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Abstract. Hygienic macro systems, such as Scheme’s, automatically
rename variables to prevent unintentional variable capture—in short,
they “just work.” Yet hygiene has never been formally presented as a
specification rather than an algorithm. According to folklore, the defi-
nition of hygienic macro expansion hinges on the preservation of alpha-
equivalence. But the only known notion of alpha-equivalence for pro-
grams with macros depends on the results of macro expansion! We break
this circularity by introducing explicit binding specifications into the
syntax of macro definitions, permitting a definition of alpha-equivalence
independent of expansion. We define a semantics for a first-order subset
of Scheme-like macros and prove hygiene as a consequence of confluence.

The subject of macro hygiene is not at all decided, and more research
is needed to precisely state what hygiene formally means and [precisely
which] assurances it provides.

—Oleg Kiselyov [1]

1 What are Hygienic Macros?

Programming languages with hygienic macros automatically rename variables to
prevent subtle but common bugs arising from unintentional variable capture—
the experience of the practical programmer is that hygienic macros “just work.”
Numerous macro expansion algorithms for Scheme have been developed over
many years [2–6], and the Scheme standard has included hygienic macros since
R4RS [7].

Yet to date, a formal specification for hygiene has been an elusive goal. In-
tuitively, macro researchers have always understood hygiene to mean preserving
α-equivalence. In particular, performing an α-conversion of a bound variable
should not result in a macro expansion that accidentally captures the renamed
variable. But this idea has never been made precise.

Why should such a simple idea be so hard to formalize? The problem is this:
since the only known binding forms in Scheme are the core forms, the binding
structure of a Scheme expression does not become apparent until after it has
been fully expanded to core Scheme. Thus α-equivalence is only well-defined for
Scheme programs that have been fully expanded, with no remaining instances of



macros. So if the conventional wisdom is correct, the definition of hygienic macro
expansion relies on α-equivalence, but the definition of α-equivalence relies on
the results of macro expansion! This circularity is clearly paradoxical, and the
definition of hygiene has consequently remained a mystery.

But in practice, well-behaved macros follow regular binding disciplines con-
sistently, independent of their particular expansion. For example, Scheme’s let
construct can be macro-defined using lambda, yet programmers rely on knowing
the binding structure of let without actually thinking about its expansion. If the
semantics of macros only had access to this binding structure in such a way that
we could reason formally about the scope of Scheme programs without resorting
to operational reasoning about their expansion, we could cut the Gordian knot
and specify both α-equivalence and hygiene in an intuitive and precise way.

To put it more succinctly, we argue that the binding structure of a macro
is a part of its interface. In this paper, we make that interface explicit as a
type annotation. Our type system is novel but incorporates ideas both from the
shape types of Culpepper and Felleisen [8] and nominal datatypes of Gabbay
and Pitts [9]. With the aid of these type annotations, we define a notion of α-
equivalence for Scheme programs with first-order macros, i.e., macros that do not
expand into subsequent macro definitions, and prove hygiene as a consequence
of confluence. We discuss higher-order macros as future work in Section 9.

The organization of this paper is as follows. The next section introduces λm ,
a Scheme-like language with typed macros. Section 3 defines the α-equivalence
relation for λm , and Section 4 introduces the macro type system. Section 5
defines the macro expansion semantics. The next two sections present the key
correctness theorems: type soundness in Section 6 and hygiene in Section 7. In
Section 8 we present a front end for parsing S-expressions as λm expressions.
Section 9 concludes with a discussion of related and future work.

2 λm : an Intermediate Language for Modeling Macros

In Scheme, macro expansion transforms S-expressions into a small, fixed set of
core forms which the underlying compiler or interpreter is designed to recognize.
Expansion eliminates uses of macros by translating them according to their
definitions, repeating this process recursively until there are no derived forms
left to translate. Thus macro expansion consumes programs in surface syntax:

(let ((x (sqrt 2)))
(let ((y (exp x)))
(lambda (f)
(f y))))

and produces programs with only the internal forms recognized by the compiler:

((λx. ((λy. λf. f y) (exp x))) (sqrt 2))

We use a distinct syntax for core forms to highlight the fact that they indicate
the completion of macro expansion. We use S-expressions not simply to describe



Scheme, but as a simple and general model of tree-structured syntax. Because
macro expansion operates on partially expanded programs, which may contain
both core forms and S-expressions yet to be expanded, a model for macros must
incorporate both syntactic elements.

