpler. In this case, |ve ′|ca is the same as |ve|ca except that

|ve ′|ca(u) = |ve|ca(u) ⊔ |d|ca . Also, h ′(u) = h(u) ⊔ d̂, thus |ve ′|ca ⊑ h ′.
We know that LV (l) ⊆ BV (call).
We also know that β′ contains bindings for u and k, and by lemma 1 it
doesn’t bind any variables in BV (call).
Thus, the top frame of ts ′ is [u 7→ |d|ca ][k 7→ |c|ca ].

The top frame of st ′ is [u 7→ d̂][k 7→ ĉ], therefore the frames are in ⊑. Also,
pop(ts ′) = toStack(LV (γ), β1, ve

′) and pop(st ′) = st . Since ts ⊑ st , it suffices
to show that pop(ts ′) = ts. By the temporal consistency of states (cf. [12]
definition 4.4.5), ts ′ won’t contain bindings born at time t because they are
younger than all bindings in β1. This implies that pop(ts ′) = ts.

c) CEval to CApply
([[(q e)γ ]], β, ve, t) → (proc,d, ve, γ :: t)
proc = Acs(q, β, ve)
d = Acs(e, β, ve)

Since |ς|ca ⊑ ς̂, ς̂ is of the form ([[(q e)γ ]], st , h), where |ve|ca ⊑ h, ts =
toStack(LV (γ), β, ve), ts ⊑ st .

The abstract transition is
([[(q e)γ ]], st , h) ; (q′, d̂, st ′, h)
q′ = Ak (q, st)

d̂ = Au(e, st , h)

st ′ =

{
pop(st) Var?(q)

st Lam?(q)

We must show that |ς ′|ca ⊑ ς̂ ′ i.e. that |proc|ca = q′, |d|ca ⊑ d̂, and ts ′ ⊑ st ′,
where ts ′ is the stack of |ς ′|ca . We proceed by cases for the components of ς.
• Lam?(q) i.e. q = [[(λγ′(u1) call1)]]

Then, proc = (q, β), q′ = q and st ′ = st . Thus, |proc|ca = q′. Also, ts ′ =
toStack(LV (γ′), β, ve) and LV (γ′) = LV (γ) ⇒ ts ′ = ts ⇒ ts ′ ⊑ st ′.

• Var?(q) and proc = ve(q, β(q)) = ([[(λγ′(u1) call1)]], β1)
Since q ∈ LV (γ) we get ts(q) = [[(λγ′(u1) call1)]]. From the latter and
ts ⊑ st ⇒ st(q) = [[(λγ′(u1) call1)]] ⇒ q′ = [[(λγ′(u1) call1)]] ⇒
|proc|ca = q′.
Also, ts ′ = toStack(LV (γ′), β1, ve) = pop(ts) and st ′ = pop(st) and
ts ⊑ st ⇒ pop(ts) ⊑ pop(st) ⇒ ts ′ ⊑ st ′.

• Var?(q) and proc = ve(q, β(q)) = halt
Similar to the previous case.

• Var?(e) or Lam?(e)

In each of these cases it is simple to show |d|ca ⊑ d̂.
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d) CApply to Eval
This case requires arguments similar to the previous cases. ⊓⊔

Lemma 2. On an Êval-to-Âpply transition, the stack below the top frame is
irrelevant. Formally,

– If ([[(f e (λγ(u) call))l]], tf ::st , h);(ulam, d̂, ĉ, tf ′::st , h)
then for any st ′,
([[(f e (λγ(u) call))l]], tf ::st ′, h);(ulam, d̂, ĉ, tf ′::st ′, h)

– If ([[(f e k)l]], tf ::st , h);(ulam, d̂, ĉ, st , h)
then for any st ′,
([[(f e k)l]], tf ::st ′, h);(ulam, d̂, ĉ, st ′, h)

– Similarly for the ĈEval-to-ĈApply transition. ⊓⊔

Lemma 3. On an Âpply-to-Êval transition, the stack is irrelevant. Formally,

– If ([[(λl(u k) call)]], d̂, ĉ,st , h);(call , [u 7→d̂][k7→ĉ]::st , h ′)
then for any st ′,
([[(λl(u k) call)]], d̂, ĉ,st ′, h);(call , [u 7→d̂][k 7→ĉ]::st ′, h ′)

– Similarly for the ĈApply-to-Êval transition, where st ′ is any non-empty
stack. ⊓⊔

Definition 5 (Push Monotonicity).
Let p ≡ ς̂e ;

∗ ς̂ where ς̂e is an entry with stack ste. The path p is push mono-

tonic iff every transition ς̂1 ; ς̂2 satisfies the property:

If the stack of ς̂1 is ste then the transition can only push the stack, it
cannot pop or setTop.

⊓⊔

The following properties are simple consequences of push monotonicity.

Property 1. The stack of the first state in a push-monotonic path is a suffix of
the stack of every other state in the path.

Property 2. In a push-monotonic path, the number of pushes is greater than or
equal to the number of pops.

The following lemma associates entries with “same-level reachable” states. A
state ς̂ is same-level reachable from an entry ς̂e if it is in the procedure whose
entry is ς̂e or if it is in some procedure that can be reached from ς̂e through tail
calls i.e. without growing the stack.

Lemma 4 (Same-level reachability).

Let ς̂e = ([[(λl(u k) call)]], d̂, ĉ, ste, he), ς̂ = (. . . , st , h), and p ≡ ς̂e ;
∗ ς̂ where

ς̂e ∈ CE∗

p(ς̂). Then,

1. If ς̂ is an entry, st = ste.
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2. If ς̂ is not an entry,
(a) st is of the form tf :: ste, for some frame tf .
(b) there exists k′ such that tf (k′) = ĉ.

