
Improving the Static Analysis of Embedded Languages
via Partial Evaluation

David Herman

dherman@ccs.neu.edu

Philippe Meunier

meunier@ccs.neu.edu

College of Computer and Information Science
Northeastern University

360 Huntington Ave #202 WVH
Boston, MA 02115

Abstract

Programs in embedded languages contain invariants that are not au-
tomatically detected or enforced by their host language. We show
how to use macros to easily implement partial evaluation of embed-
ded interpreters in order to capture invariants encoded in embedded
programs and render them explicit in the terms of their host lan-
guage. We demonstrate the effectiveness of this technique in im-
proving the results of a value flow analysis.

Categories and Subject Descriptors

D.2.5 [Software Engineering]: Testing and Debugging—debug-
ging aids; D.3.3 [Programming Languages]: Language Con-
structs and Features—macros; D.3.4 [Programming Languages]:
Processors—code generation, debuggers, interpreters

General Terms

Reliability, Languages

Keywords

Partial evaluation, macros, embedded languages, value flow analy-
sis

1 One Language, Many Languages

Every practical programming language contains small program-
ming languages. For example, C’s printf [18] supports a string-
based output formatting language, and Java [3] supports a declara-
tive sub-language for laying out GUI elements in a window. PLT
Scheme [9] offers at least five such languages: one for formatting
console output; two for regular expression matching; one for send-
ing queries to a SQL server; and one for laying out HTML pages.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
ICFP’04, September 19–21, 2004, Snowbird, Utah, USA.
Copyright 2004 ACM 1-58113-905-5/04/0009 ...$5.00

In many cases, though not always, programs in these embedded
special-purpose programming languages are encoded as strings. Li-
brary functions consume these strings and interpret them. Often the
interpreters consume additional arguments, which they use as in-
puts to the little programs.

Take a look at this expression in PLT Scheme:

(regexp-match "http://([a-z.]*)/([a-z]*)/" line)

The function regexp-match is an interpreter for the regular ex-
pression language. It consumes two arguments: a string in the regu-
lar expression language, which we consider a program, and another
string, which is that program’s input. A typical use looks like the
example above. The first string is actually specified at the call site,
while the second string is often given by a variable or an expression
that reads from an input port. The interpreter attempts to match the
regular expression and the second string.

In PLT Scheme, the regular expression language allows program-
mers to specify subpatterns via parentheses. Our running example
contains two such subexpressions: ([a-z.]*) and ([a-z]*). If
the regular expression interpreter fails to match the regular expres-
sion and the string, it produces false (#f); otherwise it produces a
list with n+1 elements: the first one for the overall match plus one
per subexpression. Say line stands for

"http://aaa.bbb.edu/zzz/"

In this case, the regular expression matches the string, and
regexp-match produces the list

(list "http://aaa.bbb.edu/zzz/"
"aaa.bbb.edu"
"zzz")

The rest of the Scheme program extracts the pieces from this list
and computes with them.

The regexp-match expression above is a simplified excerpt from
the PLT Web Server [12]. Here is a slightly larger fragment:

(let ([r (regexp-match
"http://([a-z.]*)/([a-z]*)/" line)])

(if r
(process-url (third r) (dispatch (second r)))
(log-error line)))

Notice how the then-clause of the if-expression extracts the second

and third elements from r without any checks to confirm the length
of the list. After all, the programmer knows that if r is not false,
then it is a list of three elements. The embedded program says so;
it is a regular expression and contains two subexpressions.

Unfortunately, the static analysis tools for PLT Scheme cannot
reason on both levels. MrFlow [20], a static debugger, uses
a constraint-based analysis [22], a version of set-based analy-
sis [2, 13, 10], to analyze the program and discover potential er-
rors. If it finds one it can draw a flow graph from the source of the
bad value to the faulty primitive operation. For the let-expression
above, MrFlow finds that both (second r) and (third r) may
raise runtime errors because r may not contain enough elements.

In this paper, we show how using Scheme macros to partially eval-
uate calls to embedded interpreters such as regexp-match greatly
increases the precision of the static analysis. Since we use macros,
library designers can easily implement the partial evaluation, rather
than relying on the host language implementor as they must for ad-
hoc solutions.

In Section 2 we give a brief overview of set-based analysis and Mr-
Flow. In the next section we explain three examples of embedded
languages and the problems they cause for MrFlow’s static anal-
ysis. We then present in Section 4 our general approach to solv-
ing those problems, based on macros. An overview of the macro
system we use is given in Section 5. Section 6 then presents a gen-
eral technique for translating embedded interpreters into macros. In
Section 7, we explain the properties of the static analysis that en-
able it to find more results in partially evaluated code. Finally, in
Section 8, we show how partially evaluating Scheme programs that
contain embedded programs helps MrFlow in our three examples.
Section 9 presents related work and we conclude in Section 10.

2 Set-Based Analysis

To explain how the results of a static analysis can be improved by
using partial evaluation of embedded languages, we first need to
describe such an analysis. MrFlow, a static analyzer for DrScheme,
uses a set-based value flow analysis to compute an approximation
of the values that each subexpression of a program might evaluate to
at runtime [22]. The approximation computed for each expression
is a set of abstract values that can be displayed on demand. The
debugger can also draw arrows showing the flow of values through
the program.

Figure 1 displays an example of analyzing a simple program.
In the box next to the term 3 is the abstract value for that term,
meaning that at runtime the term 3 might evaluate to the value 3.
The arrow starting from the term 3 shows that at runtime the value
3 might flow into the argument x of the function f and from there
flow into the reference to the variable x in the body of f. There
is a second reference to x in f—the corresponding arrow is not
shown in this example. In the box next to the call to the Scheme
primitive gcd is the abstract value for the result of that call. Since
the analysis never tries to evaluate expressions, it uses the abstract
value integer to represent the result of the primitive call, if any,
which is a conservative approximation of the actual value that that
call might compute at runtime.