To that end, we define an intermediate language for modeling macro expan-
sion, called λm . The core forms are based on the λ-calculus, but with additional
forms for local binding of macro definitions and macro application.1

e ::= v | λv. e | e e | let syntax x = m in e end | opJsKσ

v ::= x | ?a
op ::= v | m
m ::= macro p : σ ⇒ e
p ::= ?a | ((p))
s ::= e | op | ((s))

Unlike the surface syntax of Scheme, the syntax of λm consists not just of S-
expressions but also expressions e, whose syntactic structure is fixed and man-
ifest. Of course, macros admit arbitrary syntactic extension in the form of S-
expressions, so S-expressions s appear in the grammar as the arguments to macro
applications. Here too, though, the syntactic structure is made apparent via a
shape type annotation σ. We return in detail to shape types in Section 2.2. Vari-
ables v come in two sorts: program variables x, which are standard, and pattern
variables ?a, which are bound in macro argument patterns and used in their
definitions. Thus, for example, λx. x is a traditional λ-abstraction, but λ?a. ?a
might appear in the body of a macro as a λ-abstraction whose bound variable
will be provided from one of the macro’s inputs. Macro operators op are either
variable references or macro expressions. Macros m contain a pattern p, a type
annotation σ, and a template expression e. A pattern p is a tree of pattern vari-
ables (assumed not to contain duplicates). Finally, an S-expression s is a tree
of expressions or macro operators. The latter form is used to pass macros as
arguments to other macros.

The syntax of λm may seem unfamiliar compared to the simple S-expressions
of Scheme. After all, Scheme applications ((s)) look different from λm applica-
tions opJsKσ and in Scheme, pattern variables are indistinguishable from program
variables. However, given shape-annotated macro definitions, we can easily parse
surface S-expression syntax into λm . We describe this process in Section 8.

2.1 Tree Locations

In order to address context-sensitive properties of terms, we use the mechanism
of tree locations [10] to identify subterms by their position. Tree structures in
our language take the general form t ::= L | ((t)) for some non-terminal of leaves
L. For any such tree structure, we can select a subtree as a path from the root
of the tree to the node containing the subtree. A tree location ` is an element of
N∗. Given a tree t, the subtree t.` is defined by t.ε = t and ((t)).i ` = ti.`.
1 Throughout this paper we use an overbar notation (x) to represent sequences.



2.2 Binding Specifications

Macro definitions and applications in λm are explicitly annotated with shape
types. The purpose of these annotations is to fix the structure of macros, includ-
ing their scoping structure. For example, the following macro m matches four
pattern variables, ?a, ?b, ?e1, and ?e2:

macro ((?a ?b ?e1 ?e2)) : ((〈0〉 〈1〉 expr0 expr0,1))
⇒ λ?a. ((λ?b. ?e2) ?e1)

The shape type σ = ((〈0〉 〈1〉 expr0 expr0,1)) tells us that pattern variables
?a and ?b are placed in binding positions in the macro template, pattern vari-
able ?e1 is used in the scope of ?a alone, and ?e1 appears inside the scope of
both ?a and ?b. Maintaining the bindings in order—?a is bound outside, ?b
inside—makes it possible to resolve references unambiguously even if both ?a
and ?b are instantiated with the same variable. For example, this tells us that
mJ((x x x x))Kσ =α mJ((x y x y))Kσ 6=α mJ((x y y x))Kσ.