(c) if ς̂e = CEp(ς̂) then dom(tf ) ⊆ LV (l), tf (u) ⊑ d̂ and tf (k) = ĉ.

Moreover, if ς̂ is an Êval over call site ψ then ψ ∈ LL(l), and if ς̂ is a

ĈApply over (λγ(u
′)call ′) then γ ∈ LL(l).

3. p is push monotonic.

Proof By induction on the length |p| of p. Note that (3) follows from the form
of the stack in (1) and (2), so we won’t prove it separately.

– If |p| = 0, then ς̂ = ς̂e so st = ste.
– If |p| > 0, there are two cases; either ς̂e = CEp(ς̂) or ς̂e 6= CEp(ς̂).

a) ς̂e = CEp(ς̂)
Since |p| > 0, ς̂ is not an entry, so the second or the third branch of the
definition of CEp determine the shape of p.
a1) p ≡ ς̂e ;

∗ ς̂ ′ ; ς̂

Here, the predecessor ς̂ ′ of ς̂ is not a ĈEval exit, and ς̂e = CEp(ς̂
′). We

proceed by cases on ς̂ ′. Note that ς̂ ′ cannot be a ÛEval because then
ς̂ is an entry, so ς̂ = CEp(ς̂), and our assumption that ς̂e = CEp(ς̂)
breaks.

a1.1) ς̂ ′ is an inner ĈEval

Then, ς̂ ′ = ([[((λγ(u
′)call ′) e′)γ

′

]], st ′, h ′). By IH, st ′ = tf ′ :: ste,

dom(tf ′) ⊆ LV (l), tf ′(u) ⊑ d̂, tf ′(k) = ĉ and γ′ ∈ LL(l).
By the abstract semantics,
ς̂ = ([[(λγ(u

′)call ′)]], d̂′, st ′, h ′) where d̂′ = Au(e′, st ′, h ′). We
know that γ ∈ LL(l) because γ′ ∈ LL(l). Also, the stack is
unchanged in the transition. Thus, (2a), (2b) and (2c) hold for
ς̂.

a1.2) ς̂ ′ is a ĈApply

Then, ς̂ ′ = ([[(λγ(u
′)call ′)]], d̂′, st ′, h ′). By IH, st ′ = tf ′ :: ste,

dom(tf ′) ⊆ LV (l), tf ′(u) ⊑ d̂, tf ′(k) = ĉ and γ ∈ LL(l).
By the abstract semantics, ς̂ = (call ′, st , h) where

st = setTop([u′ 7→ d̂′], st ′).

So, st = tf :: ste which satisfies (2a). Also, tf = tf ′[u′ 7→ d̂′]
where u′ ∈ LV (l) because γ ∈ LL(l), and u′ 6= u because the
program is α-tised. Thus, dom(tf ) = dom(tf ′) ∪ {u′} ⊆ LV (l),

and tf (u) = tf ′(u) ⊑ d̂, and tf (k) = tf ′(k) = ĉ. Last, the label
of call ′ is in LL(l) because γ ∈ LL(l).

a1.3) ς̂ ′ is a ÛApply
Then, ς̂ ′ = ς̂e because ς̂e = CEp(ς̂

′). This case is simple.
a2) p ≡ ς̂e ;

+ ς̂2 ; ς̂3 ;
+ ς̂ ′ ; ς̂

Here, the third branch of the definition of CEp determines the shape

of p, so ς̂2 is a call, ς̂e = CEp(ς̂2), ς̂
′ is a ĈEval exit and ς̂3 ∈ CE∗

p(ς̂
′).

By IH for ς̂e ;
+ ς̂2 we get
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ς̂2 = ([[(f2 e2 (λγ2(u2)call2))
l2 ]], st2, h2), where st2 ≡ tf 2 :: ste,

dom(tf 2) ⊆ LV (l), tf 2(u) ⊑ d̂, tf 2(k) = ĉ and l2 ∈ LL(l).
By the abstract semantics for ς̂2 ; ς̂3 we get
ς̂3 = ([[(λl3(u3 k3)call3)]], d̂3, ĉ3, st3, h2),
where [[(λl3(u3 k3)call3)]] ∈ Au(f2, st2, h2),

d̂3 = Au(e2, st2, h2), ĉ3 = [[(λγ2(u2)call2)]] and
either st3 = st2, if (Lam?(f2) ∨ H?(f2)) holds,
or st3 = setTop([f2 7→ {[[(λl3(u3 k3)call3)]]}], st2), if S?(f2) holds.

a2.1) S?(f2)
Then, st3 = tf 2[f2 7→{[[(λl3(u3 k3)call3)]]}] ::ste.

By IH for ς̂3 ;
+ ς̂ ′ we get ς̂ ′ = ([[(k′ e′)γ

′

]], st ′, h ′),
where st ′ = tf ′ :: st3

and tf ′(k′) = [[(λγ2(u2)call2)]].
Thus, by the abstract semantics for ς̂ ′ ; ς̂ we get
ς̂ = ([[(λγ2(u2)call2)]], d̂

′, st3, h
′).