The biggest box displays the type of the adjacent if-expression,
which is the union of the integer abstract value computed by the gcd
primitive and of the string ”hello”. Arrows show that the result of
the if-expression can come from both the then- and else-branches:

the analysis does not attempt to apply the number? predicate to the
variable x, so it conservatively assumes that both branches of the
if-expression may be evaluated at runtime.

3 Three Embedded Languages

We now turn to embedded languages, which are a useful technique
for establishing abstraction layers for a particular design space.
Functional languages are well-suited to writing interpreters for em-
bedded languages, in which the higher-level embedded language is
implemented as a set of functions in the general purpose host lan-
guage and has access to all of its features [15, 16, 24]. But these
abstractions come at a cost for program analysis. In particular, tools
built to examine programs of the host language cannot derive infor-
mation for the programs in the embedded languages because they
do not understand the semantics of those languages.

In this section we demonstrate three examples of practical embed-
ded languages for Scheme and show their negative effects on static
analysis. In the first example, properties of the embedded language
create the possibility of errors that can go undetected by the analy-
sis. In the next two examples, undetected properties lead to analyses
that are too conservative, resulting in many false positives; that is,
the analysis reports errors that can never actually occur.

3.1 Format Strings

The PLT Scheme library provides a format function, similar to C’s
sprintf, which generates a string given a format specifier and a
variable number of additional arguments. The format specifier is
a string containing some combination of literal text and formatting
tags. These tags are interpreted along with the remaining arguments
to construct a formatted string. The format function is thus an
interpreter for the format specifier language. The format specifier
is a program in this language and the additional arguments are its
inputs.

To construct its output, the format function requires the number
of extra arguments to match the number of format tags, and these
arguments must be of the appropriate type. Consider the example
of displaying an ASCII character and its encoding in hexadecimal:

(format "˜c = 0x˜x" c n)

In this example, the format specifier, which contains the format tags
"˜c" and "˜x" and some literal text, expects to consume exactly
two arguments. These arguments must be a character and an in-
teger, respectively. An incorrect number of arguments or a type
mismatch results in a runtime error.

Unfortunately analysis tools for Scheme such as MrFlow have no
a priori knowledge of the semantics of embedded languages. The
analysis cannot infer any information about the dependencies be-
tween the contents of the format string and the rest of the arguments
without knowledge of the syntax and semantics of the format lan-
guage. As a result the analysis cannot predict certain categories of
runtime errors, as shown in Figure 2. The application of format is
not underlined as an error, even though its arguments appear in the
wrong order and the analysis correctly computes the types of both
c and n.

Figure 1. Analyzing a simple program with MrFlow.

3.2 Regular Expressions

Regular expressions are used in all kinds of Scheme programs. The
language of regular expression patterns is embedded in Scheme as
strings. A library of functions interpret these strings as programs
that consume additional arguments as input strings and return either
a list of matched subpatterns or #f to indicate failure.

Consider again the excerpt from the PLT Web Server from Sec-
tion 1. Programmers know that if the match succeeds, then the
result list contains exactly three elements: the result of the entire
match, and the results of the two subpattern matches. Again the
analysis is unable to discover this invariant on its own. Figure 3
shows the results of analyzing the sample code with MrFlow. The
list accessors second and third are underlined in red because the
analysis cannot prove that their arguments are sufficiently long lists.

Programmers then must either go through each of these false pos-
itives and prove for themselves that the errors can never occur, or
else learn to ignore some results of MrFlow. Neither option is de-
sirable. The former creates more work for the programmer, rather
than less; the latter is unsafe and easily leads to overlooked errors.

3.3 SchemeQL

SchemeQL [28] is an embedded language for manipulating rela-
tional databases in Scheme. Unlike the string-based format lan-
guage, SchemeQL programs consist of special forms directly em-
bedded inside Scheme. The SchemeQL implementation provides
a set of macros that recognize these forms and expand them into
Scheme code. A typical database query in SchemeQL might look
like this:

(direct-query (name age phone) directory)

corresponding to the SQL statement

SELECT name, age, phone FROM directory

The result of executing a query is a lazy stream representing a cur-
sor over the result set from the database server. Each element in the
stream is a list of values representing a single row of the result set.
The cursor computes the rows by need when a program selects the
next sub-stream.

Programmers know that the number of elements in each row of a
cursor is equal to the number of columns in the original request.
Our analysis, however, cannot discover this fact automatically. Fig-
ure 4 shows the results of an analysis of a SchemeQL query in the
context of a trivial Scheme program. The example query consists of
exactly three columns, and the code references the third element of
the first row. This operation can never fail, but the analysis is unable
to prove this. Instead, it conservatively computes that row is a list
of unknown length: rec-type describes a recursive abstract value,
which in the present case is the union of null and a pair consisting
of any value (top) and the abstract value itself, creating a loop in the
abstract value that simulates all possible list lengths. MrFlow there-
fore mistakenly reports an error by underlining the primitive third
in red, since, according to the analysis, row might have fewer than
three elements at runtime.

4 Macros for Partial Evaluation

All the embedded languages presented in the previous section have
one thing in common: they can encode invariants that are not vis-
ible to any analysis of the general purpose language in which they
are embedded. These invariants can be exposed to analyses in two
ways:

• by extending the analyses in an ad-hoc manner for each em-
bedded language so that they understand its semantics, or

• by partially evaluating the embedded interpreters with regard
to the embedded programs to make the invariants in the em-
bedded programs explicit as invariants in the host language,
whenever possible.

The first solution requires modifying each analysis to support each
embedded language. The second solution can simply be imple-
mented from within the host language through the old Lisp trick of
using “compiler macros” [25] as a light-weight partial evaluation
mechanism. In the present case, instead of using partial evaluation
to optimize programs for speed, we use it to increase the precision
of program analyses.