Shape types are defined by the following grammar:

τ ::= expr | σ → expr

β ::= 〈`〉 | expr`,`

σ ::= τ | β | ((σ))

The base types τ include the type of expressions and the types of macros, which
receive S-expressions as arguments and produce expressions. Binding types β
express the scope of S-expressions. A binder type 〈`〉 corresponds to a variable in
binding position. The location ` represents the position in the macro S-expression
where the binder occurs. A body type expr`,` corresponds to an expression inside
the scope of one or more binders; the locations ` indicate the positions in the
macro S-expression of each of the binders that are in scope, in the order in which
they are bound, outermost first.

2.3 From S-Expressions to the Lambda Calculus

Once a λm program has been fully expanded, it consists only of core forms, which
in our simple model corresponds to the untyped λ-calculus. We say a program
is in expansion-normal form (ENF) if it obeys the familiar grammar:

e ::= x | λx. e | e e

If ENF is the internal language of the compiler or evaluator, then S-expressions
are the surface language used by the programmer. The syntax of the surface
language is a restricted subset of λm S-expressions:

s ::= x | ((s))

Thus we can envision an idealized pipeline for the evaluation of programs with
macros as shown in Figure 1.
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Fig. 1. Pipeline for an idealized evaluator with macro expansion.

In real Scheme implementations, parsing is interleaved with macro expansion
as the syntactic roles of expressions gradually become apparent. This is different
from our idealized pipeline, which completely separates parsing from expansion.
This is due to the fact that complete type information makes it possible to parse
an S-expression before macro expansion. We return to the front end in Section 8.

3 Alpha-Equivalence

We follow Gabbay and Pitts [9] in using variable swapping to define α-equivalence.
Swapping is defined by:

(v1 v2) · v1 = v2

(v1 v2) · v2 = v1

(v1 v2) · v = v if v 6∈ {v1, v2}
(v1 v2) · λv. e = λ((v1 v2) · v). ((v1 v2) · e)
(v1 v2) · ((s)) = (((v1 v2) · s))
etc.

The support of a term is the set of variables it contains:

supp(v) = {v}
supp(λv. e) = {v} ∪ supp(e)
supp(((s))) =

⋃
i supp(si)

etc.

A variable v is fresh with respect to a finite set of terms S, written v # S, if
for all terms s ∈ S, v 6∈ supp(s). We write v # s1, . . . , sn where n ≥ 1 to mean
v # {s1, . . . , sn}.

We also define the notion of simultaneously introducing multiple, distinct
fresh variables by overloading the freshness relation for variable mappings. If S
is a set of terms and Z is a mapping {` 7→ z} then we write Z # S to mean

∀` ∈ dom(Z) . Z(`) # S and ∀`, `′ ∈ dom(Z) . Z(`) = Z(`′) ⇒ ` = `′

We identify the binders of a form by collecting the set of binding positions
identified in the form’s shape type. The function bp(σ) produces the set of bind-
ing positions of a shape type, and the function pp(p) identifies the positions of
pattern variables in a macro pattern.

bp(((σ))) =
⋃

i{i ` | ` ∈ bp(σi)} pp(((p))) =
⋃

i{i ` | ` ∈ pp(pi)}
bp(〈`〉) = {ε} pp(?a) = {ε}
bp(expr`) = bp(τ) = ∅



We can use bp to compute the set of binders of a macro application binders(σ, s)
as a mapping from binding positions ` to their actual binders s.`:

binders(σ, s) = {` 7→ s.` | ` ∈ bp(σ)}

3.1 Shape-Directed Conversion

Consider the following Scheme expression, with all occurrences of the variable x
labelled for the sake of explanation.

(let ((x1 x2))
(x3 (lambda (x4) x5)))

In order to α-convert x1 to a fresh name z, we must be careful to rename only the
occurrences of x bound by x1, which in this example includes only x3. Because
macros may have arbitrary shape, a structural induction on the S-expression
would be insufficient to recognize which instances of x were which. Instead,
we define a notion of shape-directed conversion (Z X)σ · s, which follows the
structure of a form’s binding specification rather than its syntax.