Now, γ2 ∈ LL(l) follows from l2 ∈ LL(l).
Also, st = tf :: ste
where tf = tf 2[f2 7→ {[[(λl3(u3 k3)call3)]]}].
Then, dom(tf ) = dom(tf 2) ∪ {f2} ⊆ LV (l) because S?(f2) im-
plies f2 ∈ LV (l).
Also, tf (k) = tf 2(k) = ĉ. Last, we take cases depending on
whether u and f2 are the same variable or not.
•u = f2

tf (u) = {[[(λl3(u3 k3)call3)]]}
⊆ Au(f2, st2, h2)
= st2(f2)
= tf 2(f2)
= tf 2(u)

⊑ d̂

•u 6= f2
tf (u) = tf 2(u) ⊑ d̂

a2.2) Lam?(f2) ∨ H?(f2)
This case is simpler than the previous case because st3 = st2.

b) ς̂e 6= CEp(ς̂) (but ς̂e ∈ CE∗

p(ς̂))
Then, the second branch of the definition of CE∗

p determines the shape
of p; p ≡ ς̂e ;

+ ς̂1 ; ς̂2 ;
∗ ς̂, where ς̂1 is a tail call, ς̂2 = CEp(ς̂) and

ς̂e ∈ CE∗

p(ς̂1).

By IH for ς̂e ;
+ ς̂1 we get ς̂1 = ([[(f1 e1 k1)

l1 ]], st1, h1),
where st1 = tf 1 :: ste, tf 1(k1) = ĉ.
By the abstract semantics,
ς̂2 = ([[(λl2(u2 k2)call2)]], d̂2, ĉ, ste, h1).

b.1) ς̂ is an entry
Then, ς̂ = ς̂2 because ς̂2 = CEp(ς̂). So, st = ste.
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b.2) ς̂ is not an entry
By IH for ς̂2 ;

∗ ς̂ we get st ≡ tf :: ste and tf (k2) = ĉ. This is the
desired result for ς̂e ;

∗ ς̂. ⊓⊔

Lemma 5 (Local simulation).
If ς̂ ; ς̂ ′ and succ(|ς̂|al) 6= ∅, then |ς̂ ′|al ∈ succ(|ς̂|al).

Proof By cases on the abstract transition.

We only show the lemma for the ÛEval to ÛApply transition, the remaining
cases are similar.
([[(f e q)l]], st , h) ; (f ′, d̂, ĉ, st ′, h)
f ′ ∈ Au(f, st , h)

d̂ = Au(e, st , h)
ĉ = Ak (q, st)

st ′=





pop(st) Var?(q)

st Lam?(q) ∧(H?(f)∨Lam?(f))

setTop([f 7→ {f ′}], st) Lam?(q) ∧ S?(f)

A ÛEval state has a successor only when its stack is not empty, so st ≡ tf :: st ′′.
Thus, |st |al = { (v, tf (v)) : v ∈ dom(tf ) ∧ UVar?(v)}.

Then, |ς̂|al = ([[(f e q)l]], |st |al , h). Also, |ς̂ ′|al = (f ′, d̂, h).
If suffices to show that
f ′ ∈ Âu(f, |st |al , h) and d̂ = Âu(e, |st |al , h);
but these hold because Âu(v, |st |al , h) = Au(v, st , h) is true for any v (uvar or
ulam). ⊓⊔

Lemma 6 (Converse of Local Simulation).
If ς̃ ≈> ς̃ ′ then, for any ς̂ such that ς̃ = |ς̂|al , there exists a state ς̂ ′ such that
ς̂ ; ς̂ ′ and ς̃ ′ = |ς̂ ′|al ⊓⊔

Lemma 7 (Path decomposition). Let p ≡ ς̂e ;
∗ ς̂ be push monotonic and

ς̂e = ([[(λl(u k) call)]], d̂, ĉ, ste, he).

– if ς̂ is a ĈApply of the form (ĉ, . . . , ste, . . . ) then CEp(ς̂) is not defined.
– Otherwise,

1. CEp(ς̂) is defined, i.e., p ≡ ς̂e ;
∗ ς̂1 ;

∗ ς̂, where ς̂1 = CEp(ς̂).
2. Regarding the set CE∗

p(ς̂), p can be in one of four forms
(a) p ≡ ς̂e ;

∗ ς̂ where ς̂e = CEp(ς̂) and CE∗

p(ς̂) = {ς̂e}
(b) p ≡ e1 ;

+ c1 ; · · · ; ek ;
+ ck ; ς̂1 ;

∗ ς̂, k > 0, where eis are
entries, cis are tail calls, e1 = ς̂e, ei = CEp(ci), ς̂1 = CEp(ς̂) and
CE∗

p(ς̂) = {e1, . . . , ek, ς̂1}
(c) p ≡ ς̂e ;

+ c ; ς̂1 ;
∗ ς̂ where c is a call, ς̂1 = CEp(ς̂) and CE∗

p(ς̂) =
{ς̂1}

(d) p ≡ ς̂e ;
+ c ; e1 ;

+ c1 ; · · · ; ek ;
+ ck ; ς̂1 ;

∗ ς̂, k > 0,
where c is a call, eis are entries, cis are tail calls, ei = CEp(ci),
ς̂1 = CEp(ς̂) and CE∗

p(ς̂) = {e1, . . . , ek, ς̂1}
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Proof By induction on the length of p.
Basecase: ς̂e ;

0 ς̂e
Then, ς̂ = ς̂e ⇒ ς̂e = CEp(ς̂) ⇒ CE∗

p(ς̂) = {ς̂e} ⇒ (2a) holds

Inductive step: ς̂e ;
∗ ς̂ ′ ; ς̂

Cases on ς̂ ′:

a) ς̂ ′ is a Call
Then, ς̂ is an entry so CEp(ς̂) = ς̂.
Also, CE∗

p(ς̂) = {ς̂} so (2c) holds.
b) ς̂ ′ is a Tail Call

Then, ς̂ is an entry so CEp(ς̂) = ς̂.
To show (2), we take cases on whether (2a), (2b), (2c) or (2d) holds for ς̂ ′.

