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Abstract

We present the λm-calculus, a semantics for a language of hygienic macros

with a non-trivial theory. Unlike Scheme, where programs must be macro-

expanded to be analyzed, our semantics admits reasoning about programs

as they appear to programmers. Our contributions include a semantics of

hygienic macro expansion, a formal definition of α-equivalence that is inde-

pendent of expansion, and a proof that expansion preserves α-equivalence.

The key technical component of our language is a type system similar to

Culpepper and Felleisen’s “shape types,” but with the novel contribution of

binding signature types, which specify the bindings and scope of a macro’s

arguments.

vii





Preface

This dissertation investigates the formal semantics of hygienic macros and

presents the λm-calculus, a model of hygienic macro expansion. The model

does not describe a novel macro language, but is rather intended to shed

light on the behavior of hygienic macro systems in the tradition of the

Scheme programming language [14, 40, 61].

What this work does introduce is a novel logical system for reasoning

about the behavior of macros. This system allows us to express and vali-

date formal properties of hygienic expansion. The aim of the dissertation is

to provide firmer theoretical foundations for characterizing hygiene, which

might inform the design of future macro systems.

Background material

This work brings together technical material from several different areas of

programming languages research. It would be impractical to attempt to pro-

vide an adequate background for all of these topics within one dissertation.

The reader may find it useful to have at least a moderate level of familiarity

with the following topics:

• hygienic macros and syntax-rules

The formalism of the λm-calculus concerns the semantics of hygienic

macros. The reader should at least be familiar with the basic concepts

of macros and macro expansion. A deep understanding of hygienic ex-

ix
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pansion is not required, but some familiarity with at least one Scheme

system is helpful.

All the macros of this dissertation are written in the style of Scheme’s

syntax-rules form. For an excellent introduction to Scheme macros,

including macros written with syntax-rules, see Chapter 8 of Dybvig’s

The Scheme Programming Language [22].

• operational semantics

The reader should be comfortable with operational models of program-

ming languages, particularly small-step operational semantics. The

λm-calculus is expressed as a reduction semantics with evaluation con-

texts [23], although familiarity with any operational techniques should

probably be sufficient to follow most of the material. Part I of Seman-

tics Engineering with PLT Redex [24] contains an introduction to this

topic.

• basic type theory

A key element of the development of the λm-calculus is a sound static

type system. The reader should be comfortable with types as proof

systems. Pierce’s textbook Types and Programming Languages [51] is

a good introductory resource. Chapter 21 is particularly helpful for

understanding the recursive types of the λm type system.

The Scheme family of languages

The Scheme community often describes Scheme as a family of programming

languages. As a standard, Scheme has gone through six revisions. And in

practice, there are numerous, dramatically differing programming systems

that can all plausibly lay claim to the name “Scheme.”

For our purposes, the distinctions between these systems are generally ir-

relevant. This dissertation aims to model a small core semantics of hygienic
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macros, written in the so-called “high level” style of syntax-rules. Most

macro systems designed for Scheme either support just the macros express-

ible with syntax-rules or provide more general systems that can nonethe-

less express syntax-rules as a derived form. Our goal is not to model a

wide spectrum of macro language features, but rather to identify a subset

that is just expressive enough to illustrate the challenges of specifying the

properties of hygienic expansion.

Notational conventions

Throughout this dissertation we use the notation x to represent sequences.

Depending on the context, sequences may be considered as a shorthand for

whitespace-separated lists:

xi
1..n def

= x1 x2 · · · xn

or for comma-separate lists:

si
1..n def

= x1, x2, · · · , xn

or for “cons-lists”:

xi
1..n def

= xn :: · · · :: x2 :: x1 :: ε

We represent the empty sequence with the special symbol ε. We typically

elide the bound n where it can be inferred.

When representing Scheme syntax, we use bolded parentheses to repre-

sent a pair:

((term1 .. term2))

This helps distinguish the semantically significant parentheses of Scheme

syntax from the disambiguiating parentheses of traditional mathematical

notation. We use the Lisp tradition of representing nested sequences of pair

terms with the shorthand S-expression sequence notation:

((term i))
def
= ((term1 .. ((term2 .. ((· · · .. ((termn .. (())))))))))
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We use the special symbol ι to represent the identity function.

We represent finite tables as sets of pairs x 7→ y. The notation S(x)

denotes table lookup; S[x 7→ y] denotes functional update.

For a partial function f , we write f(x) ⇓ to denote that f(x) is defined.
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CHAPTER 1

Hygienic Macro Expansion

Hygienic macro expansion is one of the crown jewels of Scheme, but to this

day nobody understands just exactly what it is.

This dissertation demonstrates that hygienic macro expansion can be

given a precise definition, with useful formal properties, by explicitly spec-

ifying the shape and binding structure of macros. In due course we shall

understand better what these specifications, definitions, and properties look

like. For now, we begin with an introduction to hygienic macro expansion

by examples. We discuss where informal intuitions fail us, illustrating why a

precise definition of hygiene has been so elusive.

1.1 The power of syntactic abstraction

The Lisp family is unique in the power of its tools for syntactic abstraction.

The surface representation of programs as S-expressions, a simple and reg-

ular notation for trees of symbolic data, makes it convenient to manipulate

program fragments as data structures. But the true power of syntactic ab-

straction comes from macros: compile-time language extensions defined as

lexically embedded syntax transformations. With macros, Lisp and Scheme

programmers synthesize new syntactic constructs that encapsulate common

language idioms that are otherwise hard or impossible to abstract.

1



2 CHAPTER 1. HYGIENIC MACRO EXPANSION

Macros provide an unusual level of extensibility in programming lan-

guages. Lisp and Scheme programmers put macros to use in breathtaking

ways:

• domain-specific languages

Macros facilitate the design philosophy of “little languages” [8]: creat-

ing a general solution to a class of programming patterns by encoding

them as a custom programming language—often embedded within a

general-purpose host language [35]. While in most programming lan-

guages, little languages are implemented with interpreters, macros al-

low embedded domain-specific languages to be compiled.

• extensible compilers

Macros provide language support for extending the compilation tool-

chain without the usual mess of additional build machinery. For exam-

ple, the parser-tools library of Owens et al. [48] provides a complete

suite of parsing tools, with compile-time generation of LALR parsing

tables, as a library rather than a stand-alone program. The engineer-

ing benefit for the client is clear: they get the benefit of compile-time

code generation with none of the cost of complicated build processes.

• tiered language architecture

Scheme’s extensibility complements the parsimony of its core. Scheme

combines macros with very general native programming constructs

such as lambda and call/cc [61]. As a result, constructs that would or-

dinarily require native language support can be relegated to libraries.

This layered approach leads simpler and more modular semantics, as

well as simpler and more modular language implementations.

• declarative data structure initializers

Whereas most programming languages can only support a fixed set

of syntaxes for literal data, Scheme programmers can invent new lit-
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eral syntax with complicated initialization protocols abstracted away

by macros.

• custom static forms

Traditional programming languages typically provide a fixed set of

“second-class” language forms, such as declarations. Macros make it

possible to abstract over these forms in ways that are often impossible

to achieve otherwise.

• custom control-flow operators

Because macros dispatch at compile-time, they can rearrange expres-

sions to modify their control flow. This makes it possible to abstract

over the flow of control without resorting to explicit higher-order con-

structs like lambda—in other words, to synthesize derived control-

flow operators.

• custom binding forms

Similarly, macros allow the synthesis of derived binding forms other

than lambda.

The most distinctive characteristic of Scheme macros is hygiene. Sadly,

hygienic macros have long resisted a concise, formal definition. Our in-

complete understanding of hygienic macros makes them difficult to explain

succinctly and accurately. Let us begin, then, by describing the problems

with traditional macro expansion that hygienic expansion was invented to

address.

1.2 Näıve macro expansion

The semantics of näıve or “unhygienic” macro expansion is easy to under-

stand. Programs are simply represented as S-expressions. At every macro

call, the S-expression of the macro call is replaced by the S-expression on the
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right-hand side of the macro definition. With pattern-matching macros, such

as those written with #define in the C preprocessor [36] or syntax-rules in

Scheme, variables in the macro’s pattern are replaced by their corresponding

subterms in the macro application.

For example, consider a simple macro for swapping two variables:

Example 1(define-syntax swap!
(syntax-rules ()

[(swap! x y)
(let ([z x])

(set! x y)
(set! y z))]))

When a use of swap! occurs in a program:

Example 2(let ([a 1]
[b 2])

(swap! a b)
(cons a b))

it is replaced by the right-hand side of the definition of swap!:

Example 3(let ([a 1]
[b 2])

(let ([z a])
(set! a y)
(set! b z))

(cons a b))

Notice that the macro pattern variables x and y are replaced by their corre-

sponding S-expressions in the macro call, in this case the symbols a and b,

respectively. The result of evaluating this program is (2 . 1).

1.2.1 Unintended capture: introduced bindings

Unfortunately, this semantic simplicity comes at a cost: macros written in an

unhygienic system can result in unintended variable capture. For example,

things start going wrong when an unlucky client happens to use swap! on a

variable named z:
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Example 4(let ([q 1]
[z 2])

(swap! q z)
(cons q z))

If we again inspect the results of näıve expansion, we see that the binding

of z introduced by the definition of swap! captures the binding of z in the

client code:

Example 5(let ([q 1]
[z 2])

(let ([z q]) ; capture!
(set! q z)
(set! z z))

(cons q z))

The program produces a completely different result: (1 . 2).

1.2.2 Unintended capture: introduced references

The above example demonstrates that macros that introduce bindings into

a program during expansion, i.e., bindings that are internal to the imple-

mentation rather than externally specified by the client, may accidentally

capture references in client code. A dual form of unintended capture—and

a subtler one—occurs when macros introduce variable references that might

be captured by client code in the context of the macro application.

Consider a macro that creates a simple alias to another binding:

Example 6(define-syntax first
(syntax-rules ()

[(first e)
(car e)]))

With näıve macro expansion, the behavior of first is sensitive to the context

in which it is used, not simply its arguments. If the call site rebinds car:

Example 7(let ([car 1])
(first ls))
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Variable Syntactic keyword
Introduced binding captures client reference captures client reference
Introduced reference captured by client context captured by client context

Figure 1.1: Various forms of capture with unhygienic macros.

then the näıve expansion of first produces a reference not to the original

binding of car at the macro definition site, but rather the new binding from

the use site:

Example 8(let ([car 1])
(car ls))

Note that this second class of bugs is particularly difficult for macro-

writers to guard against. While many macro systems provide facilities for

explicitly generating fresh names for introduced bindings, there is very little

an implementer can do to protect a macro’s introduced references against

its contexts of use.

1.2.3 Capture of syntactic keywords

In Scheme, syntactic keywords are scoped just like variables, regardless of

whether they are user-defined macros or pre-defined primitives like lambda,

if, and quote. This means that the same problems of capture arise when

macros introduce bindings or references to syntactic keywords.

Figure 1.1 shows a table that summarizes the different forms of capture

that occur with unhygienic macro expansion: macro-introduced bindings to

variables or syntactic keywords (e.g. via let-syntax) may capture references

in subterms provided by the client; macro-introduced references to variables

or syntactic keywords may be captured by the context provided by the client.
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1.2.4 The trouble with unhygienic macro expansion

Unhygienic macro expansion identifies programs with their representation

as trees. But because of variable scope, programs in fact have additional

graph structure, with edges between variable bindings and their references.

Since these edges are not explicitly represented in S-expressions, maintain-

ing their integrity during macro expansion becomes the responsibility of pro-

grammers. Put differently, the tree representation of a program has unen-

forced representation invariants that are the responsibility of programmers

to maintain.

Worse, these invariants require collaboration between macro definitions

and clients, not just exposing implementation details of macros but in fact

requiring clients to be aware of them. Specifically, the clients of a macro

in an unhygienic setting must be aware of any introduced bindings or ref-

erences in the implementation of the macro in order to avoid unintended

capture. Thus unhygienic macros fail as syntactic abstractions and do not

scale well beyond small programs.

1.3 Hygienic macro expansion

Languages with hygienic macro expansion automatically avoid these name

collisions by renaming variable bindings during the expansion process. For

example, the use of the swap! macro in Example 4 expands in Scheme to

(roughly):

Example 9(let ([q 1]
[z 2])

(let ([z1 q]) ; renamed!
(set! q z)
(set! z z1))

(cons q z))

Moreover, hygienic macro expansion ensures that bindings in the client pro-

gram do not inadvertently capture introduced references by renaming all
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bindings during the expansion process. For example, the program in Exam-

ple 7 expands to:

Example 10(let ([car1 1]) ; renamed!
(car ls))

1.4 What is hygienic macro expansion?

Though the motivations are clear enough, hygienic macro expansion has so

far resisted a precise, formal specification. At the heart of the problem is

identifying what is meant by “scope” in a language with extensible syntax.

1.4.1 Bindings and references

The motivation for hygienic macro expansion presented in Section 1.2 ap-

peals to intuitions about bindings and references in Scheme programs. How-

ever, due to the presence of macros, the syntactic role of an identifier is not

always predictable. Consider a program fragment applying an unknown

macro m:

Example 11(lambda (x)
(m x x))

Without knowing the definition of m, we might assume the two inner occur-

rences of x to refer to the outer lambda-bound variable:

Alternatively, m might be a binding form similar to lambda:

Because Scheme macros are computationally complete, it is not generally

possible to predict the syntactic roles of identifiers before expansion termi-

nates.
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1.4.2 Exotic identifiers

In fact, Scheme macros make it possible to define even more exotic binding

structures. It is not hard to come up with a definition of m that exhibits both

of the above binding structures simultaneously:

This works by duplicating the arguments to m and placing them in different

contexts:

Example 12(define-syntax m
(syntax-rules ()

[(m a e)
(begin

(set! a e)
(lambda (a) e))]))

These kinds of identifiers are particularly troublesome to reason about. For

one thing, they do not admit the usual freedom of α-conversion. Before ex-

pansion, renaming the λ-binding of x requires renaming the inner binding,

and vice versa, in spite of the fact that these two bindings can be indepen-

dently renamed after expansion.

Note that these exotic identifiers are only the by-product of user-defined

forms that duplicate identifiers into distinct syntactic contexts. The primitive

forms of Scheme exhibit regular, well-defined lexical scoping behavior. By

implication, no exotic identifiers remain once a program is fully expanded.

1.4.3 Post-expansion reasoning

For all of these reasons—the inability to reason statically about macro ex-

pansion and the presence of exotic identifiers before expansion—a natural

approach is to reason about macros by appeal to the results of expansion.

Indeed, this is how Scheme actually works: an evaluator or compiler must
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first completely expand programs before doing analysis, optimization, com-

pilation, or evaluation.1

Scheme admits a wide variety of useful tools by performing all reason-

ing on fully expanded programs. For example, by tracking the provenance

of Scheme syntax (primarily by keeping a record of source location informa-

tion), the DrScheme interactive development environment (IDE) can present

the user with a scope-aware view of source programs by fully expanding the

program and relating the resulting binding structure to the source syntax:

1.4.4 A circularity

Thus the current state of the art involves revealing the scope of programs

by fully expanding them first. As a strategy for formally defining hygienic

macro expansion, however, this approach has a fatal flaw. To wit:

1The presence of eval complicates this picture somewhat, but the approach of expansion
before evaluation remains essentially the same.
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• To characterize hygienic macro expansion, we need to understand a

program’s scope.

• To understand a program’s scope, we need to know the results of hy-

gienic macro expansion.

What is lacking, then, is a specification of the correctness of macro expansion

that is independent of its algorithmic definition.

1.5 Contributions

In this dissertation, we present the λm-calculus, a model of a subset of

Scheme macros which comes equipped with a logic for reasoning about the

binding structure of programs with macros. The contributions of this disser-

tation are:

• a formal characterization of hygiene;

• a definition of α-equivalence for programs with macros that is inde-

pendent of any expansion algorithm;

• a semantic specification of hygienic macro expansion; and

• a novel construct of binding signature types.

The remaining chapters of this dissertation proceed as follows.

Chapter 2

We introduce the notion of binding specifications and explain how explicitly

specifying the binding structure of macros allows us to reason formally about

hygiene.
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Chapter 3

We make these intuitions precise with a formal definition of binding signa-

ture types. We also present a subtyping judgment on binding signature types

with a decidable subtyping algorithm.

Chapter 4

We present the core syntax, semantics, and operations of the λm-calculus,

including parsing, α-equivalence, and hygienic macro expansion.

Chapter 5

We define the type rules and other well-formedness that ensure that λm-

calculus programs adhere to their declared specifications.

Chapter 6

We present the mathematical validation of the λm-calculus, including type

soundness, confluence, and hygiene.

Chapter 7

We discuss the expressiveness of the λm-calculus as a programming lan-

guage. We demonstrate that it is capable of expressing most of the macros

of the R5RS [40] standard library, but also discuss some of the limitations

and need for future work.

Chapter 8

We conclude with related and future work.



CHAPTER 2

Understanding Hygiene

A specification of hygienic macro expansion must be independent of any

specific expansion algorithm. That is, to understand what it means for an

expansion algorithm to be hygienic, we require a definition of bindings and

references that does not rely on inspecting the results of expansion.

This chapter presents a high-level introduction to the formal framework

of this dissertation, which provides an approach to specifying the correct-

ness of hygienic macro expansion in a well-defined manner. The frame-

work hinges on binding specifications, which make the binding structure of

user-defined macros explicit. The result is a notion of α-equivalence that

is independent of the macro expansion algorithm, which in turn provides a

correctness criterion for hygiene.

2.1 Hygienic expansion preserves α-equivalence

Consider Examples 2 and 4 from Section 1.2. The failure of unhygienic

expansion arises from the expectation of the client that these two programs

should be interchangeable. In particular, programmers informally expect

that the two programs are α-equivalent, i.e., different only in the particular

choice of bound variable names.

In other words, programmers expect the following to hold:

13
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(let ([a 1]
[b 2])

(swap! a b)
(cons a b))

=α

(let ([q 1]
[z 2])

(swap! q z)
(cons q z))

Näıve macro expansion produces distinct results for these two programs:

(let ([a 1]
[b 2])

(let ([z a])
(set! a b)
(set! b z))

(cons a b))

6=α

(let ([q 1]
[z 2])

(let ([z q])
(set! q z)
(set! z z))

(cons q z))

But with hygienic macro expansion, the two source programs expand to

equivalent programs:

(let ([a 1]
[b 2])

(let ([z1 a])
(set! a b)
(set! b z1))

(cons a b))

=α

(let ([q 1]
[z 2])

(let ([z1 a])
(set! q z)
(set! z z1))

(cons q z))

This suggests a correctness criterion for hygienic macro expansion: α-

equivalent source programs should expand to α-equivalent target programs.

Presented as a diagram:

pgm1

=α
pgm ′1

pgm2

∨∨

=α

pgm ′2

∨∨

What remains is to make the notion of α-equivalence precise for source pro-

grams, i.e. Scheme programs with macros.
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2.2 Breaking the cycle with interfaces

As we saw in Chapter 1, the difficulty in understanding the scope of Scheme

programs comes from the fact that macros extend the syntax of Scheme

with new and arbitrarily complicated binding structures. So how can we

understand the scope of Scheme programs without expanding them first?

2.2.1 Macro interfaces are binding specifications

In fact, Scheme programmers regularly use macros without inspecting the

results of expansion. The reason they are able to do so is that well-specified

macros are typically provided with documentation describing their input

grammar and binding structure.

Consider a simple for loop macro that binds a single variable:

Example 13(define-syntax for
(syntax-rules ()

[(for (x e1) e2)
(for-each (lambda (x) e2) e1)]))

A use of the for macro might look like:

Example 14(for (i ’(1 2 3 4 5))
(display i))

It is customary to document macros with a “schematic” presentation of

their syntax along with information about their scoping behavior. For exam-

ple, a typical style of documenting the for macro might look something like

this:

Syntax: (for (identifier expression) expression) :: expression

Evaluates the first expression to obtain a list and repeatedly eval-

uates the second expression with the identifier bound to succes-

sive elements of the list.
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Much of this information can be formalized. In this work we provide a

framework for expressing macro specifications concisely and formally.

2.2.2 Macros with explicit interfaces

Informally, programmers can refer to the documentation to deduce the cor-

rectness of transformations such as:

(for (i ’(1 2 3 4 5))
(display i)) =α

(for (j ’(1 2 3 4 5))
(display j))

The key insight of this dissertation is that by annotating all macro defini-

tions with interfaces describing their grammar and binding structure, we can

reason formally about the binding structure of Scheme programs, and with-

out first macro-expanding. More technically, explicit annotations provide us

with enough information to obtain a formal definition of α-equivalence of

pre-expansion Scheme programs.