(Z X)τ · s = s
(Z X)〈`〉 · x = z if z = Z(`)
(Z X)〈`〉 · v = v if ` 6∈ dom(Z)

(Z X)expr
`,`′ · e = (z x) · (Z X)expr

`′ · e if z = Z(`) and x = X(`)

(Z X)expr
`,`′ · e = (Z X)expr

`′ · e if ` 6∈ dom(Z)
(Z X)((σ)) · ((s)) = (((Z X)σi · si))
(Z X)((σ)) · ?a = ?a

The key to the definition of shape-directed conversion is the fourth rule, which
swaps a bound variable with its corresponding fresh name in an expression within
its scope. Because body types order their bound variables from the outside in,
occurrences of the variable x are renamed to z only after performing all inner
renamings, in case x is shadowed by an inner binding.

3.2 Alpha-Equivalence

The definition of α-equivalence appears in Figure 2. The first four rules parallel
the rules of α-equivalence for the λ-calculus, but note that we do not convert
pattern variables ?a used in binding positions. The rule for macro bindings con-
verts the macro name and proceeds inductively. The next rule is key: to compare
two macro applications, their operators must be equivalent, and their arguments
must be equivalent once we α-convert their bound variables. Checking these in-
volves several conditions. First, the two expressions must bind exactly the same
pattern variables, if any; we ensure this by requiring that at any binding po-
sition `, s.` binds an ordinary program variable x if and only if s′.` binds an
ordinary program variable x′. We collect the binder mappings X and X ′ for the



v =α v

e =α e′

λ?a. e =α λ?a. e′

z # e, e′

(z x) · e =α (z x′) · e′

λx. e =α λx′. e′

e1 =α e′
1

e2 =α e′
2

e1 e2 =α e′
1 e′

2

z # e, m, e′, m′

m =α m′ (z x) · e =α (z x′) · e′

let syntax x = m in e end =α let syntax x′
= m′

in e′
end

op =α op′

∀` ∈ bp(σ) . ∃x = s.` ⇔ ∃x′ = s′.`
X = binders(σ, s) X ′ = binders(σ, s′)

Z = {` 7→ z | ` ∈ bp(σ), ∃x = s.`} Z # s, s′

(Z X)σ · s =α (Z X ′)σ · s′

opJsKσ =α op′Js′Kσ

∀` ∈ pp(p) . p.` = ?a` and p′.` = ?a′
` and ?z` # e, e′

∀`, `′ ∈ pp(p) . ?z` = ?z`′ ⇒ ` = `′

(?z` ?a`) · p = (?z` ?a′
`) · p

′

(?z` ?a`) · e =α (?z` ?a′
`) · e

′

(macro p : σ ⇒ e) =α (macro p′ : σ ⇒ e′)

∀i . si =α s′
i

((s)) =α ((s′))

Fig. 2. Alpha-equivalence of λm programs.

two respective forms, and we choose a mapping of fresh binders Z, being careful
not to α-convert at locations that bind pattern variables. Finally, we compare
the α-converted arguments s and s′. The rule for comparing macros is somewhat
simpler. We choose fresh pattern variables ?z` to replace the pattern variables in
either macro, and compare both their patterns and templates. Finally, compound
S-expressions are compared inductively.

3.3 Instantiation

Identifying binders in a shape type positionally is convenient for the theory,
since it results in one canonical representation for each distinct type. However,
for some operations it is necessary to identify binders by name. We present an
alternate form of shape types σ̂ which use variables rather than locations to
represent their binding structure:

β̂ ::= 〈v〉 | exprv,v

σ̂ ::= τ | β̂ | ((σ̂))

We write σ̂ = σ[X] to denote the instantiation of a nameless shape type σ with
the concrete variable names of a variable mapping X.

The free and bound variables of an expression are computed via shape-
directed generalizations of the standard operations FV (s, σ̂) and BV (s, σ̂) (omit-



ted for space). The following theorem ensures that we can always replace an
S-expression with an α-equivalent S-expression with fresh binders.

Theorem 1 (Freshness). Let s be an S-expression and S be a finite set of S-
expressions. Then there exists an S-expression s′ =α s such that BV (s′, σ̂) # S.