While Lisp’s compiler macros are different from regular Lisp
macros, Scheme’s macro system is powerful enough that the equiv-
alent of Lisp’s compiler macros can be implemented as regular
Scheme macros. The partial evaluation of embedded interpreters
then simply involves replacing the libraries of functions imple-

Figure 2. Imprecise analysis of the format primitive.

Figure 3. Imprecise analysis of regexp-match.

Figure 4. Imprecise analysis of a SchemeQL query.

menting the interpreters with libraries of semantically equivalent
macros1. This has the additional advantage that it can be done by
the author of the library of functions, as opposed to the compiler’s
or analyzer’s implementor in the case of ad-hoc extensions.

Of course, the partial evaluation of embedded interpreters is only
possible when their input programs are known statically. For ex-
ample, it is not possible to expand a call to format if the format-
ting string given as its first argument is computed at runtime. The
programmer therefore makes a trade-off between the precision of
analyses and how dynamic the code can be. In practice, though,
the embedded programs are often specified statically in user code.
Combined with the simplicity of implementing partial evaluation
with macros, this makes for a useful technique for improving the
precision of analyses at a low cost.

In the next two sections, we describe some of the important features
of the Scheme macro system and then explain how we make use of
this system to partially evaluate the interpreters of these embedded
languages to improve the results of static analysis.

5 Macros in Scheme

Scheme has a powerful macro system for extending the language
with derived expression forms that can be rewritten as expressions
in the core language. Macros serve as a means of syntactic abstrac-
tion. Programmers can generalize syntactic patterns in ways that
are not possible with functional abstraction. This technology also
provides a hook into the standard compiler tool chain by allowing
programmers to implement additional program transformations be-
fore compilation. In this section we describe the basics of standard
Scheme macros and introduce identifier macros, a generalization of
the contexts in which macros can be matched.

5.1 Rule-Based Macros

The define-syntax special form allows the programmer to extend
Scheme with derived expression forms. Before compilation or exe-
cution of a Scheme program, all occurrences of these derived forms
are replaced with their specified expansions.

The syntax-rules form specifies macro expansions as rewrite
rules. Consider the following simple macro, which defines a short-
circuit logical or as a derived form:

(define-syntax or
(syntax-rules ()
[(or e1 e2)
(let ([tmp e1])

(if tmp tmp e2))]))

The macro defines a single rewrite rule, consisting of a pattern and
a template. The pattern matches the or keyword in operator posi-
tion followed by two pattern variables e1 and e2, each matching
an arbitrary subexpression in argument position. The template di-
rects the macro expansion to replace occurrences of the matched
pattern with a let-expression constructed from the matched subex-
pressions.

1The transformation is not strictly speaking partial evaluation:
the reductions performed by the macros are not exactly the ones per-
formed by the embedded interpreters. However, the macros share
the techniques and issues of partial evaluation since they simulate
parts of the interpreters, and it is therefore useful to describe them
as such.

Notice that this or form cannot be defined as a regular function
in Scheme. The second argument is only evaluated if the first ar-
gument evaluates to false. Since Scheme has a strict evaluation
semantics, a functional or would necessarily evaluate both of its
arguments before computing a result. Controlling the evaluation of
expressions is an important use of Scheme macros. Macros can also
abstract over other syntactic forms in ways that functions cannot by
expanding into second-class language constructs such as define.

5.2 Lexical Scope

Macros written with the standard Scheme syntax-rules mech-
anism are both hygienic and referentially transparent. Hygienic
macro expansion guarantees that binding forms inside the defini-
tion of the macro template do not capture free variables in macro
arguments. Consider the following use of our or macro:2

(or other tmp)
⇒ (let ([tmp1 other])

(if tmp1 tmp1 tmp))

Hygienic expansion automatically renames the variable bound in-
side the expanded macro template to avoid capturing the free vari-
able in the macro argument.

Referential transparency complements hygiene by ensuring that
free variables inside the macro template cannot be captured by the
context of the macro call site. For example, if the context that in-
vokes or rebinds the if name, the expansion algorithm renames the
binding in the caller’s context to avoid capturing the variable used
in the template body:

(let ([if 3])
(or if #f))

⇒ (let ([if1 3])
(let ([tmp if1])

(if tmp tmp #f)))

The combination of hygiene and referential transparency produces
macros that are consistent with Scheme’s rules of lexical scope and
can be invoked anywhere in a program without the danger of unex-
pected variable capture.3

5.3 Identifier Macros

The syntax-rules form only matches expressions in which the
macro name occurs in “application position,” i.e., as the operator in
an application expression. References to a syntax-rules macro in
other contexts result in syntax errors:

(fold or #f ls)
⇒ syntax error

PLT Scheme’s syntax-id-rules form is similar to
syntax-rules but matches occurrences of the macro key-
word in arbitrary expression contexts: in operator position, operand
position, or as the target of an assignment.

2We use the convention of representing macro expansion with a
double-arrow (⇒) and ordinary (runtime) evaluation with a single-
arrow (→).

3Macros can also be defined in and exported from modules in
PLT Scheme [11].

The following macro demonstrates a hypothetical use of
syntax-id-rules:

(define-syntax clock
(syntax-id-rules (set!)
[(set! clock e) (set-clock! e)]
[(clock e) (make-time-stamp (get-clock) e)]
[clock (get-clock)]))

The list of identifiers following syntax-id-rules, which was
empty in our previous examples, now includes the set! identi-
fier, indicating that set! is to be treated as a keyword rather than a
pattern variable. The first rewrite rule matches expressions in which
the clock name occurs as the target of an assignment. The second
rule is familiar, matching the macro in application position. The fi-
nal rule matches the identifier clock in any context not matched by
the previous two rules. In addition to the usual application context,
we can use the clock macro in an argument position:

(+ clock 10)
⇒ (+ (get-clock) 10)

or as a set! target:

(set! clock 5)
⇒ (set-clock! 5)

5.4 Programmatic Macros

The language of patterns and templates recognized by
syntax-rules and syntax-id-rules is actually a special
case of Scheme macros. In general, the define-syntax form
binds a transformer procedure

(define-syntax name
(lambda (stx)

etc.