2.2.3 A note on applying the theory

Before taking a closer look at macro interfaces, let us take a moment to

discuss several potential applications of this theory.

2.2.3.1 Programming system

Most directly, the model presented in this dissertation lends itself to the

design of a programming system with macros that are explicitly typed and

checked. Such a system may be more restrictive than typical Scheme im-

plementations, in that it would reject macros that an unrestricted Scheme

would not. Nevertheless, the language would have a clear and well-defined

notion of hygiene and α-equivalence and would provide programmers with

stronger guarantees than Scheme.
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2.2.3.2 Proof system

This system could also be applied as a framework for reasoning about a

subset of Scheme macros in the context of Scheme itself. In future work,

we intend to explore the interaction between macros with explicit interfaces

and unannotated macros.

2.2.3.3 Programming methodology

The formal model presented here also suggests a way of thinking about well-

behaved Scheme macros. Even in the absence of formal proofs, it sheds

light on the kind of information that should be provided in documentation

for Scheme macros and suggests what kinds of macros are harder to reason

about. Some preliminary thoughts on this subject were presented in Herman

and Van Horn [33].

2.3 Shape and binding specifications

Prior work by Culpepper and Felleisen [17] demonstrated that the syntactic

shape of macros like for can be represented as a type:

((((var expr)) expr))

This type is not dissimilar from the schematic presentation given above. Note

that the type only describes the shape of the macro argument (i.e., the cdr

of the form), rather than the entire macro application form including the

macro keyword.

In order to represent the binding structure of for, we must also indicate

that the identifier is bound in the second subexpression:

More precisely, the lexical environment of the second subexpression is ex-

tended with a frame containing a binding for the identifier. Assuming a
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list-of-frames (or “ribcage”) representation for environments, we can specify

the binding structure by describing the extension to the lexical environment

of the second subexpression:

(To avoid confusion between S-expressions representing syntax and lists rep-

resenting environments, we use a distinct notation for the latter, with ε for

the empty list and – :: – for adjunction.) Notice that the frame containing the

bound identifier is a singleton, whose only element “points to” the binding

occurrence.

2.3.1 Tree addresses

What remains to formalize is a precise way to identify distinct identifiers—

or collections of identifiers—in a type, i.e., the ad-hoc arrows in the above

pseudo-notation. For this we employ tree addresses [30], which allow us

to identify the bindings defined at a particular location within a macro’s

argument.

Definition 2.3.1. A tree address ` is an element of D∗, where D = {A,D}.

Consider the tree structure of ((((bvar expr)) expr)):
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In this shape, the address of the identifier is AA, and the addresses of the first

and second subexpressions are ADA and AD, respectively. Note that addresses

compose right-to-left, analogous to conventional Scheme operation names

such as caar, cadar, and cadr. Thus we might represent the type expected by

the for macro as

((((bvar expr)) expr↓({AA} :: ε)))

2.3.2 Collections of bindings

Macros often bind multiple bindings simultaneously. For example, the type

of the lambda primitive might be expressed as

((formals expr↓(A :: ε)))→ expr

given an appropriate definition of the formals type.

In order for a tree location to denote a collection of bindings rather than

a single binding, it must be possible for a given tree location to specify the

bindings defined within its structure. This is the motivation behind export

types. For example, the recursive type formals might be represented as:

µA.∪{(())↑{},((bvar .. A))↑({A} ∪ D)}

This type can be read as specifying that a formals list is either an empty

list, denoting an empty set of bindings, or a pair of a bound variable and a

formals list, denoting the bindings within the remainder of the list along with

the additional bound variable. (Note the typographic distinction between

the recursive type variable A and the tree address A.) In each variant of the

union type, the upwards-facing arrow specifies the collection of bindings

defined within its corresponding structure and “exported” for use in another

scope.
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2.4 Binding signature types as attribute

grammars

As a metaphor for understanding binding signature types, it can be helpful

to consider how we might implement a compiler or evaluator for a language

with a fixed syntax using attribute grammars [42, 43]. Consider a simple

Scheme-like language with multiary lambda, application and variable ref-

erences. A simple grammar for this language might look roughly like the

following:

Example 15
expr ::= (lambda formals expr)

| (expr . actuals)
| var

formals ::= (var . formals)
| ()

actuals ::= (expr . actuals)
| ()

Attribute grammars extend classic BNF-style grammars by attaching se-

mantic information to the nodes in the parse tree. This additional infor-

mation is attached to productions in the grammar by attribute expressions,

or semantic actions, as they are commonly known in popular parser gener-

ators such as yacc [37] and bison [21]. Attributes are classified into two

categories:

• synthesized attributes are determined by the attributes of child nodes;

• inherited attributes are determined by the attributes of a node’s parent.

We can annotate the parse tree with information about the language’s

scoping rules:
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Example 16
expr ::= (lambda xs:formals e:expr)

↪→ e.imports = xs.exports :: ε
| (expr . actuals)
| var

formals ::= (x:var . xs:formals)
↪→ this.exports = {x.name} ∪ xs.exports

| ()
↪→ this.exports = {}

actuals ::= (expr . actuals)
| ()

In this attribute grammar, the lambda form annotates its body expression

with an attribute indicating that it “imports” the variables bound in the for-

mals list—that is, it brings the variables in scope by extending the environ-

ment. The formals list identifies its bound variables by storing them in a

synthesized attribute called exports.

Binding signature types can be thought of as a modularized attribute

grammar for Scheme: instead of a single, monolithic grammar, the language

starts with a base grammar and is extended locally by the introduction of

macros. The types include both the syntactic information of a grammar

production and the scope information of a semantic action. Specifically, the

downwards-arrow types, which extend the current environment, correspond

to the inherited imports attribute in the above example, and the upwards-

arrow types correspond to the exports attribute.

Attribute grammars have a rich and complex family of computational

models; in our case, the set of attributes is fixed and small, so the model for

evaluating semantic actions is relatively simple. (As we shall see, the lan-

guage of binding signatures is restricted to prevent complex dependencies,

thereby simplifying the evaluation model.) Nevertheless, the analogy to at-

tribute grammars can prove useful in understanding the various components

of the formalism described in following chapters.





CHAPTER 3

Binding Signature Types

At the heart of the λm-calculus is the novel construct of binding signature

types, which specify both the syntax and binding structure of macros. This

chapter introduces these types and some of their operations.

3.1 Syntax as trees

In Chapter 1, we characterized programs as tree-like but with additional

graph structure due to variable bindings and scope. Scheme macros present

syntax as tree-shaped data, while tracking additional metadata about bind-

ings and renamings to implement hygiene.

3.1.1 Starting from S-expressions

Despite this additional metadata, Scheme syntax contains a core structure

that is similar to S-expressions. That is, syntax trees take the rough form:

tree ::= atom | (()) | ((tree .. tree))

for a given notion of atom. As in Lisp and Scheme, we use the notation

((tree1 tree2 · · · treen))
def
= ((tree1 .. ((tree2 .. (( · · · .. ((treen .. (())))))))))

as a convenient shorthand for n-ary sequences. It is important to under-

stand that this sequence notation is purely a notational convenience in the

23
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surface presentation of the model; within the model itself, syntax sequences

are nothing more than nested pairs.

3.1.2 Tree addresses

Recall from Definition 2.3.1 that a tree address ` is an element of D∗, where

D consists of the directives A and D, respectively denoting left (car) and right

(cdr) projection of syntax pairs. Presented as a grammar:

` ::= ε | A` | D`

We represent address concatenation as juxtaposition:

ε` = `

(A`)`′ = A(``′)

(D`)`′ = D(``′)

Address projection is defined inductively:

tree.ε = tree

tree.A` = tree1 if tree.` = ((tree1 .. tree2))

tree.D` = tree2 if tree.` = ((tree1 .. tree2))

The prefix and proper-prefix relations are respectively defined by:

` � `′
def⇐⇒ ``′′ = `′ for some `′′

` ≺ `′
def⇐⇒ ` � `′ ∧ ` 6= `′

3.2 Types to classify forms

In Scheme tradition, the loosely-defined word form is sometimes used to

mean a single cohesive program fragment such as a function application, lit-

eral expression, variable reference, definition, or macro application. Forms

can serve different syntactic roles, as in the following fragment of a memo-

ization library:
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Example 17(define-syntax memo-lambda
(syntax-rules ()

[(memo-lambda (x) e)
(let ([memo-table (make-memo-table)])

(lambda (x)
(unmemo! memo-table x (lambda () e))))]))

(define-syntax define/memo
(syntax-rules ()

[(define/memo (f x) e)
(define f (memo-lambda (x) e))]))

In this example, the memo-lambda macro defines an expression form:1 it

can be applied in any context where Scheme expressions are allowed. The

define/memo macro defines a definition form and can only be applied in a

Scheme definition context.

These syntactic roles give rise to a notion of form types, which classify

Scheme forms. The ground types of Scheme include expr, the type of expres-

sion forms, and defn, the type of definition forms:

o ::= expr | defn

However, in the present work, we focus only on the ground type expr and

leave definitions for future work. See Chapter 8 for a discussion of defini-

tions and the defn type.

Variable references can also serve distinct syntactic roles. For example,

in the expression

Example 18(memo-lambda (n)
(sqrt (abs n)))

there are variable references to sqrt, abs, and n, but the use of memo-

lambda is itself another kind of variable reference. So we have traditional

1Somewhat confusingly, traditional usage overloads the word “form” to refer both to
nodes in the syntax tree and syntax operators. Perhaps a good way to reconcile these
distinct usages is to think of “the memo-lambda form” as a sort of metonymic stand-in for
“the class of forms defined by the memo-lambda operator.”
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τ ::= expr | σ → expr
σ ::= τ | bvar | data | (()) | ((σ .. σ)) | σ↓β | σ↑β | µA.σ | A | ∪{σi}

δ ::= NONE | VAR | RIB | ENV

β ::= ρ | γ
γ ::= ε | ρ :: γ | `@γ
ρ ::= {` :δ}

Figure 3.1: Types and binding signatures.

variables like n, which can be used as expressions, and macro variables like

memo-lambda, which can be used as syntactic operators. Macro types take

the general form σ → expr, which can be read as “the type of macros that

take arguments of syntax type σ and produce expression forms.” Next we

consider the meaning of syntax types σ.

3.3 Types to interpret syntax

Figure 3.1 presents the grammar of types for the λm system, including form

types τ and syntax types σ. Where form types classify forms, syntax types

provide an interpretation for the syntax expected by a macro. Alternatively,

as described in Section 2.4, we can view syntax types as analogous to at-

tribute grammars: they describe both the syntax (shape) and semantics

(binding structure) of macro arguments.

Let us consider each of the variants of syntax types in turn. For a node

in a syntax tree to have a form type τ , it may be any form of the specified

type, with no constraints placed on its syntactic representation. The macro

must treat the node as opaque; it cannot deconstruct, rearrange, or even

inspect the syntactic representation of the node.2 The bvar variant is the

type of binding occurrences of variables. The type data describes literal data

2This is analogous to the generativity property described in Ganz et al. [27]
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suitable for use with the quote primitive. The types(())and((σ1 .. σ2))describe

surface syntax that by itself serves no semantic purpose.

The next two variants, binding signature types, are of key importance. An

import type σ↓β describes a syntax node in the scope of a binding signature

β, i.e., that “imports” the bindings of β into its environment. An export type

σ↑β attaches a collection of bindings described by signature β to its syntax

node; these bindings are then available for other binding signatures to add

to their own collections of bindings. We return to the details of binding

signatures in the next section.

The next two variants add equi-recursive types to the model. The recur-

sive type constructor µA.σ binds a type variable A, drawn from a countably

infinite universe of type variable names. We assume each type variable A

to have an associated bindings type δ (see Section 3.4). The binary relation

A : δ relates a type variable to its bindings type.

The ad-hoc union type constructor ∪{σi} consists of a non-empty se-

quence of variants.3 The combination of recursive types and union types

makes it possible to express inductively defined tree grammars with alter-

nate variants.

3.4 Binding signatures

Figure 3.1 also presents the definition of binding signatures β. There are

four categories δ of collections of bindings: none at all; a single identifier;

a frame (or “rib”) of identifiers all bound at the same lexical level; or an

ordered list of frames (or “ribcage”). A binding signature β may be either

an environment signature γ, representing a ribcage, or a rib signature ρ de-

scribing a single rib. The environment signature ε represents the empty

ribcage. The environment signature ρ :: γ places the rib ρ as the innermost

3Syntactically, the variants are ordered, although the order turns out to be essentially
irrelevant. The order serves as a minor convenience in defining several of the operations of
the λm-calculus.
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frame in front of the environment signature γ. The environment signature

`@γ uses the tree address to refer to another ribcage exported at the syntax

node at address `, concatenating those bindings in front of the environment

signature γ. A rib signature consists of a set of tree addresses referring to

bound variables or exports at the addressed syntax nodes. We return to the

δ-annotation in Section 5.1.

Ribcage concatenation is denoted γ, γ′ and is straightforward to define:

ε, γ′ = γ′

(ρ :: γ), γ′ = ρ :: (γ, γ′)

(`@γ), γ′ = `@(γ, γ′)

3.5 Addressing regions

Tree addresses refer to nodes in a syntax tree relative to a root position (at

address ε), and binding signatures occur within the context of syntax types.

So addresses and signatures are interpreted relative to the structure of the

type in which they appear. In particular, several type constructs introduce

new addressing regions, which restart addresses at ε. These are recursive

types µA.σ, union types ∪{σi}, and macro types σ → expr. Addresses within

these types are interpreted relative to the root of their subtree.

Let us consider the type of the lambda primitive as an example. To begin

with, the type of the formals list is:

Example 19
formals

def
= µA.∪{(())↑∅,((bvar .. A))↑{A : VAR,D : RIB}}

That is, a formals list is either:

• empty, in which case it exports an empty rib of bindings;

• or a pair of a bound identifier and a formals list, in which case it ex-

ports the rib of the sub-list along with the additional identifier.
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Note that the addressing is relative to the root of syntax trees matched by

the union type. The type of the lambda primitive uses the above definition:

Example 20
((formals expr↓{A : RIB} :: ε))→ expr

Here the body expression imports the rib defined by the formals list by ad-

dressing it relative to the root of the whole tree matched by lambda. Note

that, because of the presence of the union-type constructor, the formals type

can be placed directly into another type unchanged—without, for example,

offsetting its tree addresses relative to some new base address.

Now, there are restrictions on the range of addressable locations within

a given region. For example, a type cannot import from an address within

a nested union type; otherwise it would be possible to refer to potentially

non-existent sub-trees, as in the following example:

Example 21
((expr↓{AD : VAR} :: ε .. ∪{(()),((bvar))}))

This type cannot be legal, since its grammar matches syntax trees such as

((x .. (()))). The tree address AD (i.e., cadr) clearly does not correspond to a

node in this tree.

The region structure of types and the validity of tree address references

within binding signatures are aspects of the syntactic well-formedness of

types. We examine these criteria in detail in Section 5.2.1.

3.6 Subtyping

The presence of recursive types with ad-hoc unions gives rise to a natural

notion of subtyping. Consider the type of a macro that takes a sequence of

expressions in its argument:

Example 22
(µA.∪{(()),((expr .. A))})→ expr
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It is naturally valid to apply this macro to an empty sequence (()). Conceptu-

ally, the actual argument (()) can be interpreted to have the type (()), which is

a subtype of the expected type:

(())<: (())

(())<: ∪{(()), µA.∪{(()), A}}

(())<: µA.∪{(()), A}

There are well-known algorithms for deciding subtyping with equirecur-

sive types. Our approach follows Gapeyev et al [28]. The presence of bind-

ing signatures complicates the algorithm, but the structure is similar:

1. The subtyping relation is defined coinductively, i.e., as the greatest

fixed point of a set of inference rules.

2. The decision algorithm works backwards from the goal, searching the

graph of assertions reachable by inversion of the inference rules. Be-

cause the relation is coinductive, the derivation may in general be in-

finite. We restrict the grammar of types to ensure that the derivation

is always regular and can be expressed as a finite graph.

3. To ensure termination, assertions that can lead to cycles in the graph

are cached and visited at most once.

4. A pair of types is in the relation iff no inconsistent assertion is found

after searching the graph exhaustively.

3.6.1 Contractiveness

Many of the operations on types involve unfolding a recursive type defini-

tion µA.σ to obtain σ[µA.σ/A], which might be a larger type. We impose the

simple restriction that all recursive types must be contractive: there must ap-

pear at least one pair type between a recursive type variable and its binding.

This restriction disallows pathological types such as µA.A or µA.(A→ expr),
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and ensures that the complete unfolding of any type is a regular tree, i.e., a

tree with only a finite number of distinct subtrees.

3.6.2 Import normalization

The syntax of import types σ↓β is conveniently expressive, but because of its

generality, it may admit multiple equivalent representations of a type. For

example, importing a signature in a compound syntax type such as

Example 23
((expr .. expr))↓β

could be simplified by distributing the signature to the subcomponents:

Example 24
((expr↓β .. expr↓β))

When comparing types, the distinction between these two should be irrel-

evant; intuitively, a pair of expressions collectively in the scope of β is the

same as a pair of expressions each individually in the scope of β.

To eliminate this surface distinction, the subtyping relation makes use of

an import normalization operation σ ⇓ β, which “pushes imports inwards.”

A syntax type in import normal form, written σ̂, matches the following gram-

mar:

σ̂ ::= τ ↓γ | (µA.σ)↓γ | (∪{σi})↓γ | bvar | data | (()) | ((σ̂ .. σ̂)) | σ̂↑β

In import normal form, imported binding signatures in the outermost region

can only occur on form types, recursive types, or union types.

Import normalization is defined in Figure 3.2. Types are normalized rel-

ative to an import environment γ. For form types τ , normalization attaches

the import environment directly to the form type. In the next three cases, the

imports are dropped since binding occurrences of identifiers, literal (quoted)

data, and the empty sequence (()) are unaffected by imports. The rules for
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τ ⇓ γ = τ ↓γ
bvar ⇓ γ = bvar
data ⇓ γ = data
(())⇓ γ = (())

((σ1 .. σ2))⇓ γ = ((σ1 ⇓ γ .. σ2 ⇓ γ))
σ↑β ⇓ γ = σ ⇓ γ↑β
σ↓β ⇓ γ = σ ⇓ (β, γ)

(µA.σ) ⇓ γ = (µA.σ)↓γ
(∪{σi}) ⇓ γ = (∪{σi})↓γ

Figure 3.2: Import normalization.

pair types and export types are structural. The rule for import types accumu-

lates the imports and concatenates them to the front of the import argument.

Finally, recursive types and union types directly attach the accumulated im-

ports, as with form types τ .

Note that imported binding signatures never cross region boundaries,

since this would change their meaning. Instead, normalization cooperates

with the definition of subtyping (see Section 3.6.4) by suspending imported

signatures at region boundaries, where the subtyping judgment picks them

up and continues normalization.

Proposition 3.6.1 (Associativity). (σ ⇓ γ) ⇓ γ′ = σ ⇓ (γ, γ′)

Proof. Straightforward induction on the definition of import normalization.

3.6.3 Region displacement

A typical approach to subtyping union types is to compare their variants

pointwise. For example, we might wish to conclude that σ <: ∪{σ′i} if

σ <: σ′i for one of the types σ′i in the union. However, due to binding sig-

natures, näıvely extracting types from within region delimiters like ∪ is not
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semantics-preserving. This would lead to incorrect conclusions such as:

((expr .. ((bvar .. expr↓{A : VAR}))))<: ((expr .. ∪{(()),((bvar .. expr↓{A : VAR}))}))

The supposed subtype is nonsense, because the binding signature refers to

tree location A, which is no longer a binding occurrence of an identifier but

instead an expression. Instead, the correct conclusion should be:

((expr .. ((bvar .. expr↓{AD : VAR}))))<: ((expr .. ∪{(()),((bvar .. expr↓{A : VAR}))}))

In other words, we must account for the fact that, in the subtype, the address

of bvar is relative not to the root of the union type but its container.

In order to extract types from region delimiters safely, we must keep track

of the current location relative to the nearest enclosing region delimiter.