Proof. Induction on the structure of s. For each binding in s, choose fresh binders
that are not in supp(S).

It easy to show that if e and e′ are in ENF, then e =α e′ if and only if the
two expressions are α-equivalent as λ-terms.

4 Type Checking

The job of the type checker is to confirm that each macro definition conforms to
its specification and that each use of a macro conforms to its interface. Excerpts
of the type checking algorithm are presented in Figure 3. The type system uses
two environments to track the two dimensions of binding in λm . The program
environment Γ ::= • | Γ [v := τ ] tracks the scope of variables from binding
forms such as λ and let syntax. The pattern environment Φ ∈ {•} ∪ PVar →
Shape tracks the binding of pattern variables for the current macro (if any). This
environment is constructed by pairing the structure of a macro pattern p with
an instantiation of the macro’s type annotation:

penv(((p)), ((σ̂))) =
⋃

i penv(pi, σ̂i)
penv(?a, σ̂) = {?a 7→ σ̂}

The type rule [T-MacDef] permits only non-nested macro definitions by
requiring an empty pattern environment. Rule [T-MacApp] checks macro ar-
guments with their annotated type instantiated with the actual binders. Rule
[T-PBody] checks a pattern variable reference with a body type, ensuring that
all the necessary pattern variables have been bound in the proper order. Rule
[T-PAbs] checks abstractions with pattern variable binders. We discuss [T-PRef]

in the next section. Rule [T-Body] binds a variable from a body type in the pro-
gram environment. Rule [T-Macro] forms a pattern environment Φ and checks
the template against its annotated type (subject to well-formedness constraints),
filtering out any pattern variables from the program environment; the first-order
macros of λm cannot refer to pattern variables outside their own scope.

4.1 The Aliasing Problem

The design of our type system led us to discover a peculiarity of Scheme macros.
Consider the following macro:

(define-syntax K
(syntax-rules ()
((K a b)
(lambda (a)
(lambda (b) a)))))



(Γ, Φ) ` e : expr

[T-MacDef]

(Γ, •) ` m : σ → expr
(Γ [m := σ → expr], •) ` e : expr

(Γ, •) ` let syntax x = m in e end : expr

[T-MacApp]

(Γ, Φ) ` op : σ → expr
(Γ, Φ) ` s : σ[binders(σ, s)]

(Γ, Φ) ` opJsKσ : expr

[T-PBody]

Φ(?a) = expr?b

Γ |pvar = [?b := expr]

(Γ, Φ) ` ?a : expr

[T-PAbs]

Φ(?a) = 〈?a〉
(Γ [?a := expr], Φ) ` e : expr

(Γ, Φ) ` λ?a. e : expr

[T-PRef]

Φ(?a) = 〈?a〉
Γ |pvar = Γ ′[?a := expr]

(Γ, Φ) ` ?a : expr

(Γ, Φ) ` e : β̂ (Γ, Φ) ` op : σ → expr

[T-Body]

(Γ [v := expr], Φ) ` e : exprv′

(Γ, Φ) ` e : exprv,v′

[T-Macro]

wf (σ)
(Γ |var , penv(p, σ[pvars(p)])) ` e : expr

(Γ, Φ) ` (macro p : σ ⇒ e) : σ → expr

Fig. 3. Excerpts from the λm type system.

One might expect that any application of K would produce an expression equiva-
lent to λx. λy. x. But consider the application (K x x): even in a hygienic macro
system, this would expand into λx. λx. x! The binding structure of K is thus de-
pendent on its actual arguments. We call this dependency the aliasing problem.

To resolve this ambiguity, we propose a simple rule we call the shadow restric-
tion, enforced by the type rule [T-PRef]. A pattern binder ?a (i.e., of type 〈?a〉)
may only occur in an expression position if no other intervening pattern binders
are in scope. For example, λ?a. (λ?b. ?b) is legal but λ?a. (λ?b. ?a) is ill-typed. In
particular, this prohibits the definition of the K macro above. This restriction
might seem draconian, but in fact K can easily be rewritten:

(define-syntax K′

(syntax-rules ()
((K′ a b)
(lambda (a)
(let ((tmp a))
(lambda (b) tmp))))))

Note that even with standard, untyped Scheme macros, this new definition al-
ways exhibits the intended behavior, in that even (K′ x x) expands into an
expression equivalent to λx. λy. x.