The argument to the transformer procedure is a syntax object, which
is similar to an S-expression representing quoted code, but which
also encapsulates information about the lexical context of the code,
such as source file location and variable bindings. This context
information is essential in allowing DrScheme’s language tools to
trace errors and binding relationships back to the original source lo-
cation in the user’s code where a macro is invoked. Because syntax
objects are so similar to quoted data, the standard library includes
the syntax-object->datum procedure, which strips the lexical in-
formation from a syntax object and returns its corresponding datum.
For example, the datum corresponding to a syntax object represent-
ing a literal number is its numeric value, the datum corresponding
to an identifier is a symbol representing the identifier’s name, and
so on.

A syntax transformer procedure accepts as its argument a syn-
tax object representing the expression that invoked the macro,
and produces a new syntax object, which the macro expansion
algorithm uses to replace the original expression. All Scheme
macros are syntax transformers; although the syntax-rules and
syntax-id-rules forms do not use the lambda notation, they are
themselves implemented as macros that expand to syntax trans-
former procedures.

The syntax-case facility allows the construction of macros with
pattern matching, as with syntax-rules and syntax-id-rules,
but with arbitrary expressions in place of templates for the result
expressions. For example, the above or macro would be defined as:

(define-syntax or
(lambda (stx)
(syntax-case stx ()

[(or e1 e2)
#’(let ([tmp e1])

(if tmp tmp e2))])))

The macro is almost the same as before, but for two refinements.
First, the syntax-case form takes the argument stx explicitly,
whereas syntax-rules implicitly defines a transformer procedure
and operates on the procedure argument. Second, the result ex-
pression is prefixed by the syntax-quoting #’ operator, which is
analogous to Scheme’s quote operator ’. Whereas an expression
prefixed with ’ evaluates to a quoted S-expression, a #’ expression
becomes a quoted syntax object that also includes lexical informa-
tion. Similarly, the quasisyntax operator #‘ and unsyntax operator
#, behave for syntax objects like the quasiquote and unquote oper-
ators for S-expressions, respectively.

The use of arbitrary computations in the result expression allows
macros to expand differently based on the results of actual compu-
tations:

(define-syntax swap
(lambda (stx)
(syntax-case stx ()

[(swap a b)
(if (and (identifier? #’a)

(identifier? #’b))
#’(let ([tmp b])

(set! b a)
(set! a tmp))

(raise-syntax-error
’swap "expects identifiers"
stx))])))

In this example, if swap is not given identifiers as arguments, the
raise-syntax-error function uses the lexical information in the
stx syntax object to highlight the original swap expression in the
user’s code.

Conditional matching can also be achieved using pattern guards,
which can inspect a matched expression and determine whether to
accept a match:

(define-syntax swap
(lambda (stx)
(syntax-case stx ()

[(swap a b)
(and (identifier? #’a)

(identifier? #’b))
#’(let ([tmp b])

(set! b a)
(set! a tmp))])))

The pattern guard is a new expression, inserted between the pattern
and the result expressions. A guarded match only succeeds if its
guard does not evaluate to false; when a guard fails, the pattern
matcher falls through to attempt the next pattern in the list.

6 Macros for Interpreters

In this section, we present a general technique for specializing em-
bedded interpreters with macros, and explain how we apply this
technique to the three embedded languages described in Section 3.

The technique can be summarized in the following steps:

1. Write the interpreter compositionally as a module of library
functions.

2. Replace the interpreter’s main function with a macro that un-
folds the case dispatch on the input (the embedded program)
when it is known statically.

3. Default to the original function when the input is not known
at compile time.

Writing the interpreters compositionally serves two purposes. First,
by delegating the interpretation of the program constructs that make
up an embedded program to separate functions, it becomes possi-
ble to share code between the original interpreter and the macro
that replaces it. This effectively limits the macro’s responsibility
to a simple dispatch. Second, compositionality makes it easier to
guarantee that unfolding terminates, since the recursive macro calls
always operate on smaller terms.

6.1 Format Strings

The implementation of a string formatter involves a number of sim-
ple library functions to convert each possible type of argument to
strings. Each formatting tag corresponds to one of these combi-
nators. For example, the "˜c" tag corresponds to a combinator,
format/char, which accepts a character and converts it to a string,
the "˜x" tag corresponds to format/hex, which converts integers
to their hexadecimal representation, and so forth. The string for-
matter then simply dispatches to these combinators based on the
content of the formatting string:

(define (format s . args)
(cond
[(string=? s "") ""]
[(string=? (substring s 0 2) "˜c")
(string-append (format/char (car args))

(apply format
(substring s 2)
(cdr args)))]

etc.))

The interpreter accepts the formatting string s and, based on for-
matting tags like "˜c" that it finds, decomposes the string into a
series of applications of the corresponding combinators to succes-
sive arguments of format (represented by args). It reassembles
the transformed pieces with the standard string-append function.

In order to specialize the format interpreter, we replace it with a
macro that re-uses its associated combinators:

(define (format/dynamic s . args)
as before)

(define-syntax format
(lambda (stx)
(syntax-case stx ()

[(format s-exp a1 a2 ...)
(string? (syntax-object->datum #’s-exp))
(let ([s (syntax-object->datum #’s-exp)])
(cond

[(string=? s "") #’""]
[(string=? (substring s 0 2) "˜c")
#‘(string-append

(format/char a1)
(format #,(substring s 2) a2 ...))]

etc.))]
[(format s-exp a1 a2 ...)
#’(format/dynamic s-exp a1 a2 ...)]
[format
(identifier? #’format)
#’format/dynamic])))

The partial evaluation works by unfolding the interpreter’s top-level
case dispatch on the program text. Rather than delaying the inspec-
tion of the string to runtime, the macro precomputes the result of the
decomposition statically whenever the string is given as a literal.
We can identify literal strings through the use of a pattern guard.
More precisely, the macro can inspect the syntax object s-exp,
corresponding to format’s first argument, and determine whether
it can be converted to a string via syntax-object->datum. When
the conversion succeeds, the pattern guard allows the match to suc-
ceed, and partial evaluation proceeds.