When we extract types from nested regions, we offset their tree addresses

by the current location. The binary region displacement operator� is given

in Figure 3.3. Relocating a signature β to address `, written β � `, adds `

as a suffix to all tree addresses occurring within β. Relocating a type σ to

address `, written σ � `, relocates all signatures found within the top-level

region of σ, i.e., outside of any region delimiters.

The subtyping judgment must keep track of the current address in order

to shift addresses appropriately when extracting syntax types from their re-

gions. This gives us a judgment of the form ` ` σ̂ <: σ̂′, with the top-level

definition of subtyping:

σ <: σ′
def
= ε ` σ ⇓ ε <: σ′ ⇓ ε

Proposition 3.6.2 (Distributivity). (σ ⇓ γ)� ` = (σ � `) ⇓ (γ � `)

Proof. By induction on the definition of import normalization.

3.6.4 Subtyping judgment

The subtyping judgment ` ` σ̂ <: σ̂′ is defined as the greatest fixed point

of the rules given in Figure 3.4; in other words, the rules are interpreted

coinductively.
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{`′i :δi} � ` = {`′i` :δi}
ε� ` = ε

ρ :: γ � ` = (ρ� `) :: (γ � `)
`′@γ � ` = `′`@(γ � `)

τ � ` = τ
bvar� ` = bvar
data� ` = data
(())� ` = (())

((σ1 .. σ2))� ` = (((σ1 � `) .. (σ2 � `)))
σ↓β � ` = (σ � `)↓(β � `)
σ↑β � ` = (σ � `)↑(β � `)
µA.σ � ` = µA.σ

A� ` = A
∪{σi} � ` = ∪{σi}

Figure 3.3: Region displacement.

At form types, the import signatures γ must agree. In the case of macro

types, the types to the left of the arrow are compared contravariantly. Base

types bvar, data, and (()) are subtypes of themselves. Pair types are compared

structurally and update the tree address ` to account for the new tree con-

text. Export types must have equal export signatures and compare their

types covariantly.

The rule for comparing two recursive types is carefully designed to en-

sure decidability. Specifically, two recursive types are only unfolded and

compared if their imports are the same. A more permissive definition might

continue importing the signatures to see if they end up the same at the leaves

of the unfolded type. Indeed, in the next two cases, where only one of the

two types being compared is recursive, the recursive type is unfolded and

the imports pushed inwards. However, the case of two recursive types is the

one case that can lead to infinite proof trees. By unfolding the types in the

initial tree address ε and with empty imports, we guarantee that there are a

finite number of distinct pairs of recursive type bodies in the potentially in-

finite proof tree. This leads to a computable decision procedure that caches
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` ` σ̂ <: σ̂

` ` expr↓γ <: expr↓γ
σ′ <: σ

` ` (σ → expr)↓γ <: (σ′ → expr)↓γ

` ` bvar <: bvar ` ` data <: data

` ` (())<: (())

A` ` σ̂1 <: σ̂′1 D` ` σ̂2 <: σ̂′2
` ` ((σ̂1 .. σ̂2))<: ((σ̂′1 .. σ̂

′
2))

` ` σ̂ <: σ̂′

` ` σ̂↑β <: σ̂′↑β
ε ` σ[µA.σ/A] ⇓ ε <: σ′[µA′.σ′/A′] ⇓ ε

` ` (µA.σ)↓γ <: (µA′.σ′)↓γ

σ̂′ 6= (µ . )↓
` ` (σ[µA.σ/A]� `) ⇓ γ <: σ̂′

` ` (µA.σ)↓γ <: σ̂′

σ̂ 6= (µ . )↓
` ` σ̂ <: (σ′[µA′.σ′/A′]� `) ⇓ γ′

` ` σ̂ <: (µA′.σ′)↓γ′

σ̂′ 6= (µ . )↓
∀i.` ` (σi � `) ⇓ γ <: σ̂′

` ` (∪{σi})↓γ <: σ̂′

σ̂ 6= (µ . )↓ , (∪ )↓
∃i.` ` σ̂ <: (σ′i � `) ⇓ γ
` ` σ̂ <: (∪{σ′i})↓γ

Figure 3.4: The subtyping judgment.

the bodies of recursive types to prune out infinite paths in the proof tree (see

Section 3.6.5).

Comparing a recursive type to a non-recursive type involves three steps:

1. Unfold the recursive type.

2. Adjust the addresses in the unfolded type by the current address `.

3. Normalize the resulting type, importing the suspended signature γ.

The rules for comparing union types proceed similarly. In the first case, a

union type is a valid subtype if all of its variants are subtypes of the right-

hand type; in the second, a union type is a valid supertype if at least one of

its variants is a supertype of the left-hand type.
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Lemma 3.6.3. If ` ` σ̂ <: σ̂′ then ``0 ` (σ̂ � `0) <: (σ̂′ � `0).

Proof. By simultaneous induction on σ̂ � `0 and σ̂′ � `0.

Lemma 3.6.4. If ` ` σ̂ <: σ̂′ then ` ` σ̂ ⇓ γ <: σ̂′ ⇓ γ.

Proof. By simultaneous induction on σ̂ ⇓ γ and σ̂′ ⇓ γ.

Theorem 3.6.5. If ` ` σ̂ <: σ̂′ and ` ` σ̂′ <: σ̂′′ then ` ` σ̂ <: σ̂′′.

Proof. By coinduction. We show the case where only σ̂ is non-recursive:

` ` σ̂ <: µA′.σ′↓γ′ ∧ ` ` µA′.σ′↓γ′ <: µA′′.σ′′↓γ′
=⇒ {inversion}

` ` σ̂ <: µA′.σ′↓γ′ ∧ ε ` σ′[µA′.σ′/A′] ⇓ ε <: σ′′[µA′′.σ′′/A′′] ⇓ ε
=⇒ {inversion}

` ` σ̂ <: (σ′[µA′.σ′/A′]� `) ⇓ γ′
∧ ε ` σ′[µA′.σ′/A′] ⇓ ε <: σ′′[µA′′.σ′′/A′′] ⇓ ε

=⇒ {Lemma 3.6.3}
` ` σ̂ <: (σ′[µA′.σ′/A′]� `) ⇓ γ′

∧ ` ` (σ′[µA′.σ′/A′] ⇓ ε)� ` <: (σ′′[µA′′.σ′′/A′′] ⇓ ε)� `
=⇒ {Proposition 3.6.2 (Distributivity)}

` ` σ̂ <: (σ′[µA′.σ′/A′]� `) ⇓ γ′
∧ ` ` (σ′[µA′.σ′/A′]� `) ⇓ ε <: (σ′′[µA′′.σ′′/A′′]� `) ⇓ ε

=⇒ {Lemma 3.6.4}
` ` σ̂ <: (σ′[µA′.σ′/A′]� `) ⇓ γ′

∧ ` ` (σ′[µA′.σ′/A′]� `) ⇓ ε ⇓ γ′ <: (σ′′[µA′′.σ′′/A′′]� `) ⇓ ε ⇓ γ′
=⇒ {Proposition 3.6.1 (Associativity)}

` ` σ̂ <: (σ′[µA′.σ′/A′]� `) ⇓ γ′
∧ ` ` (σ′[µA′.σ′/A′]� `) ⇓ γ′ <: (σ′′[µA′′.σ′′/A′′]� `) ⇓ γ′

=⇒ {coinduction hypothesis}
` ` σ̂ <: (σ′′[µA′′.σ′′/A′′]� `) ⇓ γ′

=⇒ {subtyping rule}
` ` σ̂ <: µA′′.σ′′

The case where σ̂ and σ̂′ are union types (but not σ̂′′) is similar. The remain-

ing cases are straightforward.

Corollary. The binary relation <: is transitive.
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3.6.5 Subtyping algorithm

The subtyping algorithm follows the standard algorithm of Gapeyev et al,

but is adapted to accommodate union types and binding signatures. The

SUBTYPE(σ, σ′) function normalizes the types and calls FALSIFY with the

empty tree address and an empty cache. The latter function attempts to

falsify the assertion by searching for inconsistent assertions reachable by

inversion of the inference rules.

The FALSIFY(`, σ̂, σ̂′, C) function searches the graph of assertions reach-

able by inversion from ` ` σ̂ <: σ̂′, looking for inconsistent assertions. The

cache A contains pairs of recursive types that have already been visited, to

prevent looping on cycles in the graph. The functions FALSIFY-ANY(`, σ̂i,

σ̂′, A) and FALSIFY-ALL(`, σ̂, σ̂′i, A) search the graph from the respective

assertions ` ` ∪{σ̂i} <: σ̂′ and ` ` σ̂ <: ∪{σ̂′i}.

Theorem 3.6.6. Given contractive σ and σ′, the algorithm SUBTYPE(σ, σ′)

terminates.

Proof. The unfolding of a contractive syntax type is a regular tree, which has

a finite number of distinct subtrees—in particular, a finite number of distinct

µ-type subtrees. In the cases where FALSIFY recurs with a type that is not a

syntactic subtree of one of its inputs, it only uses the operations σ ⇓ γ and

σ � `, neither of which affects nested µ-types. Thus even in those cases,

the set of distinct µ-type subtrees remains unchanged. Consequently, the

lexicographic order of the number of pairs of µ-type subtrees of σ̂ and σ̂′

that are not in C (more significant) and the syntactic size of σ̂ and σ̂′ (less

significant) forms a well-founded induction measure for FALSIFY.
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Algorithm 1 The subtyping algorithm
1: function SUBTYPE(σ, σ′)
2: FALSIFY(ε, σ ⇓ ε, σ′ ⇓ ε, ∅) 6= Succ

3: function FALSIFY(`, σ̂, σ̂′, C)
4: match (σ̂, σ̂′) with
5: | (expr↓γ, expr↓γ)⇒ Fail C
6: | ((σ0 → expr)↓γ, (σ′0 → expr)↓γ)⇒
7: if SUBTYPE(σ′0, σ0) then
8: Fail C
9: else

10: Succ
11: | (bvar, bvar)⇒ Fail C
12: | (data, data)⇒ Fail C
13: | ((()),(()))⇒ Fail C
14: | (((σ̂1 .. σ̂2)),((σ̂

′
1 .. σ̂

′
2)))⇒

15: match FALSIFY(A`, σ̂1, σ̂′1, C) with
16: | Succ⇒ Succ
17: | Fail C ′ ⇒ FALSIFY(D`, σ̂2, σ̂′2, C

′)
18: | (σ̂0↑γ, σ̂′0↑γ)⇒ FALSIFY(σ̂0, σ̂′0)
19: | ((µA.σ0)↓γ, (µA′.σ′0)↓γ)⇒
20: if (µA.σ0, µA

′.σ′0) ∈ C then
21: Fail C
22: else
23: FALSIFY(ε, σ0 ⇓ ε, σ′0 ⇓ ε, {(µA.σ0, µA

′.σ′0)} ∪ C)
24: | ((µA.σ0)↓γ, )⇒ FALSIFY(`, (σ0[µA.σ0/A]� `) ⇓ γ, σ′, C)
25: | ( , (µA′.σ′0)↓γ)⇒ FALSIFY(`, σ, (σ′0[µA′.σ′0/A

′]� `) ⇓ γ, C)
26: | ((∪{σi})↓γ, )⇒ FALSIFY-ANY(`, σi ⇓ γ, σ′, C)
27: | ( , (∪{σ′i})↓γ)⇒ FALSIFY-ALL(`, σ, σ′i ⇓ γ, C)
28: | ⇒ Succ
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Algorithm 2 The subtyping algorithm (cont’d)
29: function FALSIFY-ANY(`, σ̂i, σ̂′, C)
30: match σ̂i with
31: | ε⇒ Fail C
32: | σ̂1 :: σ̂j ⇒
33: match FALSIFY(`, σ̂1, σ̂′, C) with
34: | Succ⇒ Succ
35: | Fail C ′ ⇒ FALSIFY-ANY(`, σ̂j, σ̂′, C ′)

36: function FALSIFY-ALL(`, σ̂, σ̂′i, C)
37: match σ̂′i with
38: | ε⇒ Succ
39: | σ̂′1 :: σ̂′j ⇒
40: match FALSIFY(`, σ̂, σ̂′1, C) with
41: | Succ⇒ FALSIFY-ALL(`, σ̂, σ̂′j, C)
42: | Fail C ′ ⇒ Fail C ′





CHAPTER 4

A Model of Typed Hygienic Macros

This chapter presents the syntax and semantics of λm, a model of typed

hygienic macros.

4.1 A system view of macros

From an end-to-end view, evaluating a Scheme program is the process of

transforming a symbolic tree src with the generic grammar:

src ::= sym | (()) | ((src .. src))

into an expression expr of a known, fixed grammar:

expr ::= x | ((lambda ((x)) expr)) | ((apply expr)) | ((quote src))

and then evaluating the expression in the usual way for any functional pro-

gramming language. Although the surface language treats a compound node

with any non-syntax operator as a function application, we imagine here that

the internal language understood by the compiler requires an explicit apply

operator to make the syntax more regular.

Because of the computational power of Scheme macros, it is not possible

for a compiler to understand the internal structure of a source tree src before

macro expansion. Traditional macro expansion instead gradually reveals the

abstract syntax tree of a program by expanding from the outside in until no

41
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uses of macros remain [55]. Figure 4.1 presents an abstract view of the

traditional workflow of Scheme systems.

Expand

Parse

Evaluate
src expr val

Figure 4.1: The traditional workflow of Scheme implementations.

In the λm model, types provide enough information to determine pro-

gram structure without expanding macros. An input program is an annotated

S-expression, where the syntactic structure of every subform is manifest. The

result is the system view of Figure 4.2.

Elaborate Type-check

Parse

Expand Evaluate
src sexp sexp expr val

Figure 4.2: The workflow of λm.

In practice, it is sufficient for programmers to annotate only macro defi-

nitions; a process of elaboration can then transform an input program src to

a fully annotated S-expression sexp. We return to the elaboration process in

Chapter 7.

4.2 Annotated programs

The syntax of λm appears in Figure 4.3. Variables are drawn from the set

Variable = B ] P, built from disjoint, countably infinite universes of atoms:

• Base variables x, y ∈ B model ordinary program variables, as bound

by lambda or letrec-syntax, for example. Base variables may range over

runtime values or macros.
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var ::= x | a
form ::= var | ((letrec-syntax ((((x m)))) form)) | ((mexp .. sexp :σ))
mexp ::= prim | var | m
prim ::= lambda | apply | quote

m ::= ((syntax-rules σ → expr ((((p : σ̂ form))))))

p ::= a | (()) | ((p .. p))
sexp ::= form | m | prim | sym | (()) | ((sexp .. sexp))
data ::= sym | a | (()) | ((data .. data))

Figure 4.3: The syntax of λm.

• Pattern variables a, b ∈ P are bound by macro patterns and range over

compile-time syntax.

A form is either a variable reference, a macro definition, or an application

of a syntactic operator mexp to an annotated S-expression sexp. In the latter

case, the application is explicitly annotated with the syntax type σ of the S-

expression. This annotation provides the information needed to determine

the syntax and binding structure of the argument. Syntactic operators mexp

are either primitive operators (lambda, quote, or the explicit function appli-

cation operator apply), macro references, or macros m. Macros contain a

type annotation and a sequence of type-annotated patterns and templates.

Patterns are trees of pattern variables. S-expressions are trees whose leaves

can be forms, macros, primitives, or literal symbols sym. Finally, the cat-

egory data is a subset of sexp which represents literal data; this is used to

type-check operators such as quote that consume trees of literal data.

We define two useful type constants formals and actuals and equip the

primitive operators with types:

formals
def
= µA.∪{(())↑{},((bvar .. A))↑{A : VAR,D : RIB}}

actuals
def
= µA.∪{(()),((expr .. A))}

lambda : ((formals expr↓{A : RIB} :: ε))→ expr

apply : ((expr .. actuals))→ expr

quote : ((data))→ expr
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4.2.1 Type-directed induction

In Section 3.6.1, we described the use of contractiveness to ensure termi-

nation of subtyping even for definitions involving the unfolding of recursive

types. Similarly, we exploit contractiveness for type-directed operations on

syntax to ensure that our definitions do not admit infinite unfoldings. We

define a well-founded type-directed induction measure on syntax trees. For

a contractive syntax type σ and syntax tree tree, the measure is defined as

the lexicographic ordering of the structural induction measure of tree (more

significant) and the following measure, defined inductively on the represen-

tation of σ:

|expr| = |data| = |bvar| = |(())| = |σ → expr| = 1

|((σ1 .. σ2))| = 0

|σ↓β| = |σ↑β| = |σ|+ 1

|µA.σ| = |σ|+ 1

| ∪{σi}| = maxi |σi|

Lemma 4.2.1. For all contractive µA.σ, |µA.σ| > |σ[µA.σ/A]|.

Proof. By induction on the representation of σ. Since A an only appear

under a pair type and |((σ1[µA.σ/A] .. σ2[µA.σ/A]))| = 0 for any ((σ1 .. σ2))

within σ, the substitution does not change the size of σ.

4.2.2 Parsing syntax trees

Given an S-expression sexp and its annotated type σ, the process of deter-

mining the syntax and binding structure of sexp is called “parsing,” by anal-

ogy to parsing a program with an attribute grammar. The result of parsing is

a binding table, which maps each node in the tree, identified by address, to

the bindings exported by (defined within) that node. Binding tables Σ are

defined by the grammar

Σ ::= {` 7→ attr}

attr ::= β | B
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Each binding attribute is either a binding signature β, which may contain

unresolved references to the exports of other nodes in the parse tree, or a

collection of fully resolved bindings B (see Section 4.2.3).

The parsing operation is defined in Figure 4.4. The partial function P is

defined by type-directed induction on a syntax type σ and an S-expression

sexp, producing a fully-resolved binding table Σ. In the terminology of at-

tribute grammars, we can consider the syntax type σ as an attribute gram-

mar, the S-expression as the parse input, and the binding table as the so-

lution to the attribute grammar. In the binding table, each tree address `

uniquely identifies a node in the parse tree.1 This top-level function P dele-

gates to a parse function to parse the current addressing region, with an ad-

ditional argument representing the current address in that region. The result

is a table which may contain unresolved binding signatures β. These signa-

tures are then resolved with the resolve function, described in Section 4.2.3.

We now describe each rule of the parse function in turn. When the syntax

tree is a pattern variable a, the variable itself is the binding, unless the syntax

type σ has the binding type NONE (i.e., does not produce exports). The

binding type δ is determined by the well-formedness judgment on types (see

Chapter 5). A base variable x can be the binding for the syntax type bvar.

The types expr, data, σ → expr and (()) never export bindings. Pairs can be

parsed by pair types by combining the results of parsing the left and right

sides, with the current address producing no exports. Import signatures are

irrelevant to the parsing process and are discarded. Export types recur and

set the bindings of the current address to the exported signature β. Recursive

types and union types introduce new addressing regions, so they both recur

in a fresh root address to produce new subtables; recursive types unfold the

type, and union types use the first subtable that successfully parses.

1The unique locations serve the same role as a node’s object identity or memory location
in a parse tree produced by yacc or bison.
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P(σ, sexp) = {` 7→ resolve(Σ,Σ(`))}
where Σ = parse(σ, sexp, ε)

parse(σ, a, `) = {` 7→ T (a, δ)}
where ` `↑ σ : {` 7→ δ}

parse(bvar, x, `) = {` 7→ x :expr}
parse(expr, form, `) = {` 7→ •}
parse(data, data, `) = {` 7→ •}
parse(σ → expr,mexp, `) = {` 7→ •}
parse((()),(()), `) = {` 7→ •}
parse(((σ1 .. σ2)),((sexp1 .. sexp2)), `) = (Σ1 ∪ Σ2)[` 7→ •]

where Σ1 = parse(σ1, sexp1, `A)
and Σ2 = parse(σ2, sexp2, `D)

parse(σ↓β, sexp, `) = parse(σ, sexp, `)
parse(σ↑β, sexp, `) = Σ[` 7→ β]

where Σ = parse(σ, sexp, `)
and ` 6∈ dom(Σ) ∨ Σ(`) = •

parse(µA.σ, sexp, `) = {` 7→ Σ(ε)}
where Σ = P(σ[µA.σ/A], sexp)

parse(∪{σi}, sexp, `) = {` 7→ Σ(ε)}
where Σ = P(σi, sexp) for smallest i s.t. P(σi, sexp) ⇓

T (a, NONE) = •
T (a, VAR) = a : VAR

T (a, RIB) = {a : RIB}
T (a, ENV) = a@ε

Figure 4.4: S-expression parsing.