4.2 Alpha-Equivalence Preserves Type

Theorem 2 gives us the freedom to use α-equivalent S-expressions without af-
fecting the types.

Lemma 1. (Γ,Φ) ` s : σ[X] ⇔ (Γ,Φ) ` (Z X)σ · s : σ[Z]

Theorem 2 (Alpha-equivalence preserves type). If (Γ,Φ) ` s : σ̂ and
s =α s′ then (Γ,Φ) ` s′ : σ̂.

5 Macro Expansion

In this section, we specify our macro expansion semantics. We begin with a
notion of compatibility, defined via expansion contexts.

5.1 Expansion Contexts

An expansion context Cσ is an S-expression with a hole [ ], which produces an
S-expression of shape σ when filled with an expression e. When the shape of a
context is clear or irrelevant, we omit it for brevity.

Cexpr` ::= [ ] | λv.Cexpr | Cexpr e | e Cexpr

| let syntax x = Cσ→expr in e end
| let syntax x = m in Cexpr end
| Cσ→expr(s) | opJCσKσ

C((σ)) ::= ((s1..i−1 Cσi si+1..|σ|)) i ∈ 1..|σ|
Cσ→expr ::= macro p : σ ⇒ Cexpr

5.2 Variable Conventions

The heart of hygienic macro expansion is the management of bindings to prevent
accidental capture. Different expansion algorithms achieve this in different ways.
For the specification of hygienic macro expansion, we simply specify the necessary
conditions on variables under which expansion can proceed.

Analogous to the Barendregt variable convention [11], the transparent pred-
icate allows a macro definition to be substituted into an application only if no
intervening bindings can capture free variable references in the macro template.
This condition is sometimes referred to as referential transparency.

transparent(s, σ̂, s′, σ̂′) ⇔ BV (s, σ̂) ∩ FV (s′, σ̂′) = ∅

This condition alone is not enough to prevent unintended capture. The predicate
hygienic requires a macro template’s bindings to be fresh before performing an
application. This prevents the bindings in the template from capturing references
in the macro’s arguments.

hygienic(s, σ̂, s′) ⇔ BV (s, σ̂) # s′



5.3 Expansion Semantics

The semantics of macro expansion involves two rules. The first rule connects
macro applications to their definitions via the substitution operation s[x := m]σ̂,
which uses the shape type σ̂ to traverse the structure of s.

v[x := m]expr = v (v 6= x)
(λx. e)[x := m]expr = λx. e
(λv. e)[x := m]expr = λv. (e[x := m]expr) (v 6= x)
x[x := m]σ→expr = m
v[x := m]σ→expr = v (v 6= x)
e[x := m]expr

x,v

= e

e[x := m]expr
v,v′

= e[x := m]expr
v′

(v 6= x)
etc.

A macro substitution step is defined by the rule:

let syntax x = m in e end 7−→subst e[x := m]expr

if transparent(e, expr,m, type(m))

Note that the variable convention must be fulfilled to prevent the context of the
macro application from capturing free variable references in the macro template.

The second rule of macro expansion performs a macro transcription step,
expanding an individual macro application. This rule is carried out in two parts.
The first part, pattern matching, matches the macro pattern against the actual
sub-expressions, producing a substitution ρ:

match(((p)), ((s))) =
⋃

i match(pi, si)
match(?a, s) = {?a 7→ s}

Next, transcription instantiates all pattern variables in the template with the
substitution function ρ:

transcribe(x, ρ) = x
transcribe(?a, ρ) = ρ(?a)
transcribe(λv. e, ρ) = λ(transcribe(v, ρ)). (transcribe(e, ρ))
transcribe(e1 e2, ρ) = (transcribe(e1, ρ)) (transcribe(e2, ρ))
transcribe(opJsKσ, ρ) = (transcribe(op, ρ))Jtranscribe(s, ρ)Kσ

transcribe(m, ρ) = m

transcribe(((s)), ρ) = (((transcribe(s, ρ))))