After the macro expansion, the resulting program text consists of
the application of string-append to the calls to the library func-
tions, with no references to the interpreter:

(format "˜c = 0x˜x" c n)
⇒ (string-append (format/char c)

" = 0x"
(format/hex n))

In order for the replacement of the original function with a macro
to be unobservable, the macro must behave exactly like the origi-
nal function in all contexts. When format is applied to a dynamic
formatting string, the macro defaults to the original functional im-
plementation. Similarly, when format is passed as an argument to
a higher-order function, we use the technique of identifier macros
to refer to the original function.4

6.2 Regular Expressions

One of PLT Scheme’s regular expression engines uses the two-
continuation model of backtracking [1]. A regular expression
“matcher” is represented as a function that accepts a success con-
tinuation and a failure continuation. When a matcher succeeds in
matching its input, it applies its success continuation to the accepted
input, and when it fails to match, it invokes its failure continuation.
This allows the interpretation of the alternation operator “|” to try
each alternate pattern sequentially: an alternation matcher tries to
match its first pattern with a failure continuation to try the second
pattern. Thus if the first pattern fails, the matcher invokes the failure
continuation, which tries the second pattern. Otherwise, the failure
continuation is disregarded and the matcher applies its success con-
tinuation, which skips the second pattern and returns the result of
the first match.

Each of the regular expression constructions corresponds to a func-
tional combinator that produces a matcher. These combinators
can express the standard operators of regular expressions: suc-
cess, failure, alternation, concatenation, and repetition (i.e., Kleene
star). There is also a submatch combinator for the parenthe-
sized subpatterns in the original regular expression. A successful
regexp-match returns a list with the entire matched string fol-
lowed by each submatch corresponding to a parenthesized subpat-
tern. Any subpattern that does not match corresponds to an entry of
false (#f) in the result list. For example, the following successful

4The case of set! is not critical since, in PLT Scheme, imported
module references cannot be the target of an assignment.

match contains a failed submatch:

(regexp-match "a((b)|(c))" "ac")
→ (list "ac" "c" #f "c")

Regardless of the contents of the second argument, there is always
exactly one element in the result list for each parenthesized sub-
pattern in the regular expression. The submatch operator accom-
plishes this by wrapping a given matcher with continuations that
add either the result of a successful match or false to a list of in-
dexed submatches accumulated during the match. The initial (suc-
cess) continuation for regexp-match sorts the accumulated list of
indexed submatches, adding false entries for all submatches that
were never reached because of backtracking.

Partial evaluation of the regular expression library works by un-
folding the definitions of the combinators as well as the contents of
the initial continuation. Each application of a combinator gets re-
placed by an application of a copy of the body of the combinator’s
definition.5 The recursive code that constructs the result list in the
success continuation gets expanded into an explicit chain of cons
expressions:

(regexp-match "a((b)|(c))" input)
⇒ ((build-matcher input)

(lambda (subs)
(cons (lookup subs 0)
(cons (lookup subs 1)
(cons (lookup subs 2)
(cons (lookup subs 3) null)))))

(lambda () #f))

Since the size of the result list is known, it is possible to unfold
recursive definitions, such as the initial continuation that constructs
the match result, to make the structure of the result explicit.

Finally, in the cases where the embedded program is not known stat-
ically, or when regexp-match is used in non-application contexts,
the macro expands to the original functional definition.

6.3 SchemeQL

The SchemeQL language differs from the other examples in that its
programs are not embedded as strings but rather as special forms
recognized by a library of macros. This means that for queries
that select from a fixed set of columns, the length of cursor rows
is always known statically; the column names are specified as a
sequence of identifiers in the syntax of the query form.

Just as the interpreters for the string-based embedded programs
perform a case dispatch on the contents of program strings, the
SchemeQL macros dispatch on the shape of the query expressions.
The cases where partial evaluation is possible can be captured by
inserting additional rules into the original library’s macros.

Partial evaluation of SchemeQL queries uses the same technique as
for the regular expression library: the recursive function that con-
structs a cursor row is unfolded into an explicit chain of cons ex-
pressions. Since we know the length of the cursor row statically,
the unfolding is guaranteed to terminate.

5It is convenient to define the Kleene star operator recursively
by p∗ = (pp∗)|ε. However, this non-compositional definition leads
to an infinite macro expansion, so the macro must carefully avoid
unfolding such a definition.

Since the SchemeQL library is implemented as macros, there is no
need to capture the cases where the query forms are used in non-
application contexts. Adding special cases to the existing macro
does not affect its set of allowable contexts. Similarly, the cases
where the row length is not known statically are already handled by
the existing SchemeQL macros.

7 Static Analysis for Scheme

MrFlow’s value flow analysis is an extension of an ordinary set-
based closure analysis like Palsberg’s [22]. For every expression in
a program, MrFlow statically computes a conservative approxima-
tion of the set of values to which the expression might evaluate at
runtime. From a given expression it creates a graph that simulates
the flow of values inside the expression. The analysis simulates
evaluation by propagating abstract values in this graph until reach-
ing a fixed point. From the set of abstract values that propagate to
a given node, the analysis reconstructs a type that is then displayed
to the user through DrScheme’s graphical interface.