b.1) (2a) holds for ς̂ ′, i.e.
p ≡ ς̂e ;

∗ ς̂ ′ ; ς̂ where ς̂e = CEp(ς̂
′) and CE∗

p(ς̂
′) = {ς̂e}. By the second

branch of the definition of CE∗

p, CE∗

p(ς̂
′) ⊆ CE∗

p(ς̂). Hence, CE∗

p(ς̂) =
{ς̂e, ς̂}, which implies that (2b) holds for ς̂.

b.2) (2b) holds for ς̂ ′

By a similar argument, we find that (2b) holds for ς̂.
b.3) (2c) holds for ς̂ ′

By a similar argument, we find that (2d) holds for ς̂.
b.4) (2d) holds for ς̂ ′

By a similar argument, we find that (2d) holds for ς̂.

c) ς̂ ′ is a ĈApply ≡ (ĉ, . . . , ste, . . . )
Then, in the transition ς̂ ′ ; ς̂ we do setTop on ste, which means that p isn’t
push monotonic. Thus, this case can’t arise.

d) ς̂ ′ is an inner ĈEval or a ĈApply 6≡ (ĉ, . . . , ste, . . . )
By IH , p ≡ Î(pr) ;

∗ ς̂1 ;
+ ς̂ ′ ; ς̂, where ς̂1 = CEp(ς̂

′).
By the second branch of the definition of CEp, ς̂1 = CEp(ς̂).
To show (2), we take cases on whether (2a), (2b), (2c) or (2d) holds for ς̂ ′.
The reasoning is the same as in case (b).

e) ς̂ ′ is a ĈEval exit
By IH , p ≡ ς̂e ;

∗ ς̂1 ;
+ ς̂ ′ ; ς̂, where ς̂1 = CEp(ς̂

′).
Cases on (2a), (2b), (2c) or (2d) for ς̂ ′.

e.1) (2a) holds for ς̂ ′, i.e.
p ≡ ς̂e ;

+ ς̂ ′ ; ς̂ where ς̂e = CEp(ς̂
′).

By lemma 4, the stack of ς̂ ′ is of the form tf :: ste and tf (k) = ĉ. Thus,
ς̂ ′ ≡ (ĉ, . . . , ste, . . . ). The only way for CEp(ς̂) to exist is by the third

branch of the definition of CEp, since ς̂ ′ is a ĈEval exit. But there is no
call leading to ς̂e, thus CEp(ς̂) can’t exist.
Similarly when (2b) holds for ς̂ ′.

e.2) (2c) holds for ς̂ ′, i.e.
p ≡ ς̂e ;

+ c ; ς̂1 ;
+ ς̂ ′ ; ς̂ where c is a call and ς̂1 = CEp(ς̂

′).
By IH , CEp(c) exists so p can be written p ≡ ς̂e ;

∗ ς̂2 ;
+ c ; ς̂1 ;

+

ς̂ ′ ; ς̂ where ς̂2 = CEp(c). Then, by the third branch of the definition
of CEp, CEp(ς̂) = CEp(c) = ς̂2.
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To show (2) for ς̂ we work as in the previous cases.

f) ς̂ ′ is an Entry
This case is simple. ⊓⊔

Lemma 8 (Stack irrelevance).

Let p ≡ ς̂1 ; ς̂2 ; · · · ; ς̂n be push monotonic, where ς̂1 = (ulam, d̂, ĉ, ste, he).

Also, ς̂n is not a ĈApply of the form (ĉ, . . . , ste, . . . ). By property 1, the stack of
each ς̂i is of the form append(st i, ste).
For an arbitrary stack st ′ and continuation ĉ′, consider the sequence p′ of states
ς̂ ′1 ς̂

′

2 . . . ς̂ ′n where each ς̂ ′i is produced by ς̂i as follows:

– if ς̂i is an entry with stack ste then replace the continuation argument with
ĉ′ and the stack with st ′.

– if ste is a proper suffix of the stack of ς̂i then the latter is of the form
append(st ′i, 〈fr i〉, ste) for some stack st ′i. Replace ste with st ′ and bind the
continuation variable in fr i to ĉ′.

(Note: the map isn’t total, but it should be defined for all states in p.)
Then,

– for any two states ς̂ ′i and ς̂ ′i+1 in p′, (ς̂ ′i, ς̂
′

i+1) ∈ ;

– the path p′ is push monotonic

Proof By induction on the length of p.
The basecase is simple.
Inductive step: p = ς̂1 ;

∗ ς̂n−1 ; ς̂n
By IH, the transitions in the path ς̂ ′1 ;

∗ ς̂ ′n−1 are valid with respect to the ab-
stract semantics and the path is push monotonic. We must show that (ς̂ ′n−1, ς̂

′

n) ∈;

and that ς̂ ′1 ;
∗ ς̂ ′n is push monotonic.

Cases on ς̂n−1:

1. ς̂n−1 is a ÛEval, of the form ([[(f e q)l]], st , h)
By lemma 7, CEp(ς̂n−1) is defined and p can be in one of four forms. We
consider only the first case, the rest are similar.
Let p ≡ ς̂1 ;

+ ς̂n−1 ; ς̂n where ς̂1 = CEp(ς̂n−1).
By lemma 4, st is of the form tf :: ste and the continuation variable in tf
(call it k) is bound to ĉ.