4.2.3 Computing environment structure

Once a binding table has been constructed, a syntax node’s exported variable

or binding signature can be found by looking it up in the table. Of course,

if the table entry is a binding signature β, the signature may refer to other

nodes’ addresses. So after producing a binding table, the parsing process

resolves all node addresses in binding signatures to produce fully resolved

bindings for each node. Put differently, binding signatures are expressions

(akin to the expressions of an attribute grammar) that must be recursively

evaluated in the context of a given binding table.
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Binding signature resolution produces fragments of environment struc-

ture: variables, ribs, or sequences of ribs. This environment structure plays

a key role in many of the structures and operations of λm. Most notably, en-

vironments track program context for type checking, which we return to in

Chapter 5. But insofar as environments detail the binding structure of nodes

in a syntax tree, they are also used for many scope-related operations, such

as computing free and bound variables.

Environments Γ are composed of ribs P and pattern variables a:

Γ ::= ε | P :: Γ | a@Γ

Pattern variables stand in for binding structure that comes from macro argu-

ments. For example, in the let∗ macro:

Example 25;; clauses =
;; µA.∪{(())↑ε,((((bvar expr)) .. A↓{AA : VAR}))↑D@{AA : VAR} :: ε}

;; ((clauses expr↓A@ε))→ expr
(define-syntax let∗

(syntax-rules ()
[(let∗ () e) e]
[(let∗ ((a1 e1) . rest) e2)
(let ([a1 e1])

(let∗ rest e2))]))

the pattern variable rest encapsulates a sequence of environment ribs that

will be determined when the macro is applied. In order to type-check the use

of e2 in the macro template, the environment is extended with the pattern

variable rest, indicating that all variables bound within the clauses ranged

over by rest—whatever they may be—will be in scope for the body expres-

sion e2.

Environment ribs are unordered mappings from variables to types:

P ::= {V}

V ::= x :τ | a :δ

A rib in a well-formed Scheme program binds each variable only once, so

each variable in a rib is unique. Note that base variables x map to form
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types like expr or σ → expr, whereas pattern variables a map to types of

bindings such as VAR or RIB.

Pattern variables can appear in ribs in two different ways. A pattern

variable that ranges over individual identifiers has type VAR. As an example,

the variable x in the definition of for from Example 13 of Section 2.2.1

would appear in its rib with binding type VAR. A pattern variable that ranges

over ribs is assigned the type RIB. Consider an implementation of the let

macro:

Example 26;; clauses =
;; µA.∪{(())↑∅,((((bvar expr)) .. A))↑{AA : VAR,D : RIB}}

;; ((clauses expr↓{A : RIB}))→ expr
(define-syntax let

(syntax-rules ()
[(let cs e)
(unzip-let () () cs e)]))

;; ((formals actuals clauses expr↓{A : RIB,ADD : RIB}))→ expr
(define-syntax unzip-let

(syntax-rules ()
[(unzip-let as es ((a1 e1) . rest) e)
(unzip-let (a1 . as) (e1 . es) rest e)]

[(unzip-let as es () e)
((lambda as e) . es)]))

This implementation uses a macro unzip-let to separate the the bound vari-

ables and initialization expressions from binding clauses and binds the vari-

ables in a single rib with lambda. In the recursive call to unzip-let, the

pattern variables a1, as, and rest are combined in a single rib:

{a1 : VAR, as : RIB, rest : RIB}

A collection of fully resolved bindings B can then be any such fragment

of environment, or • for no bindings at all:

B ::= • | V | P | Γ

The binding resolution function resolve takes a binding table Σ and either

a binding attribute attr or tree address ` to produce a fully resolved B. We
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resolve(Σ, `) = resolve(Σ|{`}(≺), attr)
if Σ(`) = attr

resolve(Σ,B) = B
resolve(Σ, {` : VAR} ∪ ρ) = {Σ(`)} ] resolve(Σ, ρ)
resolve(Σ, {` : RIB} ∪ ρ) = resolve(Σ, `) ] resolve(Σ, ρ)
resolve(Σ, ρ :: γ) = resolve(Σ, ρ) :: resolve(Σ, γ)
resolve(Σ, `@γ) = resolve(Σ, `), resolve(Σ, γ)

Figure 4.5: Resolution of bindings.

sometimes use a curried form:

ΣR(attr) = resolve(Σ, attr)

ΣR(`) = resolve(Σ, `)

The resolution function is defined in Figure 4.5. Resolving a tree address

` recursively resolves the attribute found at that address in the table Σ|{`}(≺),

i.e. the table Σ restricted to the domain of addresses strictly prefixed by

`. This captures the notion that a binding signature may only refer to ad-

dresses of strict sub-trees. In Chapter 5, we return to this point and describe

well-formedness criteria for syntax types to ensure signatures only refer to

valid addresses. The next three rules show that variable bindings, ribs, and

environments are already fully resolved. Rib resolution recursively resolves

the components of a rib and combines the results with the disjoint map-

union operation ]. Similarly, environment resolution recursively resolves

the components of an environment signature and recombines them with the

corresponding environment constructors.

Theorem 4.2.2. For any attr and Σ, resolve(Σ, attr) terminates.

Proof. In the first rule, the attribute expression may grow but the binding

table necessarily shrinks; the table Σ|{`}(≺) is smaller than Σ because it at

least removes ` from the domain. In all other rules, the attributes in recur-

sive calls decrease in size. Thus the lexicographic ordering of binding tables
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(more significant) and attributes (less significant) forms a well-founded in-

duction measure for the algorithm.

4.2.3.1 Duplicate variables

The definition of resolution ensures that ribs never contain duplicate vari-

ables by means of a disjoint map-union operation. This means that all opera-

tions that depend on resolution—including parsing and macro expansion—

could fail in the presence of duplicate variables. However, in Chapter 5,

we demonstrate the type rules that ensure that well-typed programs never

contain (or expand into programs containing) duplicate variables in ribs.

This ensures that, for well-typed programs, all operations on S-expressions

are defined. Consequently an invariant of our type system is that macro ex-

pansion never gets “stuck” (i.e., faults) due to duplicate-variable errors. We

return to this point in Chapter 6.

4.3 Binding and alpha-equivalence

The ability to parse macro applications without expanding them opens up

source programs to all manner of analysis. Most directly, we can perform the

usual operations of lexically scoped programming languages such as com-

puting the free and bound variables of a term. Moreover, we can rename

bound variables and their corresponding references (perform α-conversions)

and compare programs for syntactic equivalence up to variable names (α-

equivalence).

4.3.1 Free and bound variables

The free base variables of a term are computed with the fv function defined

in Figure 4.6. On a form or mexp, the operation is unary; for annotated S-

expressions sexp, the operation requires two additional arguments: a syntax
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fv(x) = {x}
fv(a) = ∅
fv(((letrec-syntax ((((x m)))) form))) = (fv(m) ∪ fv(form))− {x}
fv(((mexp .. sexp :σ))) = fv(mexp) ∪ fv(sexp)σP(σ,sexp)

fv(prim) = ∅
fv(((syntax-rules τ ((((pi : σ̂i form i))))))) =

⋃
i fv(form i)

fv(a)σΣ = ∅
fv(form)exprΣ = fv(form)
fv(mexp)σ→expr

Σ = fv(mexp)
fv(var)bvarΣ = ∅
fv(data)dataΣ = ∅
fv((()))(())Σ = ∅
fv(((sexp1 .. sexp2)))

((σ1 .. σ2))
Σ = fv(sexp1)σ1Σ ∪ fv(sexp2)σ2Σ

fv(sexp)σ↓βΣ = fv(sexp)σΣ − {x}
where {x, a} = dom(resolve(Σ, β))

fv(sexp)σ↑βΣ = fv(sexp)σΣ
fv(sexp)µA.σΣ = fv(sexp)

σ[µA.σ/A]
P(σ[µA.σ/A],sexp)

fv(sexp)
∪{σi}
Σ = fv(sexp)σiP(σ1,sexp)

for smallest i s.t. P(σ1, sexp) ⇓

Figure 4.6: Free base variables of a term.

type σ and a binding table Σ. This is of course precisely the information

provided by parsing, which allows the operation to traverse the otherwise

unstructured syntax tree.

For forms and macro expressions, the definition is straightforward: a

base variable x defines a singleton set of free variables; the free variables

of a macro definition form are found by taking the free variables of the

subterms and removing the bound macro variable; a macro’s free variables

occur in its right-hand sides. The macro application form is the interesting

case: the free variables are found by taking the free variables of the operator

and operand; the latter’s free variables are computed using the multiary fv

operator, using the annotated syntax type σ, the bindings table Σ computed

by parsing the argument S-expression, and the root tree address ε.
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bv(x) = ∅
bv(a) = ∅
bv(((letrec-syntax ((((x m)))) form))) = bv(m) ∪ bv(form) ∪ {x}
bv(((mexp .. sexp :σ))) = bv(mexp) ∪ bv(sexp)σP(σ,sexp)

bv(prim) = ∅
bv(((syntax-rules τ ((((pi : σ̂i form i))))))) =

⋃
i bv(form i)

bv(a)σΣ = ∅
bv(form)exprΣ = bv(form)
bv(mexp)σ→expr

Σ = bv(mexp)
bv(x )bvarΣ = {x}
bv(data)dataΣ = ∅
bv((()))(())Σ = ∅
bv(((sexp1 .. sexp2)))

((σ1 .. σ2))
Σ = bv(sexp1)σ1Σ ∪ bv(sexp2)σ2Σ

bv(sexp)σ↓βΣ = bv(sexp)σΣ ∪ {x}
where {x, a} = dom(resolve(Σ, β))

bv(sexp)σ↑βΣ = bv(sexp)σΣ ∪ {x}
where {x, a} = dom(resolve(Σ, β))

bv(sexp)µA.σΣ = bv(sexp)
σ[µA.σ/A]
P(σ[µA.σ/A],sexp)

bv(sexp)
∪{σi}
Σ;` = bv(sexp)σiP(σi,sexp)

for smallest i s.t. P(σi, sexp) ⇓

Figure 4.7: Bound base variables of a term.

For annotated S-expressions, the definition of fv follows the structure

of the annotated type σ. Pattern variables contain no base variables and

so have empty free variable sets. At type expr, a form’s free variables are

computed using the unary fv operation; likewise for a macro expression at

macro type. At type bvar, a variable is in binding position; thus it contains

no free variables, even if it is itself a base variable. Quoted data contains no

free variables, nor does the nil syntax node (()). The free variables of pairs

are found by structural recursion, updating the tree address accordingly.

The most interesting case is that of import types: the binding signature β

determines the variables being brought into scope. These can be computed

by evaluating the binding signature with the binding table Σ. Thus the free
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` ∈ bp(σ) ` 6= ε

` ∈ bp(σ↑β)

` ∈ bp(σ)

` ∈ bp(σ↓β)

` ∈ bp(σ1)

`A ∈ bp(((σ1 .. σ2)))

` ∈ bp(σ2)

`D ∈ bp(((σ1 .. σ2)))

` 6= ε
` ∈ bp(σ[µA.σ/A])

` ∈ bp(µA.σ)

` 6= ε
∃i.` ∈ bp(σi)

` ∈ bp(∪{σi}) ε ∈ bp(bvar)

Figure 4.8: Binding positions of a syntax type.

variables of the term are the free variables found recursively except for those

that are bound here. Export types do not affect the variables currently in

scope, so the binding signature is ignored. Finally, recursive types and union

types recur with the nested sub-table found at the current address.

The operation for determining the bound variables bv of a term, pre-

sented in Figure 4.7, is defined similarly. We describe here only the different

cases. A free reference to a base variable x is of course not bound; by con-

trast, at type bvar a base variable is included in the result of bv . A macro

definition adds its bound macro variable rather than removing it from the

result set. Both import types and export types specify bound variables, so in

both cases their base variables are included in the result set.

4.3.2 Binding positions

We can also use syntax types to determine the binding positions of a syntax

tree, i.e., the addresses of nodes that provide exported bindings. Given a

syntax type σ and an address `, we can determine whether ` is in the set

of binding positions bp(σ) using the definition of Figure 4.8. Note that the

definition is type-directed; since types are contractive and the address ` is

made smaller at pair types, the definition is well-founded. The definition

searches through the type tree for the type at position `; if that type is bvar
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x{z/x} = z
y{z/x} = y if x 6= y
a{z/x} = a
sym{z/x} = sym
prim{z/x} = prim
((syntax-rules τ ((((pi : σ̂i form i)))))){z/x}

= ((syntax-rules τ ((((pi : σ̂i form i{z/x}))))))
((letrec-syntax ((((x′ m)))) form)){z/x}

= ((letrec-syntax ((((x′{z/x} m{z/x})))) form{z/x}))
((mexp .. sexp :σ)){z/x}

= ((mexp{z/x} .. sexp{z/x} :σ))
(()){z/x} = (())

((sexp1 .. sexp2)){z/x}
= ((sexp1{z/x} .. sexp2{z/x}))

Figure 4.9: Uniform variable substitution.

then ` is indeed a binding position.

4.3.3 Alpha-equivalence

Because parsing S-expressions makes it possible to understand the binding

structure of programs, we can not only recognize free and bound variables,

but also compare terms for equality up to different choices of variable names.

That is, using the parsing and attribute evaluation algorithms, it is possible

to define a sound α-equivalence relation for λm. Figure 4.11 provides such

a definition.

The definition of α-equivalence is built on top of the uniform substitution

operation sexp{z/x}, which is defined purely structurally on terms, i.e., with

no knowledge of the shape or binding structure of macros. Uniform substi-

tution is defined in Figure 4.9. The α-equivalence relation also makes use of

a “freshness” relation:

z#sexp
def
= z 6∈ supp(sexp)

where the support of an S-expression supp(sexp) is given by the definition in
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supp(x) = {x}
supp(a) = ∅
supp(sym) = ∅
supp(prim) = ∅
supp(((syntax-rules τ ((((pi : σ̂i form i))))))) =

⋃
i supp(form i)

supp(((letrec-syntax ((((x m)))) form)))
= {x} ∪ supp(m) ∪ supp(form)

supp((())) = ∅
supp(((sexp1 .. sexp2))) = supp(sexp1) ∪ supp(sexp2)

Figure 4.10: The support of a term.

Figure 4.10. We also use the following shorthands:

zi#sexp
def
= ∀i.zi#sexp ∧ ∀i 6= j.zi 6= zj

zi#sexpj
def
= ∀j.zi#sexpj

Let us examine the rules in detail. Rules [A-VAR], [A-PVAR], [A-SYM], and

[A-PRIM] state that free variables, symbols, and primitives must be identi-

cal to be α-equivalent. Rule [A-MACDEF] compares letrec-syntax forms by

unifying the names of their bindings: given a set of fresh names zi, two

macro-definition forms are α-equivalence if their macro bindings and body

expressions are α-equivalent after substituting the fresh variables zi for their

respective variable bindings.

The rule [A-MACAPP] is central. To compare two macro applications for α-

equivalence, we must compare their operators and operands. The operators

are simply compared inductively. The operands, however, may bind vari-

ables in arbitrary ways. Unifying the bindings of two S-expressions proceeds

in two steps:

1. Freshen binding occurrences of base variables bound by this form.

2. Convert all corresponding references to their fresh names.

The first step involves enumerating addresses `i of binding positions in the

form and selecting the base variables xi, x′i bound at those locations in the
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[A-VAR]

x =α x

[A-PVAR]

a =α a

[A-SYM]

sym =α sym

[A-PRIM]

prim =α prim

[A-MACDEF]
z#form,m, form ′,m′

m{z/x} =α m
′{z/x′} form{z/x} =α form ′{z/x′}

((letrec-syntax ((((x m)))) form))=α ((letrec-syntax ((((x′ m′)))) form ′))

[A-MACAPP]
{`i 7→ xi} = bindings(σ, sexp) {`i 7→ x′i} = bindings(σ, sexp ′)
zi#sexp, sexp ′ sexp1 = sexp[`i 7→ zi] sexp2 = sexp ′[`i 7→ zi]

mexp =α mexp ′ sexp1{zi/xi}σP(sexp1,σ) =α sexp2{zi/x′i}σP(sexp2,σ)

((mexp .. sexp :σ))=α ((mexp ′ .. sexp ′ :σ))

[A-MACRO]
∀i.form i =α form ′i

((syntax-rules τ ((((pi : σ̂i form i))))))=α ((syntax-rules τ ((((pi : σ̂i form ′i))))))

[A-NULL]

(())=α (())

[A-CONS]
sexp1 =α sexp2 sexp ′1 =α sexp ′2
((sexp1 .. sexp ′1))=α ((sexp2 .. sexp ′2))

Figure 4.11: The α-equivalence relation for λm.

respective S-expressions:

bindings(σ, sexp)
def
= {` 7→ sexp.` | ` ∈ bp(σ), sexp.` ∈ B}

The modified S-expressions sexp1, sexp2 are formed by replacing these bind-

ing occurrences with fresh variables zi. The second step performs a type-

directed α-conversion, which requires parsing the S-expressions with their

syntax type in order to traverse their subterms. The definition of type-

directed conversion—given in the next section—is subtle, but the intuition

is reasonably straightforward: each fresh variable zi is substituted for its

corresponding base variable xi or x′i in all subterms where the variable is in

scope.

The rule [A-MACRO] compares macros by comparing their right-hand side

expressions. Note that this relation does not take into account changes of
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pattern variable; we assume here that choices of pattern variable are inflex-

ible. It is possible to define a more general notion of α-equivalence that

allows for renaming of pattern variables, but for our hygienic semantics this

more restrictive relation suffices. Finally, [A-NULL] compares the nil syntax

node for equality, and [A-CONS] compares pairs structurally.

4.3.3.1 Type-directed alpha-conversion

The [A-MACAPP] rule of α-equivalence relies on a type-directed α-conversion

operator for S-expressions. The operation, written sexp{zi/xi}σΣ, substitutes

variables zi for xi where they are in scope within an S-expression sexp of

arbitrary shape; the operation uses a syntax type σ, binding table Σ and

address ` to traverse the syntax tree.

It is worth taking a moment to examine the assumptions we make in

the definitions of these operations. First, we wish to ensure that every z is

uniquely chosen, i.e., if zi = zj then i = j. Second, let us assume that every

rib in a variable renaming is free of duplicate variable names. For example,

the operation is undefined on the ill-formed expression

Example 27(lambda (x x) x)

Fortunately, as we explained in Section 4.2.3.1 above, parsing always pro-

duces well-formed bindings tables, which never contain duplicate variable

bindings in a single rib.

Now let us turn to the definition in Figure 4.12. Pattern variables are

never affected by renaming base variables. At type bvar, base variables are

binding occurrences and therefore never α-converted. For import types,

we first perform any inner α-conversions (since inner bindings potentially

shadow outer bindings), and then perform a bindings-directed α-conversion,

defined in the next section, based on evaluating the imported binding signa-

ture β. Exported binding signatures do not affect the current scope and are

ignored. Pairs are converted by structural recursion, updating the tree ad-
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a{z/x}σΣ = a

y{z/x}bvarΣ = y

sexp{z/x}σ↓βΣ = sexp{z/x}σΣ{z/x}resolve(Σ,β)

sexp{z/x}σ↑βΣ = sexp{z/x}σΣ
((sexp1 .. sexp2)){z/x}((σ1 .. σ2))

Σ = ((sexp1{z/x}σ1Σ .. sexp2{z/x}σ2Σ ))

sexp{z/x}µA.σΣ = sexp{z/x}σ[µA.σ/A]
P(σ[µA.σ/A],sexp)

sexp{z/x}∪{σi}Σ = sexp{z/x}σiP(σi,sexp)

for smallest i s.t. P(σi, sexp) ⇓
sexp{z/x}σΣ = sexp

otherwise

Figure 4.12: Type-directed α-renaming.

{z/x}ε = ι

{z/x}a@Γ = {z/x}a{z/x}Γ

{z/x}P::Γ = {z/x}P{z/x}Γ

{z/x}{Vi} = {z/x}Vi

{z/x}zi: = {zi/xi}
{z/x}var: = ι var 6∈ {z}

Figure 4.13: Bindings-directed α-renaming.

dress accordingly. As usual, recursive and union types select out their nested

sub-table by the current tree address and recur. In other cases (for example,

the types expr, data, and (())), α-conversion leaves the term unchanged.

4.3.3.2 Bindings-directed alpha-renaming

Bindings-directed renaming performs a set of variable renamings at syntax

nodes where the current environment is extended with new bindings. The

operation is defined by a set of substitutions {z/x} and an environment

fragment defining the new bindings. The definition is given in Figure 4.13.