Extensions to the basic analysis include, among other things: an-
alyzing functions that can take any number of arguments, analyz-
ing assignments to variables (set!), and analyzing generative data
structure definitions. MrFlow also supports all the primitives de-
fined in R5RS [17]. The vast majority of these primitives are de-
fined using a special, type-like language embedded inside the an-
alyzer. For a given primitive, the corresponding type translates to
a graph that simulates the primitive’s internal flows. The analysis
then proceeds just like for any other expression. The few remaining
primitives need special handling because of their imperative nature
(set-car! or vector-fill!) and are analyzed in an ad-hoc man-
ner.

By default, MrFlow analyzes the format primitive based on the
following pseudo-type description:

(string top *-> string)

The * in the *-> constructor means that the primitive is a function
that can take any number of arguments as input beyond the ones
explicitly specified. In the present case, the function must receive
a string as its first argument, followed by any number of arguments
of any type (represented by the pseudo-type top), and returns a
string. Given such a description, the only errors MrFlow detects are
when the primitive is given something other than a string as first
argument, or if it is given no argument at all.

After partial evaluation, the application of format is replaced by
calls to its individual library functions such as format/char and
format/hex. These functions have respectively the pseudo-types

(char -> string)

and

(integer -> string)

Using this more precise information, MrFlow can detect arguments
to the original format call that have the wrong type. Checking that
the format primitive receives the right number of arguments for
a given formatting string happens during partial evaluation, so the
analyzer never sees arity errors in the expanded code.

Since DrScheme’s syntax object system keeps track of program
terms through the macro expansions [11], MrFlow is then able to
trace detected errors back to the original guilty terms in the user’s

program and flag them graphically. Arrows representing the flow
of values can also be displayed interactively in terms of the original
program, allowing the user to track in the program the sources of
the values that triggered the errors. In essence, the only requirement
for MrFlow to analyze the partially evaluated code of format is to
specify the pseudo-types for the library functions introduced by the
transformations, like format/char6.

Similarly, it is enough to define pseudo-types for the functions
used in the partially evaluated form of SchemeQL’s query to have
MrFlow automatically compute precise results without any further
modifications.

The partial evaluation for regular expressions is more challenging.
Consider the example from Section 1:

(let ([r (regexp-match
"http://([a-z.]*)/([a-z]*)/" line)])

(if r
(process-url (third r) (dispatch (second r)))
(log-error)))

After the call to regexp-match, the variable r can be either a list
of three elements or false. Based on its conservative pseudo-type
specification for regexp-match, MrFlow computes that r can be
either a list of unknown length or false. This in turn triggers two
errors for each of the second and third primitives: one error be-
cause the primitive might be applied to false when it expected a list,
and one error because it might be applied to a list that is too short.

The second kind of false positives can be removed by partially eval-
uating regexp-match to make the structure of the result more ex-
plicit to MrFlow, as described in Section 6.2. The analysis then
determines that the primitive returns either a list of three elements
or false and in turn checks that second and third are applied to a
list with enough elements.

Still, the possible return values of regexp-match may contain
false. Indeed, false will be the value returned at runtime if the line
given to regexp-match does not match the pattern. The program-
mer has to test for such a condition explicitly before processing
the result any further. The only way for MrFlow not to show a false
positive for second and third, because of the presence of this false
value, is to make the analysis aware of the dependency between the
test of r and the two branches of the if-expression. This form of
flow-sensitive analysis for if-expressions is difficult to implement
in general since there is no bound to the complexity of the tested ex-
pression. In practice, however, an appreciable proportion of these
tests are simple enough that an ad-hoc solution is sufficient.

In the case where the test is simply a variable reference it is enough
to create two corresponding ghost variables, one for each branch
of the if, establish filtering flows between the variable r and the
two ghost variables, and make sure each ghost variable binds the
r variable references in its respective branch of the if-expression.
The filtering flows prevent the false abstract value from flowing into
the then branch of the if-expression and prevent everything but the
false value from flowing into the else branch. Only the combination
of this flow sensitivity for if-expressions with the partial evaluation
of regexp-match gives analysis results with no false positives.

6Specifying such pseudo-types will not even be necessary once
MrFlow knows how to analyze PLT Scheme contracts. This is the
subject of a forthcoming paper.

Once flow-sensitive analysis of if-expressions is added and
pseudo-type descriptions of the necessary primitives are provided
to the analysis, partial evaluation makes all the false positives de-
scribed in Section 3 disappear, as we illustrate in the next section.

8 Improvement of Static Analysis

Partially evaluating format eliminates the possibility of runtime
arity errors, since the macro transformations can statically check
such invariants. It also allows MrFlow to detect type errors that
it could not detect before, since the corresponding invariants were
described only in the embedded formatting language. These in-
variants are now explicit at the Scheme level in the transformed
program through the use of simpler primitives like format/char
or format/integer. Figure 5 shows the same program as in Fig-
ure 2, but after applying partial evaluation. The format primitive
is now blamed for two type errors that before could be found only
at runtime. The error messages show that the user simply gave the
arguments n and c in the wrong order.

Similarly, specializing the regular expression engine with respect
to a pattern eliminates false positives. The length of the list re-
turned by regexp-match cannot be directly computed by the anal-
ysis since that information is hidden inside the regular expression
pattern. As a result, the applications of second and third in Fig-
ure 3 are flagged as potential runtime errors (we have omitted the
fairly large error messages from the figure). After specialization,
the structure of the value returned by regexp-match is exposed to
the analysis and MrFlow can then prove that if regexp-match re-
turns a list, it must contain three elements. The false positives for
second and third disappear in Figure 6.

Of course, regexp-match can also return false at runtime, and the
analysis correctly predicts this regardless of whether partial eval-
uation is used or not. Adding flow sensitivity for if-expressions
as described in Section 7 removes these last spurious errors in Fig-
ure 6.