(a) q is a variable

By the abstract semantics, ς̂n is (ulamn, d̂n, ĉ, ste, h). Also, the state ς̂ ′n−1

is ([[(f e q)l]], tf [k 7→ ĉ′] :: st ′, h), and it transitions to (ulamn, d̂n, ĉ
′, st ′, h)

which is ς̂ ′n.
(b) q is a lambda and f is a stack reference

Then, ς̂n is (ulamn, d̂n, q, tf [f 7→ {ulamn}] :: ste, h). Also, the state ς̂ ′n−1

is ([[(f e q)l]], tf [k 7→ ĉ′] :: st ′, h), and it transitions to

(ulamn, d̂n, q, tf [k 7→ ĉ′][f 7→ {ulamn}] :: st ′, h)
which is ς̂ ′n.
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(c) q is a lambda and f is a heap reference
Similarly.

2. ς̂n−1 is a ĈEval exit
By lemma 7, CEp(ς̂n−1) is defined and p can be in one of four forms.
(a) p ≡ ς̂1 ;

+ ς̂n−1 ; ς̂n where ς̂1 = CEp(ς̂n−1)
Then, by lemma 4 and the abstract semantics, it is easy to see that ς̂n
is of the form (ĉ, . . . , ste, . . . ). Thus, this case isn’t possible.
Similarly when ς̂1 6= CEp(ς̂n−1) but is in CE∗

p(ς̂n−1).
(b) p ≡ ς̂1 ;

+ c ; ς̂ ′e ;
+ ς̂n−1 ; ς̂ where ς̂ ′e = CEp(ς̂n−1) and c is a call:

Then, CEp(c) is defined and its stack has ste as a suffix. Hence, by lemma
4, the stack of c is bigger than ste by at least a frame. Since the stack
of ς̂ ′e has the same size as the stack of c, the stack of ς̂n−1 is bigger than
ste by at least two frames. By lemma 2 we get the desired.
Similarly when ς̂ ′e 6= CEp(ς̂n−1) but is in CE∗

p(ς̂n−1).

3. ς̂n−1 is an inner ĈEval
Similarly to the previous cases.

4. ς̂n−1 is a ÛApply
Lemma 7 gives the same four cases. We only consider one, the rest are similar.
Let p ≡ ς̂1 ;

+ c ; ς̂n−1 ; ς̂n where c is a call.
Then, CEp(c) is defined and its stack has ste as a suffix. Hence, by lemma
4, the stack of c is bigger than ste by at least a frame. Since the stack of
ς̂n−1 has the same size as the stack of c, we don’t change the continuation
argument in ς̂ ′n−1. By lemma 3 we get the desired.

5. ς̂n−1 is a ĈApply
Similarly to the previous cases. ⊓⊔

Theorem 5 (Soundness).
If p ≡ Î(pr) ;

∗ ς̂ then, after summarization:

– if ς̂ is not a final state then (|CEp(ς̂)|al , |ς̂|al) ∈ Seen
– if ς̂ is a final state then |ς̂|al ∈ Final

– if ς̂ is a ĈEval exit and ς̂ ′ ∈ CE∗

p(ς̂) then (|ς̂ ′|al , |ς̂|al) ∈ Seen

Proof By induction on the length of p.
Basecase: Î(pr) ;

0 Î(pr)
Then, (Î(pr), Î(pr)) ∈ Seen.

Inductive step: Î(pr) ;
∗ ς̂ ′ ; ς̂

Cases on ς̂:

a) ς̂ is an Entry
Then, CEp(ς̂) = ς̂. Also, ς̂ ′ is a call or a tail call.

By lemma 7, p ≡ Î(pr) ;
∗ ς̂1 ;

+ ς̂ ′ ; ς̂, where ς̂1 = CEp(ς̂
′).

By IH, (|ς̂1|al , |ς̂
′|al) ∈ Seen which means that it has been entered in W and

examined. By lemma 5, |ς̂|al ∈ succ(|ς̂ ′|al) so in line 10 or 22 (|ς̂|al , |ς̂|al) will
be propagated.
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b) ς̂ is a ĈApply but not a final state

Then, ς̂ = ([[(λγ(u) call)]], d̂, st , h)

and ς̂ ′ = ([[(q e)γ
′

]], st ′, h).

b.1) Lam?(q), i.e. ς̂ ′ is an inner ĈEval
This case is simple.

b.2) Var?(q), i.e. ς̂ ′ is a ĈEval exit
The path Î(pr) ;

∗ ς̂ ′ satisfies part 2 of lemma 7. It can’t satisfy cases
2a or 2b because ς̂ would be a final state by lemma 4. Thus, it satisfies
2c or 2d. Then, the path is of the form
p ≡ Î(pr) ;

∗ ς̂1 ;
+ ς̂2 ; ς̂3 ;

+ ς̂ ′ ; ς̂
where ς̂2 is a call, ς̂1 = CEp(ς̂2) and ς̂3 ∈ CE∗

p(ς̂
′).

Note that by the third branch of the definition of CEp, ς̂1 = CEp(ς̂). We
must show that (|ς̂1|al , |ς̂|al) ∈ Seen.