With an empty environment fragment ε, the operation is the identity ι. At

compound environment fragments a@Γ or P :: Γ, the operation is defined

structurally, with renamings guided by the inner environment structure tak-
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ing precedent over outer structure. Rib-directed renamings are composed

of renamings directed by their component variables. Thanks to our initial

assumptions, we know that each distinct variable x maps to a unique fresh

variable z, so the order of these renamings is insignificant. Finally, at a single

variable, if the variable happens to be one of the substituting variables zi, the

operation is the corresponding substitution {zi/xi}; otherwise the operation

is the identity.

Since these definitions are rather technical, let us walk through a small

example. Comparing the expression:

Example 28(lambda (x1 x2 x3) x2)

to the expression:

Example 29(lambda (y1 y2 y3) y2)

for α-equivalence requires unifying their bound variables. The [A-MACAPP]

rule extracts bindings for the first expression:

{AA 7→ x1,ADA 7→ x2, ADDA 7→ x3}

and for the second:

{AA 7→ y1,ADA 7→ y2,ADDA 7→ y3}

Picking fresh bindings to unify the two, we obtain:

sexp1 = ((((z1 z2 z3))x2))

and for the second expression:

sexp2 = ((((z1 z2 z3)) y2))

Note how these intermediate syntax trees have fresh binding occurrences but

the references still use the original names. Since binding tables are oblivious
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to variable references, both of these terms produce the same bindings table:

P(((formals expr↓A : RIB)), sexp1)

= P(((formals expr↓A : RIB)), sexp2)

= A 7→ {z1 :expr, z2 :expr, z3 :expr}}

Let Σ be this bindings table. Now we perform a type-directed α-conversion

on sexp1:

((((z1 z2 z3))x2)){zi/xi}((actuals expr↓A::ε))
Σ

= ((((z1 z2 z3)){zi/xi}actualsΣ (x2{zi/xi}expr↓A::ε
Σ )))

= ((((z1 z2 z3)) (x2{zi/xi}expr↓A::ε
Σ )))

= ((((z1 z2 z3)) (x2{zi/xi}exprΣ {zi/xi}A::ε
Σ )))

= ((((z1 z2 z3)) (x2{zi/xi}resolve(Σ,A::ε)
Σ )))

= ((((z1 z2 z3)) (x2{zi/xi}{zi:expr}::εΣ )))

= ((((z1 z2 z3)) (x2{zi/xi})))

= ((((z1 z2 z3)) z2))

A similar process produces the same result for sexp2.

4.4 Hygienic macro expansion

It is folklore that hygienic macros respect α-equivalence, yet without a way

to describe the scope of programs other than expanding all macros, no defi-

nition of α-equivalence has ever been available to make this notion precise.

Armed with a formal and precise definition, then, we can define a semantics

for hygienic macro expansion and prove formally the guarantees it provides.
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4.4.1 Expansion contexts

To begin with, we define a set of expansion contexts, in which expansion may

occur. These include form contexts F and S-expression contexts S:

F ::= [ ]

| ((letrec-syntax ((((x m))))F))

| ((mexp .. S :σ))

S ::= F | ((S .. sexp)) | ((sexp .. S))

Note that we do not allow expansion to occur on the right-hand side of the

clauses of a macro m. While we might expect this to be a reasonable posi-

tion to “substitute equals for equals,” it introduces subtleties with free pat-

tern variables that complicate the proofs in the next chapter. (In real macro

expanders, expansion does not occur in such contexts anyway, so this re-

striction does not ignore any behavior from actual practice.2) However, this

notion of contexts does allow for expansion to occur within sub-expressions

that real expanders cannot discover. For example, in the program fragment:

Example 30(let ([x (or (f 1) (g #f))])
(lambda (y) x))

the inner or expression cannot be macro-expanded without first expanding

the let expression, since Scheme expanders have no way of predicting the

behavior of the let macro. With an explicitly typed let macro, however, we

can parse its arguments and discover the inner expansion positions within

its subterms, all without expanding.

4.4.2 Hygienic expansion semantics

Figure 4.14 presents the rules for a small-step substitution semantics of hy-

gienic expansion. Rule subst interprets macro definitions by substituting
2An analogy from the call-by-value λ-calculus is β-reduction under a binder.
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((letrec-syntax ((((x m)))) form)) 7−→subst ((letrec-syntax ((((x m)))) form[m/x]))
where x ∈ fv(form)

and bv(form) ∩ fv(m) = ∅

((letrec-syntax ((((x m)))) form)) 7−→return form
where x 6∈ fv(form)

((((syntax-rules τ ((((pi : σ̂i form i)))))) .. sexp :σ)) 7−→trans µ(form i)
where µ = match(pi, sexp) for smallest i s.t. match(pi, sexp) ⇓

and bv(sexp)σ̂iP(σ̂i,sexp) ∩ fv(form i) = ∅
and bv(form i)#sexp

Figure 4.14: The expansion semantics of λm.

them in for their bound variable. As a simple way of modeling the recur-

sive binding structure, we leave the letrec-syntax definitions in place, and

only remove them if and when no free references remain in the body form,

using rule return. Finally, rule trans performs a macro transcription step: the

first pattern pi that matches sexp produces a substitution µ, which is used to

instantiate the right-hand side of the clause form i.

4.4.2.1 Substitution and transcription

The substitution relation 7−→subst uses a scope-respecting macro substitution

operation form[m/x], which is defined in Figure 4.15. The definition might

appear daunting, but in fact it follows the same structure as other scope-

respecting operations such as fv and bv . As usual, at macro applications, the

operation parses the macro argument using the annotated type and proceeds

with the syntax type σ and binding table Σ to guide the operation through

the S-expression tree. Note that at import types, if the variable x being

substituted is shadowed, then no substitution occurs. However, whenever

substitution reaches a free reference to x, it replaces x with the macro m.

Macro transcription is far simpler, since it does not require any under-

standing of program structure. The pattern matching operation match, de-
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a[m/x] = a
x[m/x] = m
y[m/x] = y

if x 6= y
((letrec-syntax ((((x m′)))) form))[m/x]

= ((letrec-syntax ((((x m′)))) form))

((letrec-syntax ((((x′ m′)))) form))[m/x]
= ((letrec-syntax ((((x′ m′[m/x])))) form[m/x]))

if x 6= x′

((mexp .. sexp :σ))[m/x] = ((mexp[m/x] .. sexp[m/x]σΣ :σ))
where Σ = P(σ, sexp)

a[m/x]σΣ = a
var [m/x]bvarΣ = var
form[m/x]exprΣ = form[m/x]
mexp[m/x]σ→expr

Σ = mexp[m/x]

(())[m/x](())Σ = (())

((sexp1 .. sexp2))[m/x]((σ1 .. σ2))
Σ = ((sexp1[m/x]σ1Σ .. sexp2[m/x]σ2Σ ))

sexp[m/x]σ↓βΣ = sexp
if x ∈ dom(resolve(Σ, β))

sexp[m/x]σ↓βΣ = sexp[m/x]σΣ
if x 6∈ dom(resolve(Σ, β))

sexp[m/x]σ↑βΣ = sexp[m/x]σΣ
sexp[m/x]µA.σΣ = sexp[m/x]

σ[µA.σ/A]
P(σ[µA.σ/A],sexp)

sexp[m/x]
∪{σi}
Σ;` = sexp[m/x]σiP(σi,sexp)

for smallest i s.t. P(σi, sexp) ⇓

Figure 4.15: Macro definition substitution.

fined in Figure 4.16, maps pattern variables to nodes in sexp by address,

forming a substitution µ. Applying the substitution to the template form

on the right-hand side of the macro clause is a simple matter of searching

the form for occurrences of pattern variables and replacing them with their

associated S-expression nodes. Application of µ is lifted to apply to all S-

expressions; the definition is given in the same figure.
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match(p, sexp)
def
= {a 7→ sexp.` | a = p.`}

µ(x) = x
µ(((mexp .. sexp :σ))) = ((µ(mexp) .. µ(sexp) :σ))
µ(prim) = prim
µ(m) = m
µ(sym) = sym
µ((())) = (())

µ(((sexp1 .. sexp2))) = ((µ(sexp1) .. µ(sexp2)))

Figure 4.16: Macro transcription.

4.4.2.2 Hygiene side conditions

Both the substitution rule 7−→subst and transcription rule 7−→trans have side

conditions that we have not yet addressed. The substitution rule’s side con-

dition mandates that free variables occurring in the macro being substituted

cannot conflict with bound variables in the body expression. This ensures

that references in a macro retain their meaning when the macro is placed

in a new context. This notion is sometimes (rather confusingly) referred

to in macro literature as referential transparency. It is also reminiscent of

capture-avoiding substitution in the λ-calculus.

The side condition on transcription ensures that bound variables occur-

ring the template of a macro clause are “private” to the macro by disallowing

them to conflict with free variables in the macro argument. This makes it

impossible for a macro definition to capture references in the macro appli-

cation site.

Taken together, these rules constitute the hygiene conditions for macro

expansion.
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4.4.2.3 Hygienic expansion relation

Finally, we introduce an explicit notion of an α-renaming step:

sexp 7−→α sexp ′
def
= sexp =α sexp ′

This rule allows an expander to choose an α-equivalent program term non-

deterministically.

Thus we arrive at the full definition of hygienic macro expansion:3

7−→ε
def
= 7−→α;S[ 7−→subst ∪ 7−→return ∪ 7−→trans]

7−→−→ε
def
= 7−→∗ε

In words: a hygienic expansion sequence is any number of macro substitu-

tions, returns, or transcription steps occurring within an expansion context,

each preceded by an α-conversion to ensure the hygiene conditions are met.

By preceding each step with an α-conversion, we lift the definition of expan-

sion to α-equivalence classes of programs.

3We overload S[—] to denote the compatible closure of a binary sexp relation.





CHAPTER 5

Well-Formedness

The formal guarantees provided by explicit binding specifications can only

be maintained if those specifications are respected by macro definitions and

their clients. In this chapter we present the type system of λm, which ensures

statically that expansion never violates the specifications of macros.

5.1 Type checking

Recall from Chapter 4 the definition of bindings and environments:

B ::= V | P | Γ

Γ ::= ε | P :: Γ | a@Γ

P ::= {Vi}

V ::= x :τ | a :δ

These environments provide the information needed for type checking to

determine the syntactic types of bound variables. Type checking involves an

additional pattern environment Π:

Π ::= • | p : σ̂

This environment tracks the pattern variables bound in the right-hand side of

a macro definition clause. Given a pattern environment Π, we can determine

the type of a pattern variable a, as shown in Figure 5.1.

67
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Π(a) = ptype(p, σ̂, a) where Π = p : σ̂

ptype(a, σ̂, a) = σ̂
ptype(p, σ↑β, a) = ptype(p, σ, a) if p 6∈ P
ptype(((p1 .. p2)),((σ̂1 .. σ̂2)), a) = ptype(pi, σ̂i, a) for smallest i ∈ 1, 2

Figure 5.1: Pattern environment lookup.

A well-formed pattern environment has a type for every pattern variable:

wf (p : σ̂)
def
= wf (p) ∧ ∀a ∈ dom(p).ptype(p, σ̂, a) is defined

5.1.1 Two dimensions of scope

The two environments Γ and Π parallel the two dimensions of scope in

Scheme. The traditional dimension corresponds to the scope of variables

in the host program. For example, in the expression

Example 31(lambda (foo) expr)

the variable foo may be referred to within expr . The second dimension cor-

responds to the right-hand side of a macro definition, where the current

pattern variables are in scope and stand in for syntax nodes in the macro

argument. It is important to understand that pattern variables are scoped in

both dimensions. For example, within a macro clause binding pattern vari-

able a with type bvar, we can use a throughout the right-hand side of the

clause because it is bound in Π:

Example 32(lambda (a) expr)

But within expr , we can also use a as a variable reference, because, having

bound a with lambda, it now occurs in Γ.
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5.1.2 Inverting the pattern environment

Well-formed patterns bind their variables linearly:

wf (p)
def
= ∀`, `′.(p.` = p.`′) =⇒ (` = `′)

Consequently each pattern p implicitly defines a bijection between pattern

variables and tree addresses. In particular, we can invert a pattern to deter-

mine the address of a pattern variable in the current macro pattern:

p−1(a) = ` s.t. p.` = a

We overload this notation for arbitrary collections of bindings B in the natu-

ral way, as well as lifting the notation to pattern environments:

Π−1(B)
def
= p−1(B) where Π = p : σ̂

Inversion is used in type-checking pattern variable references to ensure

the current base environment binds the expected pattern variables appropri-

ately. For example, macros can document that one pattern variable occurs

in the scope of another:

((bvar expr↓{A : VAR}))→ expr

An implementation that places a pattern variable in the position of the expr

expression but without binding the variable in the bvar position must be

rejected:

Example 33;; ((bvar expr↓{A : VAR}))→ expr
(define-syntax bad

(syntax-rules ()
[(bad a e)
e]))

Otherwise, the types would lead to inconsistent conclusions about scope:

(lambda (x)
(bad x x)) =α

(lambda (x)
(bad y y)) 7−→∗ε (lambda (x) y)
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ε|P = ε
(P :: Γ)|P = Γ|P if P|P = ∅
(P :: Γ)|P = P|P :: Γ|P if P|P 6= ∅
(a@Γ)|P = a@(Γ|P)
{x :τ , a :δ}|P = {a :δ}

Figure 5.2: Projecting pattern variables from the base environment.

Moreover, type checking must ensure that the entire structure of pattern

variables bound in the base environment exactly matches the structure doc-

umented in the macro type. We do this by extracting the pattern variable

portion of a base environment, notated Γ|P, and inverting the resulting envi-

ronment to recover a binding signature that can be compared to the macro’s

documented signature.

Figure 5.2 presents the definition of B|P. Most of the cases are structural.

The one subtlety is the case where a rib contains no pattern variables; since

an empty rib does not affect the documented binding structure of a macro,

type checking is made more robust by ignoring it.

5.1.3 The base environment stack

The expansion semantics given in Chapter 4 uses substitution to specify

macro definitions. In other words, the approach of our model is a small-

step substitution semantics, where macros can only be applied when their

definition occurs inline at the point of use:

((((syntax-rules σ → expr · · · )) .. sexp :σ))

This approach has the consequence that macros may get substituted into the

bodies of other macros. However, we do not allow nested macros to refer to

pattern variables of outer macros, as this would not model any part of the

actual behavior of Scheme macros. So each macro body is type-checked in a

fresh pattern environment, to ensure that no such references are possible.
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Changing the pattern environment is not sufficient to implement pat-

tern inversion correctly: when we invert the base environment to determine

which pattern variables in scope where, we are only interested on those pat-

tern variables from the innermost macro. So instead of maintaining a single

base environment, type checking uses a stack of base environments. Pattern

inversion is performed on only the top of the base environment stack, and

each time the type checker enters the body of a macro, it pushes a fresh base

environment.

5.1.4 Checking form types

Figure 5.3 presents the rules for the form type checking judgment. Let us

consider the rules in detail. Rule [F-MACDEF] checks a macro-definition form.

Macro definitions in λm are not allowed to nest within macro bodies, so the

rule only applies when the pattern environment is •. The rule extends the

base environment Γ by associating the macro name x with the type of the

macro m. Since the definition may be recursive, both the macro m and the

body expression form are type-checked in the extended environment.

Rule [F-MACAPP] checks macro applications. The macro expression mexp

is checked to have an arrow type, and the annotated argument type σ is

checked to be a subtype of its domain σ′. The argument expression sexp is

parsed with σ to produce a bindings table Σ, which is then used to type-

check sexp at σ.

The rule also requires Σ to be well-formed. Specifically, no rib should

contain two pattern variables that might be expanded into duplicate vari-

able bindings or overlapping sets of variable bindings. Figure 5.5 presents

the judgment Π ` B ok for well-formed bindings and Π ` Σ ok for well-

formed binding tables. The latter judgment checks that all pattern variables

occurring together in a single rib can be proven not to alias one another.

This works by comparing the adjacency matrix of pattern variables that oc-
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Γ; Π ` form : expr

[F-MACDEF]
Γ′ = {x :τ} :: Γ

Γ′ :: Γ; • ` m : τi Γ′ :: Γ; • ` form : expr

Γ :: Γ; • ` ((letrec-syntax ((((x m)))) form)) : expr

[F-MACAPP]
σ : δ σ <: σ′ Σ = P(σ, sexp) Π ` Σ ok

Γ; Π ` mexp : σ′ → expr Γ; Π; Σ ` sexp : σ

Γ; Π ` ((mexp .. sexp :σ)) : expr

[F-VAR]
Γ(x) = expr

Γ; Π ` x : expr

[F-PEXPR]
Π−1(Γ|P) = γ a 6∈ dom(Γ)

Π(a) <: expr↓γ
Γ :: Γ; Π ` a : expr

[F-PBVAR]
Π−1(Γ|P) = ρ :: γ ρ(Π−1(a)) = VAR

Π(a) <: bvar

Γ :: Γ; Π ` a : expr

Γ; Π ` mexp : σ → expr

[M-VAR]
Γ(x ) = σ → expr

Γ; Π ` x : σ → expr

[M-PMAC]
Π−1(Γ|P) = γ a 6∈ dom(Γ)

Π(a) ⇓ ε = (σ → expr)↓γ
Γ :: Γ; Π ` a : σ → expr

[M-MACRO]
σ : δ ∪{σ̂i} : δ σ <: ∪{σ̂i}

∀i.wf (pi : σ̂i) ∧ wf (pi) ∧ ε :: Γ; pi : σ̂i ` form i : expr

Γ; Π ` ((syntax-rules σ → expr ((((pi : σ̂i form i)))))) : σ → expr

[M-PRIM]
prim : σ → expr

Γ; Π ` prim : σ → expr

Figure 5.3: The form and macro type checking judgments.
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Γ; Π; Σ ` sexp : σ

[S-PVAR]
Π−1(Γ|P) = γ Π(a) <: σ↓γ

Γ :: Γ; Π; Σ ` a : σ

[S-BVAR]

Γ; Π; Σ ` x : bvar

[S-DATA]
data 6∈ P ∀`, a.(data.` = a) =⇒ Π(a) <: data

Γ; Π; Σ ` data : data

[S-EXPR]
form 6∈ P

Γ; Π ` form : expr

Γ; Π; Σ ` form : expr

[S-MEXP]
mexp 6∈ P

Γ; Π ` mexp : σ′ → expr σ <: σ′

Γ; Π; Σ ` mexp : σ → expr

[S-IMPORT]
sexp 6∈ P B = resolve(Σ, β) Π ` B ok

(B,Γ) :: Γ; Π; Σ ` sexp : σ

Γ :: Γ; Π; Σ ` sexp : σ↓β

[S-EXPORT]
sexp 6∈ P

Γ; Π; Σ ` sexp : σ

Γ; Π; Σ ` sexp : σ↑β

[S-NULL]

Γ; Π; Σ ` (()) : (())

[S-CONS]
Γ; Π; Σ ` sexp1 : σ1 Γ; Π; Σ ` sexp2 : σ2

Γ; Π; Σ ` ((sexp1 .. sexp2)) : ((σ1 .. σ2))

[S-REC]
sexp 6∈ P σ′ = σ[µA.σ/A]

Σ′ = P(σ′, sexp) Π ` Σ′ ok
Γ; Π; Σ′ ` sexp : σ′

Γ; Π; Σ ` sexp : µA.σ

[S-UNION]
sexp 6∈ P

Σ′ = P(σi, sexp) Π ` Σ′ ok
Γ; Π; Σ′ ` sexp : σi

Γ; Π; Σ ` sexp : ∪{σi}

Figure 5.4: The syntax type checking judgment.
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B ∩ P = ∅
• ` B ok

adj (B) ⊆ {{p.`, p.`′} | {`, `′} ∈ adj (σ̂)}
p : σ̂ ` B ok

∀B ∈ rng(Σ).Π ` B ok

Π ` Σ ok

Figure 5.5: Well-formed bindings.

cur together in a rib:

adj (B)
def
= {{a, b} | P ∈ B ∧ a 6= b ∈ dom(P)}

to the adjacency matrix implicitly provided by the macro’s documented type:

adj (σ)
def
= {{`, `′} | ρ ∈ σ ∧ ` 6= `′ ∈ dom(ρ)}

As long as a and b occur together in a rib in the macro rule’s specified type σ̂,

the type system will prevent any use of the macro from instantiating a and b

with aliases. This way we can safely place them together within a single rib

in the macro implementation.