The macro transcription step is defined as the rule:

(macro p : σ ⇒ e)JsKσ 7−→trans transcribe(e,match(p, s))
if transparent(s, σ̂, e, expr) and hygienic(e, expr, s)
where σ̂ = σ[binders(σ, s)]

The first variable convention also applies to this rule, since binders introduced in
the actual arguments of the macro application should not capture free references



from the template. The second convention prevents binders introduced from the
body of the template from capturing references in the actual arguments.

We define the binary relation 7−→ε to be the compatible closure of the com-
bined rules 7−→subst ∪ 7−→trans on S-expressions up to α-equivalence, i.e., the least
relation such that s1 7−→ε s2 if there exist S-expressions s′1, s

′
2, a context C, and

expressions e1, e2 such that s1 =α s′1, s2 =α s′2, s′1 = C[e1], s′2 = C[e2], and
either e1 7−→subst e2 or e1 7−→trans e2.

The binary relation 7−→−→ε is the reflexive, transitive closure of 7−→ε.

6 Type Soundness

The type soundness proof is in the style of Wright and Felleisen [12]. The Preser-
vation Lemma is proved for any S-expression s; it is reused in this more general
form for the proof of confluence.

Lemma 2 (Preservation). If (Γ,Φ) ` s : σ̂ and s 7−→ε s′ then (Γ,Φ) ` s′ : σ̂.

Proof. The proof depends on three lemmas that guarantee that macro substitu-
tion, pattern matching, and transcription respectively preserve type, as well as
a decomposition lemma. Theorem 2 ensures that choosing α-equivalent terms to
satisfy the variable conventions is also type-preserving.

Lemma 3 (Progress). If ` e : expr then either e is in ENF or there exists an
e′ such that e 7−→ε e′.

Proof. Macro substitution is defined for all well-typed S-expressions, as is match.
Theorem 1 allows us to choose α-equivalent terms that satisfy the variable con-
ventions for the expansion rules.

Theorem 3 (Type soundness). If ` e : expr and e 7−→−→ε e′ and e′ 67−→ε, then
e′ is in ENF and ` e′ : expr.

7 Hygiene

Theorem 4 (Confluence). Let s be an S-expression such that (Γ,Φ) ` s : σ̂.
s

s1
<<

ε

s′1

ε
>>

s2
<<

εε >>

Proof. In the style of Barendregt [11], Chapter 11, §1. The proof involves marking
a redex and tracking the marked redex and any copies or expansions of that
marked term through multiple expansion steps. The central lemma shows that
both macro substitution and transcription commute with expansion of marked
redexes.



At last, the final Hygiene Theorem follows immediately from confluence.

Theorem 5 (Hygiene). Let e0 be an expression such that ` e0 : expr. If
e0 =α e′0, e0 7−→−→ε e, and e′0 7−→−→ε e′ such that e and e′ are in ENF, then
e =α e′.

This theorem provides the crucial guarantee of hygienic macros, namely that
α-conversion of λm programs is semantics-preserving.

8 Front End

The parsing algorithm uses the same environments as the type system in or-
der to distinguish the sorts of variables as well as annotate macro applications
with types. Excerpts of this parsing algorithm are presented in Figure 4. Be-
cause function application in Scheme is denoted by parenthesization rather than
invoking a special application macro, the rule for parsing function applications
inserts an explicit reference to a built-in macro @. This is similar to the technique
used in PLT Scheme [13], in which implicit function applications are rewritten
to explicit applications of #%app.