The state ς̂1 is an entry of the form
ς̂1 = ([[(λl1(u1 k1) call1)]], d̂1, ĉ1, st1, h1)
The state ς̂2 is a call of the form
ς̂2 = ([[(f2 e2 q2)

l2 ]], st2, h2), where q2 is a clam.
Lemma 4 for ς̂1 ;

+ ς̂2 gives st2 ≡ tf 2 :: st1.
By the abstract semantics for ς̂2 ; ς̂3, we get:
ς̂3 = (ulam, d̂3, q2, st3, h2), where
either st3 = st2, if (Lam?(f2) ∨ H?(f2)) holds,
or st3 = setTop([f2 7→ {ulam}], st2), if S?(f2) holds.
i.e. st3 = tf 3 :: st1, and

tf 3 =

{
tf 2 Lam?(f2) ∨ H?(f2)

tf 2[f2 7→ {ulam}] S?(f2)

By lemma 4 for ς̂3 ;
+ ς̂ ′, we get st ′ = tf ′ :: st3 and tf ′(q) = q2.

Then, by the abstract semantics for ς̂ ′ ; ς̂,
q2 = [[(λγ(u) call)]], st = st3, and d̂ = Au(e, st ′, h).
The above information will become useful when dealing with the local
counterparts of the aforementioned states.

By IH , (|ς̂3|al , |ς̂
′|al) was entered in W (at line 25) and later examined

at line 13. Note that ς̂3 6= Î(pr) because ς̂2 is between them, therefore
Final will not be called at line 15.
Also by IH , (|ς̂1|al , |ς̂2|al) was entered in W and later examined. Lemma 5
implies that |ς̂3|al ∈ succ(|ς̂2|al) so (|ς̂1|al , |ς̂2|al , |ς̂3|al) will go in Callers.
We take cases on whether (|ς̂3|al , |ς̂

′|al) or (|ς̂1|al , |ς̂2|al) was examined
first by the algorithm.

b.2.1) (|ς̂1|al , |ς̂2|al) was examined first
Then, when (|ς̂3|al , |ς̂

′|al) is examined,
(|ς̂1|al , |ς̂2|al , |ς̂3|al) is in Callers.
Therefore, at line 18 we call
Update(|ς̂1|al , |ς̂2|al , |ς̂3|al , |ς̂

′|al).
By applying |·|al to the abstract states we get
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|ς̂1|al = ([[(λl1(u1 k1) call1)]], d̂1, h1)
|ς̂2|al = ([[(f2 e2 q2)

l2 ]], tf 2, h2),
where q2 = [[(λγ(u) call)]].

|ς̂3|al = (ulam, d̂3, h2)

|ς̂ ′|al = ([[(q e)γ
′

]], tf ′, h),
where tf ′(q) = [[(λγ(u) call)]].
By looking at the code for Update, we see that the return value is
Âu(e, tf ′, h) = Au(e, st ′, h) = d̂. The frame of the return state is{

tf 2 Lam?(f2) ∨ H?(f2)

tf 2[f2 7→ {ulam}] S?(f2)

which is equal to tf 3. The heap at the return state is h. Last, the
continuation we are returning to is [[(λγ(u) call)]]. Thus, the re-
turn state ς̃ is equal to |ς̂|al , and we call Propagate(|ς̂1|al , |ς̂|al), so
(|ς̂1|al , |ς̂|al) will go in Seen.

b.2.2) (|ς̂3|al , |ς̂
′|al) was examined first

Then, when (|ς̂1|al , |ς̂2|al) is examined, (|ς̂3|al , |ς̂
′|al) is in Summary ,

and at line 12 we call
Update(|ς̂1|al , |ς̂2|al , |ς̂3|al , |ς̂

′|al).
Proceed as above.

c) ς̂ is a final state

Then, ς̂ = (halt , d̂, 〈〉, h).
We must show that |ς̂|al will be in Final after the execution of the summa-
rization algorithm.
By the abstract semantics for ς̂ ′ ; ς̂,
ς̂ ′ = ([[(k e)γ ]], st ′, h),

where st ′ = tf ′ :: 〈〉, tf ′(k) = halt , and d̂ = Au(e, st ′, h).
By IH for Î(pr) ;

∗ ς̂ ′, we know that (|Î(pr)|al , |ς̂
′|al) was entered in

W and Summary sometime during the algorithm. When it was examined,
the test at line 14 was true so we called Final(|ς̂ ′|al). Hence, we insert

ς̃ = (halt , Âu(e, tf ′, h), 〈〉, h) in Final . But, Âu(e, tf ′, h) = Au(e, st ′, h) = d̂,
hence ς̃ = |ς̂|al .

d) ς̂ is a ĈEval exit
By lemma 7 for Î(pr) ;

∗ ς̂ ′, p ≡ Î(pr) ;
∗ ς̂1 ;

∗ ς̂ ′ ; ς̂, where ς̂1 =

CEp(ς̂
′). But ς̂ ′ is not a ĈEval exit (it is an Âpply state), so by the second

branch of the definition of CEp we get ς̂1 = CEp(ς̂).
By IH , (|ς̂1|al , |ς̂

′|al) is entered in Seen and W ; and examined at line 6. By
lemma 5, |ς̂|al ∈ succ(|ς̂ ′|al) so (|ς̂1|al , |ς̂|al) will be propagated (line 7) and
entered in Seen (line 25).
We need to show that for every ς̂ ′′ ∈ CE∗

p(ς̂), (|ς̂ ′′|al , |ς̂|al) will be inserted

in Seen. The path Î(pr) ;
∗ ς̂ ′ satisfies part 2 of lemma 7; proceed by cases:

d.1) Î(pr) ;
∗ ς̂ ′ satisfies 2a

Then, ς̂1 = Î(pr) and p ≡ ς̂1 ;
∗ ς̂ ′ ; ς̂ and CE∗

p(ς̂) = {ς̂1}. But we ’ve
shown that (|ς̂1|al , |ς̂|al) is entered in Seen.
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d.2) Î(pr) ;
∗ ς̂ ′ satisfies 2b