The next three rules specify type checking of variables. With rule [F-VAR],

base variables are checked by simply looking them up in the base environ-

ment. Pattern variables are subtler, however. For pattern variables annotated

with type expr, possibly in the scope of some additional environment struc-

ture, the rule [F-PEXPR] uses pattern inversion to ensure that the expected

environment structure matches the actual environment structure in Γ. Fi-

nally, rule [F-PBVAR] checks a use of a bvar pattern variable as a reference.

We discuss this rule in the next section.

5.1.5 The aliasing problem

The design of the λm type system led to the discovery of the following pecu-

liarity of Scheme macros. Consider the following macro:
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Example 34;; ((bvar bvar))→ expr
(define-syntax K

(syntax-rules ()
[(K a b)
(lambda (a)

(lambda (b)
a))]))

We might expect that any application of K would produce an expression

equivalent to (lambda (x) (lambda (y) x)). Not so: the expression (K x x)

uses the same variable for both a and b and expands to:

(lambda (x)
(lambda (x) x)) 6=α

(lambda (x)
(lambda (y) x))

This means that the binding structure of K is dependent on the actual choice

of names given to its arguments. This dependency defeats the ability to

determine binding structure statically.

This aliasing problem is addressed in the type rule [F-PBVAR], which im-

poses a restriction to prevent such ambiguities. A pattern variable a of type

bvar may be used as a variable reference, but only if it meets the following

conditions:

1. a is in scope in the base environment; and

2. there are no other pattern variables in scope in the base environment

that might shadow a.

This is called the shadow restriction, and is specified by requiring the ad-

dresses of a to appear in the first rib of the inverted environment. While

there may be other pattern variables in the same rib, the syntax type system

described below ensures that none of those variables may alias a.

The shadow restriction prohibits macros like K from being written. If this

restriction seems draconian, consider that K can easily be rewritten:
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Example 35;; ((bvar bvar))→ expr
(define-syntax K′

(syntax-rules ()
[(K′ a b)
(lambda (a)

(let ([tmp a])
(lambda (b) tmp)))]))

Note that in Scheme, this macro always exhibits the intended behavior, in

that both (K′ x y) and even (K′ x x) expand into an expression equivalent to

(lambda (x) (lambda (y) x)).

5.1.6 Checking macro types

Next we examine the rules for checking the types of macro expressions

mexp, also in Figure 5.3. Rules [M-VAR] and [M-PMAC] parallel rules [F-VAR]

and [F-PEXPR] for checking variable references to macros.1 Rule [M-MACRO]

type-checks user-defined macros. To ensure completeness of pattern match-

ing, we require the annotated type σ to be a subtype of the union of all

pattern types; we could relax this restriction at the cost of expansion-time

match errors. We could also eliminate unused patterns by requiring the

union to be a subtype of the annotated type σ. We then check each rule in

the macro by using the pattern and its type as the current pattern environ-

ment and pushing a new, empty base environment onto the stack. Finally,

rule [M-PRIM] returns the fixed type of a primitive.

5.1.7 Checking syntax types

Figure 5.4 presents the rules for checking an S-expression against a syntax

type σ. Unlike forms and macro expressions, an S-expression may have any

number of different syntax types; in other words, the rules are defined by

type-directed induction. In an implementation, checking forms and macro
1For the equality comparison in rule [M-PMAC], we simplify degenerate forms in the

type such as unused recursive type variables and union types with a single element.
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expressions produces a type as an output; syntax type checking instead

takes the expected type σ as an input. The syntax type checking judgment

uses an additional context argument: the bindings table Σ, which was ob-

tained by parsing the argument S-expression with the annotated type σ in

rule [F-MACAPP].

Rule [S-PVAR] is analogous to rules [F-PEXPR] and [M-PMAC] and checks

a pattern variable by ensuring its specified imports are in the base environ-

ment. Rule [S-BVAR] allows any base variable to be a binding occurrence.

Rule [S-DATA] checks purely symbolic data (as in the argument to quote) by

ensuring that any nested pattern variables have type data. Rules [S-EXPR]

and [S-MEXP] respectively indicate form and macro expression positions,

and delegate to their respective type judgments.

The next two rules deal with binding signature types. Rule [S-IMPORT]

checks an import type by extending the base environment with the new bind-

ings and recurring. Even though Σ comprises only well-formed environment

fragments, we must check that the environment extension B is well-formed,

since resolving β may form new ribs with aliased bindings. Rule [S-EXPORT]

does not require additional checks, since the table Σ already incorporates β

in its structure as a result of parsing.

The remaining rules are essentially structural. Both rule [S-NULL] and

rule [S-CONS] use the syntax type to parse S-expression structure. The last

two rules unfold the next addressing region in the syntax type and continue

parsing the S-expression before recurring. Again, parsing forms a new bind-

ing table Σ′, which must be well-formed.

5.2 Well-formed types

Several points in the type-checking judgments rely on types themselves be-

ing well-formed. Indeed, because syntax types and binding signatures con-

stitute a little programming language in their own right (with parsing as
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their operational semantics), we specify a separate, meta-level type system

for ensuring the well-formedness of syntax types.

5.2.1 Well-formed syntax types

The well-formedness rules for syntax types mimic the structure of parsing,

as defined in Chapter 4. In particular, evaluating syntax types is a two-phase

process:

1. parse the syntax node with the syntax type, producing a table of bind-

ings Σ; and

2. use Σ to resolve binding signatures.

The definition of well-formedness, provided in Figure 5.6, is similarly sepa-

rated into two phases. The first judgment is export well-formedness:

` `↑ σ : Υ

This judgment provides an abstract table Υ mapping syntax nodes by ad-

dress to binding types δ. This judgment corresponds to the parsing phase

and the construction of a bindings table Σ. The second judgment, import

well-formedness, ensures that all import types contain well-formed binding

signatures according to the abstract table Υ constructed by the first judg-

ment:

Υ `↓ σ ok

The well-formedness judgment also parallels the interleaving of the pars-

ing process. Each time parsing crosses the boundary of an addressing region,

the evaluation recurs. Similarly, the well-formedness judgment recurs at ad-

dressing region boundaries.
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σ : δ

ε `↑ σ : Υ Υ(ε) = δ Υ `↓ σ ok

σ : δ

` `↑ σ : Υ

` `↑ expr : {` 7→ NONE} ` `↑ data : {` 7→ NONE}

σ : δ

` `↑ σ → expr : {` 7→ NONE} ` `↑ bvar : {` 7→ VAR}

` 6∈ dom(Υ) ∨Υ(`) = NONE

` `↑ σ : Υ Υ|{`}(≺) ` β : δ

` `↑ σ↑β : Υ[` 7→ δ]

` `↑ σ : Υ

` `↑ σ↓β : Υ

` `↑ (()) : {` 7→ NONE}
`A `↑ σ1 : Υ1 `D `↑ σ2 : Υ2

` `↑ ((σ1 .. σ2)) : (Υ1 ∪Υ2)[` 7→ NONE]

A : δ σ : δ

` `↑ µA.σ : {` 7→ δ}
A : δ

` `↑ A : {` 7→ δ}

∀i 6= j.σi 6./ σj ∀i.σi : δ

` `↑ ∪{σi} : {` 7→ δ}

Υ `↓ σ ok

Υ `↓ expr ok Υ `↓ data ok Υ `↓ σ → expr ok Υ `↓ bvar ok

Υ `↓ σ ok

Υ `↓ σ↑β ok

Υ ` β : ENV Υ `↓ σ ok

Υ `↓ σ↓β ok

Υ `↓ (())ok
Υ `↓ σ1 ok Υ `↓ σ2 ok

Υ `↓ ((σ1 .. σ2))ok

Υ `↓ µA.σ ok Υ `↓ A ok Υ `↓ ∪{σi} ok

Figure 5.6: Well-formed types.
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Υ ` β : δ

∀i.Υ(`i) = VAR ∀j.Υ(`j) = RIB

Υ ` {`i : VAR, `j : RIB} : RIB Υ ` ε : ENV

Υ ` ρ : RIB Υ ` γ : ENV

Υ ` ρ :: γ : ENV

Υ(`) = ENV Υ ` γ : ENV

Υ ` `@γ : ENV

Figure 5.7: Well-formed signatures.

5.2.2 Well-formed signatures

The rules for well-formed signatures are given in Figure 5.7. These fairly

straightforward rules simply ensure that references to syntax nodes respect

their binding types found in the abstract bindings table Υ.

5.2.3 Shapes

Well-formed union types are disallowed from having syntactically overlap-

ping disjuncts. To specify this property, it is useful to describe an abstraction

of syntax types. We define syntactic shapes:

�,4 ::= > | (()) | ((� .. 4)) | µA.� | A | ∪{�}

Shapes eliminate form types, macro types, and binding specifications, and

focus instead on just the tree structure of a syntax type. We restrict shapes

to be contractive in the analogous fashion to syntax types. Given a syntax

type σ, we can compute its shape inductively, as shown in Figure 5.8.

These definitions allow us to define the shape-overlap relation, σ ./ σ′,

shown in Figure 5.9. The shape> overlaps with all shapes. The null shape(())

overlaps with itself. Pair shapes overlap structurally. A union shape overlaps

with another shape if any of its disjuncts overlaps with the other. A recursive

shape overlaps with another shape if its unfolding overlaps.



5.2. WELL-FORMED TYPES 81

shape(σ↑β) = shape(σ)
shape(σ↓β) = shape(σ)
shape(µA.σ) = µA.shape(σ)
shape(A) = A

shape(∪{σi}) = ∪{shape(σi)}
shape((())) = (())

shape(((σ1 .. σ2))) = ((shape(σ1) .. shape(σ2)))
shape(bvar) = >
shape(expr) = >
shape(σ → expr) = >
shape(data) = >

Figure 5.8: Computing the shape of a syntax type.

σ ./ σ′

shape(σ) ./ shape(σ′)

σ ./ σ′

� ./ 4

> ./ � � ./ > (()) ./ (())

�1 ./ 41

((�1 .. �2)) ./ ((41 .. 42))

�2 ./ 42

((�1 .. �2)) ./ ((41 .. 42))

∃i.�i ./ 4
∪{�i} ./ 4

∃i.� ./ �i

� ./ ∪{�i}
�[µA.�/A] ./ 4
µA.� ./ 4

� ./ 4[µA.4/A]

� ./ µA.4

Figure 5.9: Shape overlap.

Shapes bear a strong resemblance to the shape types of Culpepper and

Felleisen [17]—unsuprisingly, as shape types formed the inspiration for this

work! Indeed, syntax types σ can be seen as shape types with the addition

of binding signatures in order to specify scope and binding.





CHAPTER 6

Properties of Typed Hygienic Macros

This chapter presents the key correctness properties of the λm model. Nat-

urally, the language enjoys standard properties such as type soundness (for

both parsing and expansion). More subtly, there are several properties that

are typically left unstated for standard calculi, but which nevertheless be-

come non-trivial in the presence of macros. These include type preserva-

tion under α-conversion, as well as the guaranteed α-convertibility of all

programs—a prerequisite of progress for hygienic expansion. Finally, the

key correctness criterion of the λm model—and one of the central contri-

butions of this thesis—is a formal characterization of hygiene, construed as

preservation of α-equivalence and proved as a corollary of confluence.

6.1 Soundness of parsing

Recall from Chapters 3 and 5 that binding signatures (and consequently

syntax types) are classifed by “binding types,” i.e., the types of bindings

defined within and exported by a node in a parse tree:

δ ::= VAR | RIB | ENV | NONE

Parsing generates a table mapping syntax nodes to bindings, which are clas-

sified by binding types:

• : NONE V : VAR P : RIB Γ : ENV

83
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Σ : Υ Υ ` B : δ

∀` ∈ dom(Υ).Υ|{`}(≺) ` Σ(`) : Υ(`)

Σ : Υ

B : δ

Υ ` B : δ

Figure 6.1: Well-typed bindings.

Parsing and resolution satisfy the simple invariant that they respect the bind-

ing types predicted by a binding type environment Υ. A binding table is well-

typed with respect to a binding type environment if it satisfies the property

given in Figure 6.1. That is, well-typed binding tables map addresses to

bindings of the appropriate type.

Theorem 6.1.1 (Resolution soundness). Let Σ : Υ. Then the following prop-

erties hold:

1. If Υ ` attr : δ then Υ ` resolve(Σ, attr) : δ.

2. If Υ(`) = δ then Υ ` resolve(Σ, `) : δ

Proof. By induction on the definition of resolve.

Corollary. If Σ : Υ then {` 7→ resolve(Σ,Σ(`))} : Υ.

The parsing process respects binding types, and so always produces well-

typed bindings tables. The proof relies on the above theorem as well as the

following lemma, which is required for unfolding recursive types:

Lemma 6.1.2 (Type substitution). If ` `↑ σ : Υ and A : δ and σ0 : δ then

` `↑ σ[µA.σ0/A] : Υ.

Proof. By induction on σ. We consider the case where σ = A; the remaining

cases are straightforward. We have σ[µA.σ0/A] = µA.σ0 and Υ = {` 7→ δ}.

By assumption σ0 : δ so ` `↑ µA.σ0 : {` 7→ δ}.
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Theorem 6.1.3 (Parsing soundness). If ` `↑ σ : Υ and Σ = parse(σ, sexp, `)

then Σ : Υ.

Proof. By induction on the definition of parse.

6.2 Freshness

The next property we prove is one that is typically left unstated, but is nev-

ertheless non-trivial in a system with macros: the guaranteed existence of

fresh variables that can be used to α-convert a term. This property is crucial

for the progress of hygienic macro expansion, because it means that expan-

sion can never get stuck for lack of fresh variables.

The theorem relies on a rather technical lemma, which guarantees that

a type-directed α-conversion which is defined when a term is parseable, i.e.,

can be successfully parsed at a given type σ.

Lemma 6.2.1. Let sexp be parseable at σ, where ∀i.`i ∈ bp(σ) and xi =

sexp.`i. If zi#sexp and σ : δ then

sexp[`i 7→ zi]{zi/xi}σP(σ,sexp[`i 7→zi])

is defined.

Proof. By nested inductions on the definition of parsing. The full proof is

provided in Appendix A.

Theorem 6.2.2. If Γ; Π ` sexp : σ or Γ; Π; Σ ` sexp : σ then there exists an

S-expression sexp ′ =α sexp such that x#sexp ′.

Proof. By induction on the type derivation. At each macro application,

choose a fresh set of variable bindings zi that do not occur in supp(sexp)

and α-convert. Lemma 6.2.1 ensures that the α-conversion succeeds.
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∀` ∈ dom(Υ).Υ(`) = NONE ∨Υ(`) = Υ(`′)

Υ v Υ′

ε `↑ σ0 : Υ0 ` `↑ σ : Υ Υ v Υ0 Υ `↓ σ ok

` ` σ : Υ v σ0 : Υ0

Figure 6.2: Generalized well-formedness.

6.3 Alpha-equivalence

The fact that α-conversion does not affect the type (or typability) of a pro-

gram is rarely proved for typical languages. But given that α-conversion is

an explicit part of hygienic expansion—namely, via the 7−→α rule—and that

scope is the essential component of type-checking in λm, we must take extra

care to prove this property.

The theorem relies on a technical lemma to show that a type-directed

α-conversion preserves the type of an S-expression. The statement of the

lemma makes use of a generalization of the well-formedness relation on

types, given in Figure 6.2. The judgment ` ` σ : Υ v σ0 : Υ0 generalizes the

judgment σ : δ for inductive proofs by tracking the various well-formedness

judgments on a sub-component σ of a syntax type σ0. Note that for any well-

formed type σ : δ, there is by definition a binding-type environment Υ such

that ε ` σ : Υ v σ : Υ.

Lemma 6.3.1 (Type-directed α-conversion). If the following properties hold:

• {`i 7→ xi} ⊆ bindings(σ, sexp)

• Σ = P(σ0, sexp)

• Σ′ = Σ[`i 7→ zi] where zi#sexp

• Σ : Υ0

• ` ` σ : Υ v σ0 : Υ0
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then:

Γ; Π; Σ ` sexp.` : σ ⇐⇒ Γ; Π; Σ′ ` sexp[`i 7→ zi].`{zi/xi}σΣ′ : σ

Proof. By induction on σ. The proof relies on two additional lemmas and is

presented in Appendix A.

Theorem 6.3.2. Let sexp =α sexp ′. Then the following properties hold:

1. Γ; Π ` sexp : τ =⇒ Γ; Π ` sexp ′ : τ

2. Γ; Π; Σ ` sexp : σ =⇒ Γ; Π; Σ ` sexp ′ : σ

Proof. By induction on the type derivation. We consider the case of macro

applications here. Let Σ = P(σ, sexp) and Σ′ = P(σ, sexp ′); by the definition

of α-equivalence, we have Σ′′ = Σ[`i 7→ zi] = Σ′[`i 7→ zi].

Γ; Π ` ((mexp .. sexp :σ)) : expr
⇐⇒ {inversion of Rule [F-MACAPP]}

Γ; Π ` mexp : σ0 → expr ∧ Γ; Π; Σ ` sexp : σ
⇐⇒ {Lemma 6.3.1}

Γ; Π ` mexp : σ0 → expr ∧ Γ; Π; Σ′′ ` sexp[`i 7→ zi]{zi/xi}σΣ′′ : σ
⇐⇒ {induction hypothesis}

Γ; Π ` mexp ′ : σ0 → expr ∧ Γ; Π; Σ′′ ` sexp ′[`i 7→ zi]{zi/x′i}σΣ′′ : σ
⇐⇒ {Lemma 6.3.1}

Γ; Π ` mexp ′ : σ0 → expr ∧ Γ; Π; Σ′ ` sexp ′ : σ
⇐⇒ {Rule [F-MACAPP]}

Γ; Π ` ((mexp ′ .. sexp ′ :σ)) : expr

The remaining cases are straightforward.

6.4 Subsumption

The type-checking rules for forms and macro expressions are invariant in

their result type: they always produce expr for forms or the most specific

arrow type for macro expressions. An S-expression may be typeable at any

number of types, however.1 A key property of syntax type checking is sub-
1Put differently, we can consider the type as an input to the syntax type checking judg-

ment and an output of the other two judgments.
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sumption: if type-checking succeeds for a type σ it succeeds for any super-

type of σ.

Since subtyping relies on import normalization and region displacement,

the proof of subsumption depends on the following two lemmas:

Lemma 6.4.1 (Import normalization).

Γ; Π; Σ ` sexp : σ↓β ⇐⇒ Γ; Π; Σ ` sexp : σ ⇓ β

Proof. By induction on the definition of σ ⇓ β.

Lemma 6.4.2 (Region displacement).

Γ; Π; Σ ` sexp : σ ⇐⇒ Γ; Π; Σ� ` ` sexp : σ � `

Proof. By induction on the definition of σ � `.

Lemma 6.4.3. If Γ; Π; Σ ` sexp.` : σ̂ and ` ` σ̂ <: σ̂′ then Γ; Π; Σ ` sexp.` : σ̂′.

Proof. By coinduction. We consider the case where σ is a recursive type

here. Let Σ′ = P(σ[µA.σ/A], sexp.`.ε) and Σ′′ = Σ ∪ (Σ′ � `). Note that

dom(Σ) ∩ dom(Σ′ � `) = ∅.

Γ :: Γ; Π; Σ ` sexp.` : (µA.σ)↓γ
=⇒ {inversion of Rule [S-IMPORT]}

(resolve(Σ, γ),Γ) :: Γ; Π; Σ ` sexp.` : µA.σ
=⇒ {inversion of Rule [S-REC]}

(resolve(Σ, γ),Γ) :: Γ; Π; Σ′ ` sexp.`.ε : σ[µA.σ/A]
=⇒ {Lemma 6.4.2}

(resolve(Σ, γ),Γ) :: Γ; Π; Σ′ � ` ` sexp.`.ε : σ[µA.σ/A]� `
=⇒ {dom(Σ) ∩ dom(Σ′ � `) = ∅}

(resolve(Σ′′, γ),Γ) :: Γ; Π; Σ′′ ` sexp.`.ε : σ[µA.σ/A]� `
=⇒ {Lemma 6.4.1}

Γ :: Γ; Π; Σ′′ ` sexp.` : (σ[µA.σ/A]� `) ⇓ γ
=⇒ {coinduction hypothesis}

Γ :: Γ; Π; Σ′′ ` sexp.` : σ̂′

=⇒ {dom(Σ) ∩ dom(Σ′ � `) = ∅}
Γ :: Γ; Π; Σ ` sexp.` : σ̂′

The case of union types is similar; the other cases are straightforward.
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Theorem 6.4.4 (Subsumption). If Γ; Π; Σ ` sexp : σ and σ <: σ′ then

Γ; Π; Σ ` sexp : σ′.