Partial evaluation now allows the precise analysis of SchemeQL
queries as well. Figure 7 shows the precise analysis of the same
program as in Figure 4, this time after partial evaluation. As with
regexp-match, the analysis previously computed that cursor-car
could return a list of any length, and therefore flagged the call to
third as a potential runtime error. This call is now free of spurious
errors since the partial evaluation exposes enough structure of the
list returned by cursor-car that MrFlow can compute its exact
length and verify that third cannot fail at runtime.

While the results computed by the analysis become more precise,
partially evaluating the interpreters for any of the three embedded
languages we use in this paper results in code that is bigger than the
original program. Bigger code in turn means that analyses will take
more time to complete. There is therefore a trade-off between preci-
sion and efficiency of the analyses. We intend to turn that trade-off
into a user option in MrFlow. The user might also exercise full
control over which embedded languages are partially evaluated and
where by using either the functional or macro versions of the em-
bedded languages’ interpreters, switching between the two through
the judicious use of a module system, for example [11].

Note that partial evaluation does not always benefit all analyses. In
the regexp-match example from Figure 6, spurious errors disap-
pear because MrFlow has been able to prove that the list r is of
length three and therefore that applying the primitives second or

Figure 5. Precise analysis of the format primitive.

Figure 6. Precise analysis of regexp-match.

Figure 7. Precise analysis of a SchemeQL query.

third to r cannot fail. If the analysis were a Hindley-Milner-like
type system, though, no difference would be seen whether partial
evaluation were used or not. Indeed, while such a type system could
statically prove that the arguments given to second or third are
lists, is would not attempt to prove that they are lists of the required
length and a runtime test would still be required. Using partial eval-
uation to expose such a property to the analysis would therefore be
useless. Simply put, making invariants from embedded programs
explicit in the host language only matters if the system analyzing
the host language cares about those invariants.

This does not mean partial evaluation is always useless when used
in conjunction with a Hindley-Milner type system, though. Par-
tially evaluating format, for example, would allow the type system
to verify that the formatting string agrees with the types of the re-
maining arguments. This is in contrast to the ad-hoc solution used
in OCaml [19] to type check the printf primitive, or the use of
dependent types in the case of Cayenne [4].

9 Related Work

Our work is analogous to designing type-safe embedded languages
such as the one for printf [21, 4]. Both problems involve de-
termining static information about programs based on the values
of embedded programs. In some cases, designers of typed lan-
guages simply extend the host language to include specific embed-
ded languages. The OCaml language, for example, contains a spe-
cial library for printf [19] and uses of printf are type-checked
in an ad-hoc manner. Similarly, the GCC compiler for the C lan-
guage uses ad-hoc checking to find errors in printf format strings.
Danvy [7] and Hinze [14] suggest implementations of printf in
ML and Haskell, respectively, that obviate the need for dependent
types by recasting the library in terms of individual combinators.
In our system, those individual combinators are automatically in-
troduced during macro expansion. The C++ language [26] likewise
avoids the problem of checking invariants for printf by breaking
its functionality into smaller operations that do not require the use
of an embedded formatting language.

A work more closely related to ours is the Cayenne language [4].
Augustsson uses a form of partial evaluation to specialize depen-
dent types into regular Haskell-like types that can then be used by
the type system to check the user’s program. Our macro system
uses macro-expansion time computation to specialize expressions
so that the subsequent flow analysis can compute precise value flow
results. Augustsson’s dependent type system uses computation per-
formed at type-checking time to specialize dependent types so that
the rest of the type checking can compute precise type information.
The specialization is done in his system through the use of type-
computing functions that are specified by the user and evaluated by
the type system.

The main difference is that his system is used to compute special-
ized types and verify that the program is safe. Once the original
program has been typed it is just compiled as-is with type check-
ing turned off. This means that in the case of format, for example,
the formatting string is processed twice: once at type checking time
to prove the safety of the program, and once again at run time to
compute the actual result. Our system is used to compute special-
ized expressions. This means that the evaluation of the format’s
string needs to be done only once. Once specialized, the same pro-
gram can either be run or analyzed to prove its safety. In both cases
the format string will not have to be reprocessed since it has been
completely replaced by more specialized code.

Another difference is that in our system, non-specialized programs
are still valid programs that can be analyzed, proved safe, and run
(though the result of the analysis will probably be more conser-
vative than when analyzing the corresponding partially evaluated
program, so proving safety might be more difficult). This is not
possible in Cayenne since programs with dependent types cannot
be run without going through the partial evaluation phase first.

Much work has gone into optimization of embedded languages.
Hudak [15], Elliott et al [8], Backhouse [5], Christensen [6], and
Veldhuizen [27] all discuss the use of partial evaluation to improve
the efficiency of embedded languages, although none makes the
connection between partial evaluation and static analysis. In Back-
house’s thesis he discusses the need to improve error checking for
embedded languages, but he erroneously concludes that “syntactic
analyses cannot be used due to the embedded nature of domain-
specific embedded languages.”

The Lisp programming language ([25], Section 8.4) provides for
“compiler macros” that programmers can use to create optimized
versions of existing functions. The compiler is not required to use
them, though. To our knowledge, there is no literature showing
how to use these compiler macros to improve the results of static
analyses. Lisp also has support for inlining functions, which might
help monovariant analyses by duplicating the code of a function at
all its call sites, thereby simulating polyvariant analyses.

Bigloo [23] is a Scheme compiler that routinely implements em-
bedded languages via macros and thus probably provides some of
the benefits presented in this paper to the compiler’s internal anal-
yses. The compiler has a switch to “enable optimization by macro
expansion,” though there does not seem to be any documentation or
literature describing the exact effect of using that switch.

10 Conclusion

Programs in embedded languages contain invariants that are not au-
tomatically enforced by their host language. We have shown that
using macros to partially evaluate interpreters of little languages
embedded in Scheme with respect to their input programs can re-
capture these invariants and convey them to a flow analysis. Be-
cause it is based on macros, this technique does not require any
ad-hoc modification of either interpreters or analyses and is thus
readily available to programmers. This makes it a sweet spot in
the programming complexity versus precision landscape of pro-
gram analysis. We intend to investigate the relationship between
macros and other program analyses in a similar manner.