Then, p ≡ e1 ;
+ c1 ; · · · ; ek ;

+ ck ; ς̂1 ;
∗ ς̂ ′ ; ς̂, where

e1 = Î(pr), eis are entries, cis are tail calls, ei = CEp(ci), CE∗

p(ς̂
′) =

{e1, . . . , ek, ς̂1}.
Hence, CE∗

p(ς̂) = {e1, . . . , ek, ς̂1}. To show that (|ek|al , |ς̂|al) is entered
in Seen, we proceed by cases on whether (|ek|al , |ck|al) or (|ς̂1|al , |ς̂|al)
was examined first by the algorithm.

d.2.1) (|ek|al , |ck|al) was examined first
By lemma 5, |ς̂1|al is in succ(|ck|al), therefore (|ek|al , |ck|al , |ς̂1|al) will
go in TCallers. Then, when (|ς̂1|al , |ς̂|al) is examined, in line 19 we
will call Propagate(|ek|al , |ς̂|al), so (|ek|al , |ς̂|al) will go in Seen.

d.2.2) (|ς̂1|al , |ς̂|al) was examined first
When (|ek|al , |ck|al) is examined, (|ς̂1|al , |ς̂|al) will be in Summary ,
and by lemma 5 we know |ς̂1|al ∈ succ(|ck|al). Thus, in line 24 we
will call Propagate which will insert (|ek|al , |ς̂|al) in Seen.

By repeating this process k−1 times, we can show that all edges (|ei|al , |ς̂|al)
go in Seen.

d.3) Î(pr) ;
∗ ς̂ ′ satisfies 2c or 2d

These cases are similar to the previous cases. The only difference is that
now Î(pr) is not in CE∗

p(ς̂
′) (which doesn’t change the proof).

e) ς̂ is a Tail Call (thus an exit)
By lemma 7 for Î(pr) ;

∗ ς̂ ′, p ≡ Î(pr) ;
∗ ς̂1 ;

∗ ς̂ ′ ; ς̂, where ς̂1 =

CEp(ς̂
′). But ς̂ ′ is not a ĈEval exit (it is an Âpply state), so by the second

branch of the definition of CEp we get ς̂1 = CEp(ς̂).
By IH , (|ς̂1|al , |ς̂

′|al) is entered in Seen and W ; and examined at line 6. By
lemma 5, |ς̂|al ∈ succ(|ς̂ ′|al) so (|ς̂1|al , |ς̂|al) will be propagated (line 7) and
entered in Seen (line 25).

f) ς̂ is an inner ĈEval
This case is simple.

g) ς̂ is a Call
This case is simple. ⊓⊔

Theorem 6 (Completeness).
After summarization:

– For each (ς̃1, ς̃2) in Seen, there exist ς̂1, ς̂2 and p such that
p ≡ Î(pr) ;

∗ ς̂1 ;
∗ ς̂2 and ς̃1 = |ς̂1|al and ς̃2 = |ς̂2|al and ς̂1 ∈ CE∗

p(ς̂2)
– For each ς̃ in Final , there exist ς̂ and p such that
p ≡ Î(pr) ;

+ ς̂ and ς̃ = |ς̂|al and ς̂ is a final state.

Proof By induction on the number of iterations. We prove that the algorithm
maintains the following properties for Seen and Final .

1. For each (ς̃1, ς̃2) in Seen, there exist ς̂1, ς̂2 and p such that
p ≡ Î(pr) ;

∗ ς̂1 ;
∗ ς̂2 and

ς̃1 = |ς̂1|al and
ς̃2 = |ς̂2|al and
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if ς̃2 is a C̃Eval exit then ς̂1 ∈ CE∗

p(ς̂2),
otherwise ς̂1 = CEp(ς̂2)

2. For each ς̃ in Final , there exist ς̂ and p such that
p ≡ Î(pr) ;

+ ς̂ and
ς̃ = |ς̂|al and
ς̂ is a final state.

Initially, we must show that the properties hold before the first iteration (at the
beginning of the algorithm): Final is empty and W contains just (Ĩ(pr), Ĩ(pr)),
for which property 1 holds.

Now the inductive step: at the beginning of each iteration, we remove an
edge (ς̃1, ς̃2) from W . We assume that the properties hold at that point. We
must show that, after we process the edge, the new elements of Seen and Final
satisfy the properties.

– ς̃2 is an entry, a C̃Apply or an inner C̃Eval
(ς̃1, ς̃2) is in Seen, so by IH
∃ ς̂1, ς̂2, p. p ≡ Î(pr) ;

∗ ς̂1 ;
∗ ς̂2 ∧ ς̃1 = |ς̂1|al ∧ ς̃2 = |ς̂2|al ∧ ς̂1 = CEp(ς̂2)

For each ς̃3 in succ(ς̃2), (ς̃1, ς̃3) will be propagated.
If (ς̃1, ς̃3) is already in Seen then property 1 holds by IH (in the following
cases, we won’t repeat this argument and will assume that the insertion in
Seen happens now).
Otherwise, we insert the edge at this iteration, at line 25. By lemma 6,
∃ ς̂3. ς̃3 = |ς̂3|al ∧ ς̂2 ; ς̂3
By the second branch of the definition of CEp, ς̂1 = CEp(ς̂3)

– ς̃2 is a call
Let ς̃1 = ([[(λ1(u1 k1)call1)]], d̂1, h1)
and ς̃2 = ([[(f2 e2 (λ2(u2)call2))]], tf 2, h2)
Also, assume S?(f2) (the other cases are simpler).
(ς̃1, ς̃2) is in Seen, so by IH
∃ ς̂1, ς̂2, p. p ≡ Î(pr) ;