Proof. Follows immediately from Lemma 6.4.3.

6.5 Type soundness

For the well-formedness invariants to be meaningful, they must accurately

describe the behavior of macro expansion. Fortunately, the type system of λm

is sound; the invariants of form and syntax types are maintained throughout

expansion. In particular, the system we have described is specified tightly

enough that no expansion-time errors occur. In practice, many expansion-

time errors are reasonable to allow, such as pattern-matching failure or fail-

ure of computational effects in procedural macros (see Chapters 7 and 8).

We prove type soundness with the standard syntactic approach of Wright

and Felleisen [72]. Many of the lemmas and theorems about well-typed

programs involve two parallel propositions: one for forms and macro ex-

pressions, and one for S-expressions. For example, we may have a judgment

Γ; Π ` form : expr on a form, a judgment Γ; Π ` mexp : σ → expr on a

macro expression, or a judgment Γ; Π; Σ ` sexp : σ on an S-expression. Sim-

ilarly, we may sometimes refer to an overloaded operation such as fv(form)

or fv(sexp)σΣ that may or may not require a syntax type and bindings table.

To keep the presentation concise without introducing additional generaliza-

tions, we use the simple shorthand Γ; Π ; Σ ` sexp : σ, fv(sexp) σΣ , etc. to

describe all cases at once.

6.5.1 Type preservation

The proof that expansion preserves types relies on an auxiliary notion of

merging type environment stacks, given in Figure 6.3. Merging two stacks

Γ � Γ
′ combines the two innermost environments, i.e., the rightmost envi-
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ronment of Γ and the leftmost environment of Γ
′.

Γ � ε = Γ
ε � Γ = Γ

(Γ,Γ :: ε) � (Γ′ :: Γ
′
) = Γ, (Γ,Γ′) :: Γ

′

Figure 6.3: Environment pasting.

6.5.1.1 Expansion contexts and decomposition

The first two lemmas are standard; they allow us to shift focus from a top-

level program to the hole of an expansion context where an individual ex-

pansion rule applies.

Lemma 6.5.1 (Decomposition). Let form 6∈ Variable. If:

Γ0; • ; Σ ` S[form] : σ

then

Γ� Γ0; Π ` form : expr

for some Γ.

Proof. By induction on the expansion context S.

Lemma 6.5.2. Let form, form ′ 6∈ Variable. If the following propositions hold:

• Γ0; • ; Σ ` S[form] : σ

• Γ� Γ0; • ` form : expr

• Γ� Γ0; • ` form ′ : expr

then Γ0; • ; Σ ` S[form ′] : σ.

Proof. By induction on the expansion context S.
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Figure 6.4: Term and environment structure of macro transcription.

6.5.1.2 Macro substitution and the 7−→subst rule

The rule 7−→subst performs a macro substitution on the body of a letrec-syntax

form. The following lemma ensures that the result of macro substitution is

well-typed.

Lemma 6.5.3 (Macro substitution). Let Γ� Γ0; Π ; Σ ` sexp : σ such that

(Γ� Γ0)(x) = σ → expr and Γ0; • ` m : σ′ → expr <: σ → expr. Then:

Γ� Γ0; Π ; Σ ` sexp[m/x] σΣ : σ

Proof. By induction on the type derivation, using subsumption.

6.5.1.3 Macro transcription and the 7−→trans rule

Macro transcription is the heart of expansion and central to the soundness

proof. Figure 6.4 illustrates a macro transcription step. The figure shows the

application of a macro where pattern p is the first to match the argument
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Γu; •; Σu ` µ : Πd
def
= ∀a ∈ dom(µ).Γu; •; ΣRu ◦ Π−1

d ◦ Σd ` µ(a) : Πd(a)

Figure 6.5: Well-typed pattern match.

sexpu (“u” for “use site”). The macro template is depicted as a tree containing

a sub-tree sexpd (“d” for “definition site”). Pattern matching against sexpu

forms a match µ, which is applied as a substitution on the definition tree,

producing a result containing the sub-tree µ(sexpd).

Notice the type environments associated with various terms in the fig-

ure. We see that the initial macro application term is typeable in the envi-

ronments Γu; •. (Recall that we never expand inside of macro definitions,

so any expansion site necessarily has an empty pattern environment). Thus

the argument sexpu is similarly typeable in a context Γu; •; Σu. The macro

template, moreover, is typeable in an extension of that environment: type

checking pushes a frame onto the environment and replaces the use-site

pattern environment with a new definition-site environment Πd. Now, for

the template tree to contain a nested S-expression sexpd, it must occur as

part of a macro application in the template. Within this context, we label

the base environment Γd. Since the S-expression occurs as part of a macro

application, there must also be a bindings table Σd.

Finally, after performing the transcription, the substituted template body

replaces the entire application. Subtly, this means that the definition envi-

ronment frame Γd—with pattern variables from p replaced by their binding

structure in Σu—is merged with the first frame of Γu via the � operator. The

reason: environment frames correspond to entering the body of a macro,

a boundary which the transcription step eliminates. The environments are

transformed with a mapping M = ΣRu ◦Π−1
d , which maps addresses from the

macro pattern to their corresponding binding structure in the actual argu-

ments.

Our first lemma ensures that the result of matching the pattern p against
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the use site argument sexpu produces an appropriate pattern match µ. For

the subsequent transcription to be well-typed, µ must map pattern variables

to appropriately typed fragments of sexpu. Figure 6.5 defines a well-typed

pattern match: each pattern variable a maps to an S-expression fragment

that can be checked at the expected type of a in the environment of the tran-

scribed term. Let use examine this environment carefully. The base environ-

ment is just that of the use site, Γu, because any additional variables bound

by the macro are expressed by a’s syntax type (as import types). Again, the

macro environment is • because our system disallows expansion inside of

macro definitions. The bindings table is constructed by remapping any pat-

tern variables in the definition-site Σd with their corresponding bindings in

Σu (using the inversion of penvd to find each pattern variable’s tree address

in the pattern/use site argument).

Lemma 6.5.4 (Match). Let Πd = p : σ̂. If wf (Πd) and Γu; •; Σu ` sexpu : σ̂

then µ = match(p, sexp) exists and

Γu; •; Σu ` µ : Πd

Proof. By induction on ptype(p, σ̂, a) and sexp for each a ∈ dom(p).

Lemma 6.5.5. Let M = ΣRu ◦ Π−1
d . If Γu; •; Σu ` µ : Πd and σ : δ then

M ◦ P(σ, sexp) = P(σ, µ(sexp))

Proof. By induction on the parsing algorithm.

The following lemma states that resolving a binding signature with a

well-formed bindings table produces another well-formed bindings table.

Specifically, resolution never encounters ribs with duplicate variables.

Lemma 6.5.6 (Unique names). Let M = ΣRu ◦ Π−1
d . If Πd ` resolve(Σd, β) ok

and • ` Σu ok then • ` resolve(M ◦ Σd, β) ok.

Proof. By induction on the resolution algorithm.
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The transcription lemma states that transcription results in a well-typed

term, given a well-typed pattern substitution, a well-typed template, and

several hygiene conditions. The conditions ensure that the template envi-

ronment contains only pattern variables from the macro environment and

fresh base variables, that free variables in the template are not captured by

the substituted S-expressions, and that base variables bound in the template

are fresh.

Lemma 6.5.7 (Transcription). Let M = ΣRu ◦ Π−1
d and • ` Σu ok. Given the

following hygiene conditions:

• dom(Γd) ∩ P ⊆ dom(Πd)

• dom(Γd) ∩ B#µ

• fv(sexp) σΣd
∩ ⋃

a bv(µ(a))
Πd(a)
Σu

= ∅

• bv(sexp) σΣd
#µ

and a well-typed match:

Γu; •; Σu ` µ : Πd

then a well-typed macro template:

Γd :: Γu; Πd ; Σd ` sexp : σ

leads to a well-typed transcription:

M(Γd)� Γu; • ; M ◦ Σd ` µ(sexp) : σ

Proof. By induction on the type derivation. We present several of the more

interesting cases here; the full proof appears in Appendix A.

The case of type rule [F-MACAPP] is reasonably mechanical:
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Γd :: Γu; Πd ` ((mexp .. sexp :σ)) : expr
=⇒ {inversion of Rule [F-MACAPP]}

Γd :: Γu; Πd;P(σ, sexp) ` sexp : σ
∧ Γd :: Γu; Πd ` mexp : σ′ → expr

=⇒ {induction hypothesis}
M(Γd)� Γu; •; M ◦ P(σ, sexp) ` µ(sexp) : σ

∧ M(Γd)� Γu; • ` µ(mexp) : σ′ → expr
=⇒ {Lemma 6.5.5}

M(Γd)� Γu; •;P(σ, µ(sexp)) ` µ(sexp) : σ
∧ M(Γd)� Γu; • ` µ(mexp) : σ′ → expr

=⇒ {Rule [F-MACAPP]}
M(Γd)� Γu; • ` ((µ(mexp) .. µ(sexp) :σ)) : expr

=⇒ {definition of µ(–)}
M(Γd)� Γu; • ` µ(((mexp .. sexp :σ))) : expr

The case of type rule [S-IMPORT] is again mechanical but requires ensur-

ing that duplicate variables do not appear when extending the base environ-

ment:

Γd :: Γu; Πd; Σd ` sexp : σ↓β
=⇒ {inversion of [S-IMPORT]}

Πd ` resolve(Σd, β) ok
∧ (resolve(Σd, β),Γd) :: Γu; Πd; Σd ` sexp : σ

=⇒ {induction hypothesis}
Πd ` resolve(Σd, β) ok

∧ M(resolve(Σd, β),Γd)� Γu; •; M ◦ Σd ` sexp : σ
=⇒ {distributivity}

Πd ` resolve(Σd, β) ok
∧ (M(resolve(Σd, β)),M(Γd))� Γu; •; M ◦ Σd ` sexp : σ

=⇒ {distributivity}
Πd ` resolve(Σd, β) ok

∧ (resolve(M ◦ Σd, β),M(Γd))� Γu; •; M ◦ Σd ` sexp : σ
=⇒ {Lemma 6.5.6}

• ` resolve(M ◦ Σd, β) ok
∧ (resolve(M ◦ Σd, β),M(Γd))� Γu; •; M ◦ Σd ` sexp : σ

=⇒ {Rule [S-IMPORT]}
M(Γd)� Γu; •; M ◦ Σd ` sexp : σ↓β

The case of type rule [F-PBVAR] requires careful manipulation of type

environments. Note that at variable nodes, sexp.` = µ(p.`).
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Γd :: Γu; Πd; Σd ` a : expr
=⇒ {Rule [F-PBVAR]}

Π−1
d (Γd|P) = {Π−1

d (a) : VAR, · · ·} :: γ
∧ Πd(a) <: bvar

=⇒ {assumption}
Π−1
d (Γd|P) = {Π−1

d (a) : VAR, · · ·} :: γ
∧ Γu; •; Σu ` µ(a) : Πd(a) <: bvar

=⇒ {subsumption}
Π−1
d (Γd|P) = {Π−1

d (a) : VAR, · · ·} :: γ
∧ Γu; •; Σu ` µ(a) : bvar

=⇒ {inspection of Rules [S-PVAR], [S-BVAR]}
Π−1
d (Γd|P) = {Π−1

d (a) : VAR, · · ·} :: γ
∧ µ(a) ∈ Variable

=⇒ {rng(µ) ∩ P = ∅}
Π−1
d (Γd|P) = {Π−1

d (a) : VAR, · · ·} :: γ
∧ µ(a) ∈ B

=⇒ {definition of resolve}
M(Γd|P) = {M(a) :expr, · · ·} :: Γ

∧ µ(a) ∈ B
=⇒ {Σu(`) = sexp.` = µ(p.`)}

M(Γd|P) = {µ(a) :expr, · · ·} :: Γ
∧ µ(a) ∈ B

=⇒ {definition of resolve}
M(Γd) = Γ′, {µ(a) :expr, · · ·} :: Γ

∧ µ(a) ∈ B
=⇒ {dom(Γd) ∩ B#µ}

M(Γd)(µ(a)) = expr
=⇒ {Rule [F-EXPR]}

M(Γd)� Γu; • ` µ(a) : expr
=⇒ {Rule [S-EXPR]}

M(Γd)� Γu; •; M ◦ Σd ` µ(a) : expr

6.5.1.4 Preservation

With the above lemmas in place, type preservation is easily proved.

Lemma 6.5.8 (Preservation). If form : expr and form 7−→ε form ′ then form ′ :

expr.

Proof. By Theorem 6.3.2, the 7−→α step preserves type. Lemma 6.5.1 al-

lows us to focus in on the redex and 6.5.2 to plug the result back into the
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expansion context. By Lemma 6.5.3, the 7−→subst rule preserves the type of

the redex; as does the 7−→trans rule, thanks to Lemmas 6.5.4 and 6.5.7. The

7−→return rule preserves the type of the redex, by inversion of [F-MACDEF].

6.5.2 Progress

Progress ensures that hygienic expansion never gets stuck with a type er-

ror. In fact, in the λm system, there are no expansion-time errors at all, so

if expansion terminates, it terminates with a valid expression in the core

language.

Definition 6.5.9 (Pre-redex). A form is a pre-redex if it belongs to the follow-

ing grammar:

r ::= ((((syntax-rules τ ((pi : σ̂i form i)))) .. sexp :σ))

| ((letrec-syntax ((((xi mi)))) form))

Definition 6.5.10 (Fully expanded form). A form is fully expanded if there

do not exist F, r such that form = F [r].

Lemma 6.5.11 (Progress). If form : expr then either form is fully expanded

or form 7−→ε form ′ for some form ′.

Proof. Let form = F [r]. By decomposition, r is well-typed. By cases on r:

• Case r = ((letrec-syntax ((((x form)))) form)): If x 6∈ fv(form), then r is a

redex and rule 7−→return applies. Otherwise, r 7−→subst r
′ only if the

hygiene condition holds:

∀i.bv(form) ∩ fv(m) = ∅

Because of Theorem 6.2.2, we can choose an α-equivalent term r′′ such

that this condition holds, and hence r 7−→α r
′′ 7−→subst r

′.

• Case r = ((((syntax-rules σ′ → τ ((((pi : σ̂i form i)))))) .. sexp :σ)): Because r

is well-typed, we have σ <: σ′ and σ′ <: ∪{σ̂i}. Thus by transitivity
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and the definition of subtyping, σ <: σ̂i for some i. So by the match

lemma, match(pi, sexp) exists. Now, because none of the types σ̂i have

overlapping shapes, sexp can only match one of the patterns in the

macro, so by choosing the first pattern that matches, as dictated by the

7−→trans expansion rule, we necessarily choose pi.

Again, Theorem 6.2.2 allows us to fulfill the hygiene conditions by

choosing an α-equivalent r′′ with fresh bindings in sexp and formi .

Type rule [F-MACAPP] ensures that parsing the expression produces a

well-formed bindings table; in other words, expansion does not fail

due to duplicate variable names.

6.5.3 Soundness

Recall the definition of core expressions from Chapter 4:

expr ::= x | ((lambda ((x)) expr)) | ((apply expr)) | ((quote src))

Theorem 6.5.12 (Core expressions). If form : expr and form is fully expanded

then form is in bijection with a core expression expr .

Proof. By induction on the type derivation and inspection of the types of the

primitives lambda, apply, and quote.

Theorem 6.5.12 allows us to interchange fully expanded forms with their

equivalent core expressions. In particular, we write form 7−→−→ε expr where

form 7−→−→ε form ′ for some fully expanded form ′ ∼= expr . We also write

form ⇑ε to mean ∀form ′ : form 7−→−→ε form ′.form ′ 7−→ε.

Theorem 6.5.13 (Type soundness). If form : expr then either form ⇑ε or

form 7−→−→ε expr .

Proof. By induction on the length of the reduction sequence, using preser-

vation (Lemma 6.5.8) and progress (Lemma 6.5.11).
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6.6 Confluence

Traditional macro expansion algorithms fix their expansion order to work

from the outside-in. That is, the outermost macro application is always the

first expanded. Since traditional macros are free to inspect, duplicate, re-

move, and modify their arguments without restriction, macros could observe

any change in the expansion order.

In practice, however, programmers expect certain equivalences to hold,

where expansion order should be irrelevant. For example, two nested macro

applications should be interleavable if one occurs in an expression position.

Consider a use of the let macro with a nested use of the swap! macro from

Chapter 1:

Example 36(let ([x 1]
[y 2])

(swap! x y)
x)

Traditional expansion starts with the outer let application:

Example 37((lambda (x y)
(swap! x y)
x)

1 2)

But given the behavior of let, it ought to be harmless to expand the use of

swap! first instead:

Example 38(let ([x 1]
[y 2])

(let ([z x])
(set! x y)
(set! y z))

x)

In fact, this is a legal choice of expansion order in λm, where macros are

guaranteed to respect the integrity of their sub-expressions. The definition of
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expansion contexts leaves the choice of expansion order non-deterministic.

The next theorem demonstrates proves that for any non-deterministic ex-

pansion choice, expansion can always eventually return to some common

term (up to α-equivalence).

The proof of confluence follows the presentation in Barendregt [5].

Lemma 6.6.1 (Substitution). Let Γ; Π ; Σ ` sexp : σ. If x 6= y, x 6∈ fv(m2)

and bv(sexp) σΣ ∩ (fv(m1) ∪ fv(m2)) = ∅ then

sexp[m1/x] σΣ [m2/y] σΣ = sexp[m2/y] σΣ [m1[m2/y]/x] σΣ

Proof. By induction on the type derivation.

• Case sexp = x: x[m1/x][m2/y] = m1[m2/y] = x[m2/y][m1[m2/y]/x].

• Case sexp = y: We have y[m1/x][m2/y] = y[m2/y] = m2. Moreover,

m2 = m2[m1[m2/y]/x] since x 6∈ fv(m2). So m2 = m2[m1[m2/y]/x] =

y[m2/y][m1[m2/y]/x].

• Case sexp = w 6= x, y: w[m1/x][m2/y] = w = w[m2/y][m1[m2/y]/x].

• Case sexp = ((letrec-syntax ((((w m)))) form)): We must consider three

cases:

– Subcase: w = x:

sexp[m1/x][m2/y]

= sexp[m2/y]

= ((letrec-syntax ((((w m[m2/y])))) form[m2/y]))

= ((letrec-syntax ((((w m[m2/y])))) form[m2/y]))[m1[m2/y]/x]

= sexp[m2/y][m1[m2/y]/x]



6.6. CONFLUENCE 101

– Subcase: w = y:

sexp[m1/x][m2/y]

= ((letrec-syntax ((((w m[m1/x])))) form[m1/x]))

= ((letrec-syntax ((((w m[m1[m2/y]/x])))) form[m1[m2/y]/x]))

= sexp[m1[m2/y]/x]

= sexp[m2/y][m1[m2/y]/x]

– Subcase: w 6= x, y: straightforward application of the induction

hypothesis.

The remaining cases are mostly straightforward, with binding forms treated

similarly to the last case above.

Following Barendregt, we define an extended language where redexes

may be marked:

form ::= . . . | r

We adapt all the operations of λm to marked terms in the obvious way. Ad-

ditionally, we define an operation ϕ that reduces all marked redexes. The

definition is given in Figure 6.6.

Lemma 6.6.2. Let Γ; Π ; Σ ` sexp : σ.

sexp
ε

>> sexp ′

|sexp|

| |

∨

ε
>> |sexp ′|

| |

∨

Proof. Each expansion step in the unmarked sequence is matched by an anal-

ogous step in the sequence sexp 7−→−→ε sexp ′, with the only difference being

that some redexes may be marked.