Scheme implementations generally provide a standard library of macros. The
primitive forms lambda and @ can be implemented as built-in macros in the initial
context of a Scheme program:

C0 = let syntax
lambda = (macro ((((?a)) ?e)) : ((((〈00〉)) expr00))⇒ λ?a. ?e)
@ = (macro ((?e1 ?e2)) : ((expr expr))⇒ ?e1 ?e2)

in [ ] end

The parser must account for these macros in its initial environment:

Γ0(lambda) = ((((〈00〉)) expr00))→ expr
Γ0(@) = ((expr expr))→ expr

9 Related and Future Work

Hygienic macros are over twenty years old, and many macro systems have been
designed to facilitate or guarantee hygiene [2, 5, 3, 6]. Several have been defined
in a rigorous and formal way, but none provides a specification for hygiene, nor
any satisfying account for the guarantees it provides. Our work shares a common
observation with the syntactic closures macro system [4], namely that macro
programmers know the binding structure of macros a priori; their work provides
an API rather than a theory. Our primitive lambda and @ macros resemble the
micros of Krishnamurthi [14].

Several syntactic extension mechanisms have been designed for languages
other than Scheme [15, 16]. MacroML [17] is particularly relevant since it auto-
matically prevents unintended variable capture. Their system is restrictive: bind-
ing forms can only extend ML’s let form, and macros cannot inspect or destruc-
ture their syntactic arguments. Our work allows destructuring of S-expressions



parse(Γ, Φ, x, expr) =


?x if x ∈ dom(Φ)
x if x 6∈ dom(Φ)

parse(Γ, Φ, ((let-syntax ((((x s1)))) s2)), expr) = let syntax x = m in e end

where parseMacro(s1) = m
and parse(Γ [x := type(m)], Φ, s2, expr) = e

parse(Γ, Φ, ((x s)), expr) = opJs′Kσ

where parseOperator(Γ, Φ, x) = (op, σ → expr)
and binders(Φ, σ, ((s))) = X
and parse(Γ, Φ, ((s)), σ[X]) = s′

parse(Γ, Φ, ((s1 s2)), expr) = parse(Γ, Φ, ((@ s1 s2)), expr)
if s1 6∈ dom(Γ ) and ?s1 6∈ dom(Φ)

Fig. 4. Excerpts of the type-directed parsing algorithm.

while still preserving the integrity of expressions. Our work also provides a the-
ory of α-equivalence. Previous work on staged notational definitions [18] provides
a meta-language SND for reasoning about MacroML programs; we believe our
system more closely matches the informal reasoning used by macro programmers.

The shape types of Culpepper and Felleisen [8] are similar in expressive
power to ours, allowing destructuring of S-expressions and synthesis of arbitrary
binding forms. Our work extends theirs by accounting for binding structures.
Crucially, this provides us with our account of α-equivalence and hygiene. Our
use of types for expressing bindings was inspired by the nominal datatypes of
Gabbay and Pitts [9].

Gasbichler [19] provides a detailed formal account of a rich macro system
in order to study the interaction of hygienic macros and module systems. Our
work is concerned instead with the guarantees provided by hygiene. Griffin [20]
and Bove and Arbilla [21] also provide formal accounts of notational definitions
and macros, respectively. The former is based on a higher-order representation of
binding forms, the latter on de Bruijn indices. We have taken an explicitly-named
approach in order to explore the connection between hygiene and α-equivalence.
Both works prove key correctness properties, but in the context of a language
with only top-level macro definitions, i.e., without lexically scoped macros.

Finally, we note that the design of our shape types bears some resemblance
to the locally nameless approach to binding structures [22–24]. In particular, our
macro types use tree locations ` in order to avoid using an α-equivalence relation
on shape types, but when destructuring a type, we instantiate these locations
with concrete names. We intend to investigate this relationship further.

There is much more to discover of the theory of hygienic macros. Our elemen-
tary type system is not yet expressive enough to permit important idioms in com-
mon use, including recursive macros, variable-length lists and list-patterns [25],
and case dispatch. Another important next step will be to understand the type
structure of higher-order macros, which expand into subsequent macro defini-
tions. We intend to investigate the connection to staged types for this question.



Other areas for future exploration include procedural macros, inference for shape
types, and support for intentional capture.
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