Acknowledgments

We thank Matthias Felleisen, Mitchell Wand, and Kenichi Asai for
the discussions that led to this work and for their helpful feed-
back. Thanks to Matthew Flatt for his help with the presentation
of Scheme macros. Thanks to Dale Vaillancourt for proofreading
the paper and to Ryan Culpepper for his macrological wizardry.

11 References

[1] H. Abelson and G. J. Sussman. The Structure and Interpre-
tation of Computer Programs. MIT Press, Cambridge, MA,
1985.

[2] A. Aiken. Introduction to set constraint-based program anal-
ysis. Science of Computer Programming, 35:79–111, 1999.

[3] K. Arnold, J. Gosling, and D. Holmes. The Java Program-
ming Language. Addison-Wesley, 3d edition, 2000.

[4] L. Augustsson. Cayenne—a language with dependent types.
In Proceedings of the third ACM SIGPLAN international con-
ference on Functional programming, pages 239–250. ACM
Press, 1998.

[5] K. Backhouse. Abstract Interpretation of Domain-Specific
Embedded Languages. PhD thesis, Oxford University, 2002.

[6] N. H. Christensen. Domain-specific languages in software de-
velopment – and the relation to partial evaluation. PhD the-
sis, DIKU, Dept. of Computer Science, University of Copen-
hagen, Universitetsparken 1, DK-2100 Copenhagen East,
Denmark, July 2003.

[7] O. Danvy. Functional unparsing. Journal of Functional Pro-
gramming, 8(6):621–625, 1998.

[8] C. Elliott, S. Finne, and O. de Moor. Compiling embedded
languages. In SAIG, pages 9–27, 2000.

[9] R. B. Findler, J. Clements, M. F. Cormac Flanagan, S. Kr-
ishnamurthi, P. Steckler, and M. Felleisen. DrScheme: A
progamming environment for scheme. Journal of Functional
Programming, 12(2):159–182, March 2002.

[10] C. Flanagan and M. Felleisen. Componential set-based anal-
ysis. ACM Trans. on Programming Languages and Systems,
21(2):369–415, Feb. 1999.

[11] M. Flatt. Composable and compilable macros: you want it
when? In Proceedings of the seventh ACM SIGPLAN interna-
tional conference on Functional programming, pages 72–83.
ACM Press, 2002.

[12] P. Graunke, S. Krishnamurthi, S. V. D. Hoeven, and
M. Felleisen. Programming the web with high-level pro-
gramming languages. In Programming Languages and Sys-
tems, 10th European Symposium on Programming, ESOP
2001, Proceedings, volume 2028 of Lecture Notes in Com-
puter Science, pages 122–136, Berlin, Heidelberg, and New
York, 2001. Springer-Verlag.

[13] N. Heintze. Set Based Program Analysis. PhD thesis,
Carnegie-Mellon Univ., Pittsburgh, PA, Oct. 1992.

[14] R. Hinze. Formatting: a class act. Journal of Functional
Programming, 13(5):935–944, 2003.

[15] P. Hudak. Modular domain specific languages and tools. In
Proceedings of Fifth International Conference on Software
Reuse, pages 134–142, June 1998.

[16] S. N. Kamin. Research on domain-specific embedded lan-
guages and program generators. In R. Cleaveland, M. Mis-
love, and P. Mulry, editors, Electronic Notes in Theoretical
Computer Science, volume 14. Elsevier, 2000.

[17] R. Kelsey, W. Clinger, and J. R. [editors]. Revised5 report
on the algorithmic language Scheme. Higher-Order and Sym-
bolic Computation, 11(1):7–104, August 1998. Also appeared
in SIGPLAN Notices 33:9, September 1998.

[18] B. W. Kernighan and D. M. Ritchie. The C programming lan-
guage. Prentice Hall Press, 1988.

[19] X. Leroy. The Objective Caml System, release 3.07, 2003.
http://caml.inria.fr/ocaml/htmlman.

[20] P. Meunier. http://www.plt-scheme.org/software/
mrflow.

[21] M. Neubauer, P. Thiemann, M. Gasbichler, and M. Sperber.
Functional logic overloading. In Proceedings of the 29th ACM
SIGPLAN-SIGACT symposium on Principles of programming
languages, pages 233–244. ACM Press, 2002.

[22] J. Palsberg. Closure analysis in constraint form. Proc. ACM
Trans. on Programming Languages and Systems, 17(1):47–
62, Jan. 1995.

[23] M. Serrano and P. Weis. Bigloo: A portable and optimizing
compiler for strict functional languages. In Static Analysis
Symposium, pages 366–381, 1995.

[24] O. Shivers. A universal scripting framework, or Lambda: the
ultimate “little language”. In Proceedings of the Second Asian
Computing Science Conference on Concurrency and Paral-
lelism, Programming, Networking, and Security, pages 254–
265. Springer-Verlag, 1996.

[25] G. L. Steele. COMMON LISP: the language. Digital Press, 12
Crosby Drive, Bedford, MA 01730, USA, 1984. With contri-
butions by Scott E. Fahlman and Richard P. Gabriel and David
A. Moon and Daniel L. Weinreb.

[26] B. Stroustrup. The C++ Programming Language, Third Edi-
tion. Addison-Wesley Longman Publishing Co., Inc., 1997.

[27] T. L. Veldhuizen. C++ templates as partial evaluation. In Par-
tial Evaluation and Semantic-Based Program Manipulation,
pages 13–18, 1999.

[28] N. Welsh, F. Solsona, and I. Glover. SchemeUnit and
SchemeQL: Two little languages. In Proceedings of the Third
Workshop on Scheme and Functional Programming, 2002.