∗ ς̂1 ;
+ ς̂2 ∧ ς̃1 = |ς̂1|al ∧ ς̃2 = |ς̂2|al ∧ ς̂1 = CEp(ς̂2)

Each entry ς̃3 in succ(ς̃2) will be propagated. By lemma 6,
∃ ς̂3. ς̃3 = |ς̂3|al ∧ ς̂2 ; ς̂3
Since ς̂3 = CEp(ς̂3), property 1 holds for ς̃3.
If there is no edge (ς̃3, ς̃4) in Summary , we are done. Otherwise, we call
Update(ς̃1, ς̃2, ς̃3, ς̃4) and we must show that property 1 holds for the edge
inserted in Seen by Update.
Let st1 be the stack of ς̂1. By lemma 4, the stack of ς̂2 is tf 2 :: st1.

Let ς̃3 = ([[(λ3(u3 k3)call3)]], d̂3, h2)
and ς̃4 = ([[(k4 e4)]], tf 4, h4).
(Note that tf 4 contains only user bindings.)
We know Summary ⊆ Seen so by IH for (ς̃3, ς̃4) we get (note that ς̃4 is a

C̃Eval exit)
∃ς̂ ′3, ς̂

′

4, p
′. p′ ≡ Î(pr) ;

∗ ς̂ ′3 ;
+ ς̂ ′4 ∧ ς̃3 = |ς̂ ′3|al ∧ ς̃4 = |ς̂ ′4|al ∧ ς̂ ′3 ∈ CE∗

p′(ς̂
′

4)

Then, ς̂ ′3 = ([[(λ3(u3 k3)call3)]], d̂3, ĉ3, st
′

3, h2)
and by lemma 4, ς̂ ′4 = ([[(k4 e4)]], tf 4[k4 7→ ĉ3] :: st ′3, h4).
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But the path from ς̂ ′3 to ς̂ ′4 is push monotonic, so by lemma 8 there exist
states
ς̂3 = ([[(λ3(u3 k3)call3)]], d̂3, [[(λ2(u2)call2)]], st3, h2)
where st3 = tf 2[f2 7→ {[[(λ3(u3 k3)call3)]]}] :: st1,
and ς̂4 = ([[(k4 e4)]], st4, h4)
where st4 = tf 4[k4 7→ [[(λ2(u2)call2)]]] :: st3,
such that ς̂3 ;

+ ς̂4.
Thus, the path p can be extended to
Î(pr) ;

∗ ς̂1 ;
+ ς̂2 ; ς̂3 ;

+ ς̂4
By the abstract semantics, the successor ς̂ of ς̂4 is
([[(λ2(u2)call2)]],Au(e4, st4, h4), st3, h4).
The state ς̃ produced by Update is
([[(λ2(u2)call2)]], Âu(e4, tf 4, h4), tf , h4)
where tf = tf 2[f2 7→ {[[(λ3(u3 k3)call3)]]}].
It is simple to see that ς̃ = |ς̂|al .

– ς̃2 is a C̃Eval exit, ([[(k e)]], tf 2, h2)
If ς̃1 is Ĩ(pr) then Final(ς̃2) is called and a local state ς̃ of the form
(halt , Âu(e, tf 2, h2), 〈〉, h2) goes in Final . We must show that property 2
holds. By IH for (ς̃1, ς̃2),
∃ ς̂2, p. p ≡ Î(pr) ;

+ ς̂2 ∧ ς̃2 = |ς̂2|al ∧ Î(pr) ∈ CE∗

p(ς̂2)

(Note that ς̂1 = Î(pr)) By lemma 4, the stack st2 of ς̂2 is tf 2[k 7→ halt ] :: 〈〉.
Hence, the successor ς̂ of ς̂2 is (halt ,Au(e, st2, h2), 〈〉, h2), and ς̃ = |ς̂|al holds.
If ς̃1 6= Ĩ(pr), for each triple (ς̃3, ς̃4, ς̃1) in Callers, we call Update(ς̃3, ς̃4, ς̃1, ς̃2).
Insertion in Callers happens only at line 11, which means that (ς̃3, ς̃4) is in
Seen. Thus, by IH
∃ ς̂3, ς̂4, p. p ≡ Î(pr) ;

∗ ς̂3 ;
+ ς̂4 ∧ ς̃3 = |ς̂3|al ∧ ς̃4 = |ς̂4|al ∧ ς̂3 = CEp(ς̂4)

Also, ς̃4 ≈> ς̃1 thus by lemma 6
∃ ς̂1. ς̂4 ; ς̂1 ∧ ς̃1 = |ς̂1|al
Using the IH for (ς̃1, ς̃2) and lemma 8 we can show that the edge inserted
by Update satisfies property 1 (similar to the previous case).
For each triple (ς̃3, ς̃4, ς̃1) in TCallers, we call Propagate(ς̃3, ς̃2). We must
show that property 1 holds for (ς̃3, ς̃2). Insertion in TCallers happens only
at line 23, which means that (ς̃3, ς̃4) is in Seen. By IH for (ς̃1, ς̃2) and (ς̃3, ς̃4)
and by lemma 8, we can show that there are states ς̂3 and ς̂2 and path p′

such that ς̃3 = |ς̂3|al , ς̃2 = |ς̂2|al and ς̂3 ∈ CE∗

p′(ς̂2). Hence, property 1 holds
for (ς̃3, ς̃2).

– ς̃2 is a tail call
Similarly. ⊓⊔
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