Lemma 6.6.3. Let Γ; Π ; Σ ` sexp : σ. If bv(sexp) σΣ ∩ fv(m) = ∅ then

ϕ(sexp[m/x] σΣ ) = ϕ(sexp)[m/x] σΣ
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ϕ(var) = var
ϕ(((letrec-syntax ((((x m)))) form))) = ((letrec-syntax ((((x m))))ϕ(form)))
ϕ(((mexp .. sexp :σ))) = ((ϕ(mexp) .. ϕ(sexp) :σ))
ϕ(((letrec-syntax ((((x m)))) form)) ) = ((letrec-syntax ((((x m))))ϕ(form)[m/x]))

if x ∈ fv(form)
and bv(form) ∩ fv(m) = ∅

ϕ(((letrec-syntax ((((x m)))) form)) ) = ϕ(form)

if x 6∈ fv(form)

ϕ(((((syntax-rules τ ((((pi : σ̂i form i)))))) .. sexp :σ)) ) = µ(form i)

if µ = match(pi, ϕ(sexp))

and bv(sexp)σ̂iP(σ̂i,sexp) ∩ fv(form i) = ∅
and bv(form i)#sexp

ϕ(m) = m
ϕ((())) = (())

ϕ(((sexp1 .. sexp2))) = ((ϕ(sexp1) .. ϕ(sexp2)))

Figure 6.6: Reducing marked redexes.

Proof. By induction on the type derivation.

Lemma 6.6.4. Let Γ; Π; Σ ` sexp : σ̂ and Γ; • ` form : expr. If the hygiene

conditions bv(sexp)σ̂P(σ̂,sexp) ∩ fv(form) = ∅ and bv(form)#sexp hold, then

match(p, ϕ(sexp))(form) = ϕ(match(p, sexp)(form))

Proof. By induction on the type derivation of form (using a generalized in-

duction hypothesis).

Lemma 6.6.5. Let Γ; Π ; Σ ` sexp : σ.

sexp
ε

> sexp ′

ϕ(sexp)

ϕ

∨

ε
>> ϕ(sexp ′)

ϕ

∨

Proof. By induction on the type derivation, using Lemmas 6.6.3 and 6.6.4.
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Lemma 6.6.6. Let Γ; Π ; Σ ` sexp : σ.

sexp
ε

>> sexp ′

ϕ(sexp)

ϕ

∨

ε
>> ϕ(sexp ′)

ϕ

∨

Proof. Straightforward induction on the length of the expansion sequence,

using Lemma 6.6.5.

Lemma 6.6.7. Let Γ; Π ; Σ ` sexp : σ.

sexp

|sexp|
ε

>>

<

| |

ϕ(sexp)

ϕ

>

Proof. Straightforward induction on the type derivation.

Lemma 6.6.8 (Strip Lemma).

sexp

sexp1
<

ε

sexp2

ε

>>

sexp3

ε

>> << ε

Proof. Construct a term sexp ′ by marking the redex of sexp 7−→ε sexp1. Then

|sexp ′| = s and ϕ(sexp ′) = sexp1. Construct the following diagram using
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Lemmas 6.6.2, 6.6.6, and 6.6.7.
sexp

sexp2

ε

>>

sexp ′

<

| |

sexp1

<
ε

< ϕ
sexp ′2

<

| |
ε

>>

sexp3

<<

ε

< ϕε >>

Theorem 6.6.9 (Confluence). Let form : expr and form ′ : expr.

form =α form ′

form1

<<

ε

form ′1

ε

>>

form2 =α form ′2
<<

εε
>>

Proof. Induction on the length of the expansion sequence form 7−→−→ε form1,

using the Strip Lemma.

6.7 Hygiene

The central correctness result of this thesis, hygiene, follows as a direct con-

sequence of confluence.

Theorem 6.7.1 (Hygiene). Let form : expr and form ′ : expr. If form =α form ′

and form 7−→−→ε expr and form ′ 7−→−→ε expr ′ then expr =α expr ′.

Proof. Since the expansion relation 7−→ε is defined on α-equivalence classes

and confluence guarantees unique normal forms, expr and expr ′ must be in

the same α-equivalence class.



CHAPTER 7

Expressiveness and Limitations

This chapter discusses the expressiveness of the λm system, including exam-

ples from the Scheme standard library, and its limitations.

7.1 Useful extensions

It was helpful to keep the λm model as small as possible for theoretical in-

vestigation. We can now relax some of the restrictions and consider a few

additions in order to explore the expressiveness of the system.

7.1.1 Front end

Recall from Chapter 4 that the end-to-end view of a macro expansion system

begins with an uninterpreted symbolic tree:

src ::= sym | (()) | ((src .. src))

We can transform a source program src to a fully-annotated form through a

type-directed elaboration process.

The elaboration process is presented in Figures 7.1 and 7.2. Similar to

the type judgments, the elaboration judgments maintain type environments,

which in this context are used primarily to determine how to interpret sym-

bols in the input source.

105
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The elaboration process assumes that each universe of variables B and P

is in bijection to the symbols. In particular, there is a map b–c : Variable →

Symbol which is injective in B and P separately, but not in Variable = B ∪ P.

That is, every symbol sym has exactly one preimage x ∈ B and exactly one

preimage a ∈ P. This naturally leads to an ambiguity during elaboration:

what to do if a symbol is bound in both environments Γ and Π. Following

Scheme, we let the pattern environment take precedent: if a symbol is bound

in Π then it is a pattern variable; if it is bound only in Γ it is a base variable;

otherwise it can only be a quoted symbol.

We also assume a representation of types as source with an unspecified

elaboration judgment:

` src ↪→ σ

Any faithful representation of syntax types suffices for our purposes.

The judgment Γ; Π ` src ↪→ form elaborates input source to a form. The

rule for macro definitions recognizes a use of letrec-syntax only when the

identifier has not been shadowed. Variable references are elaborated using

an auxiliary judgment defined below. Macro applications are elaborated

with the help of an operation bind , defined by:

bind(σ, src,Π)
def
= src[` 7→ binding(src.`,Π) | ` ∈ dom(src) ∩ bp(σ)]

binding(sym,Π)
def
=

 a if a ∈ dom(Π) ∧ bac = sym

x if a 6∈ dom(Π) ∧ bxc = sym

This operation essentially elaborates all binding occurrences of variables so

that parsing can obtain an accurate binding table Σ. Function applications

are recognized as application of anything other than a syntax operator.

The judgment Γ; Π ` src ↪→ m elaborates input source to a macro. We

elaborate the annotated type and each clause. Clauses are elaborated by

taking the input pattern pi and specializing the annotated type σ to obtain

the type σ̂i.

The specialization judgment σ ⇓ p specializes the annotated type σ of a

macro to the specific subtype matched by a single pattern p of the macro.
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Γ; Π ` src ↪→ form

bletrec-syntaxc = sym0 letrec-syntax 6∈ dom(Γ :: Γ)
bxc = sym Γ′ = {x :τ} :: Γ Γ′ :: Γ; • ` src ↪→ m m : τ

Γ′ :: Γ; • ` src0 ↪→ form

Γ :: Γ; • ` ((sym0 ((((sym src)))) src0)) ↪→ ((letrec-syntax ((((x m)))) form))

Γ; Π ` sym ↪→ var : σ

Γ; Π ` sym ↪→ var

Γ; Π ` sym ↪→ var : σ → expr
Γ; Π;P(σ, bind(src,Π)) ` src ↪→ sexp : σ

Γ; Π ` ((sym .. src)) ↪→ ((var .. sexp :σ))

src1 6∈ Symbol ∨ Γ; Π ` sym 6↪→ σ → expr
Γ; Π;P(actuals ,((src1 .. src2))) ` ((src1 .. src2)) ↪→ sexp : actuals

Γ; Π ` ((src1 .. src2)) ↪→ ((apply .. sexp : actuals))

Γ; Π ` src ↪→ m

bsyntax -rulesc = sym0 syntax -rules 6∈ dom(Γ) ` src ↪→ σ → expr
∀i.bpic = srci ∧ σ ⇓ pi = σ̂i ∧ (ε :: Γ); pi : σ̂i ` src ′i ↪→ form i

Γ; Π ` ((sym0 sym ((((srci src ′i)))))) ↪→ ((syntax-rules σ → expr ((((pi : σ̂i form i))))))

σ ⇓ p

σ ⇓ a = σ ⇓ ε
(()) ⇓ (()) = (())

((σ1 .. σ2)) ⇓ ((p1 .. p2)) = (((σ1 ⇓ p1) .. (σ2 ⇓ p2)))
(σ↑β) ⇓ p = (σ ⇓ p)↑β p 6∈ P
(σ↓β) ⇓ p = (σ ⇓ p) ⇓ β p 6∈ P

(µA.σ) ⇓ p = (σ[µA.σ/A]) ⇓ p p 6∈ P
(∪{σi}) ⇓ p = σi ⇓ p p 6∈ P

for smallest i

Figure 7.1: Elaboration of source programs.
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Γ; Π ` sym ↪→ var : σ

sym 6∈ bdom(Π)c
Γ(x) = τ bxc = sym

Γ; Π ` sym ↪→ x : τ

Π(a) = σ bac = sym

Γ; Π ` sym ↪→ a : σ

Γ; Π; Σ ` src ↪→ sexp : σ

Γ; Π ` sym ↪→ var

Γ; Π; Σ ` sym ↪→ var : σ

sym 6∈ bdom(Π)c bxc = sym

Γ; Π; Σ ` sym ↪→ x : bvar

Γ; Π ` src ↪→ form

Γ; Π; Σ ` src ↪→ form : expr

data = src[a/bac | a ∈ dom(Π)]

Γ; Π; Σ ` src ↪→ data : data

Γ; Π; Σ ` (()) ↪→ (()) : (())

Γ; Π; Σ ` src1 ↪→ sexp1 : σ1 Γ; Π; Σ ` src2 ↪→ sexp2 : σ2

Γ; Π; Σ ` ((src1 .. src2)) ↪→ ((sexp1 .. sexp2)) : ((σ1 .. σ2))

src 6∈ bdom(Π)c B = resolve(Σ, β)
(B,Γ) :: Γ; Π; Σ ` src ↪→ sexp : σ

Γ :: Γ; Π; Σ ` src ↪→ sexp : σ↓β

src 6∈ bdom(Π)c
Γ; Π; Σ ` src ↪→ sexp : σ

Γ; Π; Σ ` src ↪→ sexp : σ↑β

src 6∈ bdom(Π)c σ′ = σ[µA.σ/A]
Γ; Π;P(σ′, bind(src,Π)) ` src ↪→ sexp : σ′

Γ; Π; Σ ` src ↪→ sexp : µA.σ

src 6∈ bdom(Π)c
Γ; Π;P(σi, bind(src,Π)) ` src ↪→ sexp : σi

Γ; Π; Σ ` src ↪→ sexp : ∪{σi}

Figure 7.2: Elaboration of source programs (continued).
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Specialization behaves much like parsing, matching the pattern against the

annotated type. The operation halts on reaching a pattern variable, return-

ing just the normalized type.

Continuing in Figure 7.2, the judgment Γ; Π ` sym ↪→ var : σ elaborates

a symbol to obtain a variable and its type. If the symbol is bound in Π, it is

interpreted as a pattern variable; otherwise if the symbol is bound in Γ it is

treated as a base variable.

The judgment Γ; Π; Σ ` src ↪→ sexp : σ fairly closely parallels the type

checking judgment for S-expressions. Symbols are elaborated in the usual

way. At type expr, we return to the form-elaboration rules. At type data, we

elaborate pattern variables but leave all other symbols unchanged. Empty

sequence and pairs and straightforward. Import types make use of the bind-

ings table Σ to extend the environment and recur; export types are unneces-

sary for elaboration and are dropped. As usual, recursive types and unions

require parsing to generate a binding table before recurring.

Because of the similar structure of the elaboration and type-checking

processes, an implementation could fuse the two phases into one. Since

elaboration is essentially orthogonal to the core model, we have found it

preferable to separate the two in our study of λm.

7.1.2 Modifications to the core system

In the type system of Chapter 5, we required all macro patterns to be com-

plete for their documented type. Although this helped simplify the theoreti-

cal presentation, in practice this requirement is too restrictive. Many macros

make certain well-formedness assumptions that are checked during expan-

sion. For example, macros that take two parallel sequences often assume

that the sequences are of the same length, and simply let expansion fail oth-

erwise. In a real system, we would likely remove completeness checking, or

possibly offer the completeness check as an optional warning.
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Next, we could add some basic primitives to the language, including

constants such as boolean, number, character, and string literals (all of type

expr) and a primitive

if : ∪{((expr expr)),((expr expr expr))} → expr

We can also add a form type ref <: expr corresponding to variable references,

and extend subsumption to apply to form types as well.1 This allows us to

add a primitive

set! : ((ref expr))→ expr

Other straightforward extensions include multi-ary macro definitions (al-

lowing letrec-syntax to bind any number of macros simultaneously), let-syntax

and let*-syntax forms, and a top-level define-syntax form. Proper treatment of

the latter form opens up some more tricky questions with regards to defini-

tion forms (see Section 7.3.2).

7.2 Standard Scheme macros

With these extensions, most of the core functionality of the standard Scheme

macros are expressible in the λm system. In this section, we briefly discuss

well-typed implementations of the macros of the R5RS standard library.

Several of the simpler macros can be implemented quite easily. The be-

gin macro, which takes a non-empty sequence of expressions:

actuals+ def
= µA.∪{((expr)),((expr .. A))}

and produces an expression, is unproblematic to implement:

1Note that there is no relationship between the types ref and bvar, despite the fact that
they are both inhabited by identifiers.
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Example 39(define-syntax begin
(syntax-rules actuals+ → expr

[(begin e) e]
[(begin e . es)
(let ([tmp e])

(begin . es))]))

Another straightforward implementation is the delay macro, which pro-

duces a “promise” (a data structure encapsulating a lazy computation):

Example 40(define-syntax delay
(syntax-rules ((expr))→ expr

[(delay e)
(make-promise (lambda () e))]))

Of the trilogy of local binding forms, the easiest to write is let∗. Its type,

however is a little less obvious. The let∗ macro consumes a sequence of

clauses:

let∗-clauses
def
=

µA.∪{(())↑ε,((((bvar expr)) .. A↓{AA : VAR} :: ε))↑D@{AA : VAR} :: ε}

Each clause consists of a bound variable and an expression, where the re-

maining clauses are in the scope of the bound variable. The entire sequence

then exports the bound variables. The type of let∗ is:

((let∗-clauses expr↓A@ε))→ expr

which takes the bindings defined in the clauses and imports them into the

scope of the body expression.

The definition is as easy as can be:

Example 41(define-syntax let∗
(syntax-rules ((let∗-clauses expr↓A@ε))→ expr

[(let∗ () body) body]
[(let∗ ((x e) . cs) body)
(let ([x e])

(let∗ cs body))]))
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Scheme’s letrec form is tricker to implement, although this has at least

as much to do with the subtle semantics of letrec and the limitations of

syntax-rules as a macro language as it does with the types. The type of

letrec’s binding clauses is similar to that of the let∗ clauses:

letrec-clauses
def
=

µA.∪{(())↑{},((((bvar expr)) .. A))↑{AA : VAR,D : RIB}}

With letrec, the clauses export a single rib of bindings; the letrec form then

imports these bindings both into the rib itself and the body expression:

((letrec-clauses expr))↓{A : RIB} :: ε→ expr

The subtlety in the semantics of letrec is that it requires all the right-hand

side initializer expressions to be evaluated before assigning the results to the

bound variables. So we must take care to generate code that evaluates these

steps in the proper order. Our implementation proceeds in several steps. The

first step is to “unzip” the binding/initializer pairs into separate sequences

using an auxiliary macro letrec/unzip. This macro takes three accumulators:

the unzipped bindings, a sequence of #f literals, and the unzipped initializer

expressions. It also consumes the clauses and body of the letrec expression.

In the base case, letrec/unzip binds the variables to #f and uses a second

auxiliary macro, begin-set!, to evaluate the intializer expressions and then

assign their results to the bound variables.

The begin-set! macro takes the bound variables, initializer expressions

and body expression, evaluates each expression, and binds its result to a

temporary variable. The macro recurs by adding an assignment to the body

from the temporary to the variable x. Because the base case places the body

expression at the very end of this sequence, all of the assignments end up

occurring after the evaluation of the initializer expressions.

The type of begin-set! requires the type of a sequence of references:

refs
def
= µA.∪{(()),((ref .. A))}
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Example 42(define-syntax letrec
(syntax-rules ((letrec-clauses expr))↓{A : RIB} :: ε→ expr

[(letrec cs body)
(letrec/unzip () () () cs body)]))

(define-syntax letrec/unzip
(syntax-rules
((formals actuals actuals letrec-clauses expr↓{A : RIB,ADDD : RIB} :: ε))
→ expr

[(letrec/unzip xs is es () body)
((lambda xs

(begin-set! xs es body))
. is)]

[(letrec/unzip xs is es ((x e) . cs) body)
(letrec/unzip (x . xs) (#f . is) (e . es) cs body)]))

(define-syntax begin-set!
(syntax-rules ((refs actuals expr))→ expr

[(begin-set! () () body) body]
[(begin-set! (x . xs) (e . es) body)
((lambda (tmp)

(begin-set! xs es (begin (set! x tmp) body)))
e)]))

Next we tackle the let macro. The primary complication is handling the

overloaded “named let” syntax, which provides a convenient form for defin-

ing and immediately applying a recursive function. This is not particularly

hard to handle from the perspective of typing, since it simply requires a

union type:

named -let
def
= ((bvar clauses expr↓{A : VAR} :: {AD : RIB} :: ε))

std -let
def
= ((clauses expr↓{A : RIB}))

clauses
def
= µA.∪{(())↑{},((((bvar expr)) .. A))↑{AA : VAR,D : RIB}}

The type of let is then composed of the union of the two overloaded forms:

∪{named -let , std -let} → expr

Notice that the union type is well-formed, since the shapes do not overlap.
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Example 43(define-syntax let
(syntax-rules ∪{named -let , std -let} → expr

[(let cs body)
(let/unzip () () clauses body)]

[(let f inits body)
(rec/unzip f () () inits body)]))

(define-syntax let/unzip
(syntax-rules
((formals actuals clauses expr↓{A : RIB,ADD : RIB} :: ε))→ expr
[(let/unzip xs es () body)
((lambda xs body) . es)]

[(let/unzip xs es ((x e) . cs) body)
(let/unzip (x . xs) (e . es) cs body)]))

(define-syntax rec/unzip
(syntax-rules
((bvar formals actuals clauses expr↓{A : VAR} :: {AD : RIB,ADDD : RIB} :: ε))
→ expr

[(rec/unzip f xs es () body)
(letrec ([f (lambda xs body)])

(f . es))]
[(rec/unzip f xs es ((x e) . inits) body)
(rec/unzip f (x . xs) (e . es) inits body)]))

The implementation of let uses the shape to dispatch to one of two helper

macros. Just as with letrec, the helper macros unzip the binding/initializer

pairs into separate sequences. The let/unzip helper macro places the un-

zipped bindings in the formals list of a lambda and initializers in the actuals

list. The rec/unzip helper macro places the bindings in a lambda, binds the

recursive variable f in a letrec, and applies f to the initializer expressions.

The last macro we demonstrate is cond. We implement only two of the

four clause types, since the other two depend on distinguished syntactic

literals (see Section 7.3.1). A cond clause in this implementation takes one

of two forms:2

cond -clause
def
= ∪{((expr)),((expr .. actuals+))}

2Note that this definition of cond -clause is in fact equivalent to actuals+, but we sepa-
rate the two types for emphasis.
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The implementation tries each clause in turn with the auxiliary macro cond1.

If all clauses fail, it defaults to (if #f #f), an expression which returns

Scheme’s distinguished “void” value. The cond1 macro accepts either a sin-

gle expression, which is intended to be both the test expression and the

result on success; or in the second case, a test expression followed by any

number of result expressions, evaluated with begin.

Example 44(define-syntax cond
(syntax-rules µA.∪{((cond -clause)),((cond -clause .. A))} → expr

[(cond clause)
(cond1 clause (if #f #f))]

[(cond clause . clauses)
(cond1 clause (cond . clauses))]))

(define-syntax cond1
(syntax-rules ((cond -clause expr))→ expr

[(cond1 (test) alt)
(let ([tmp test])

(if tmp tmp alt))]
[(cond1 (test . result) alt)
(if test (begin . result) alt)]))

7.3 Limitations

Having demonstrated that the core of the R5RS macros are expressible, we

can see that the type system of λm supports a promising kernel of the stan-

dard idioms of programming with syntax-rules. However, there are certain

conspicuous omissions. We discuss the most immediate limitations here; a

fuller discussion of future work can be found in Chapter 8.

7.3.1 Syntactic literals

Our implementation of cond was missing two important cases: the optional

final else clause, and clauses making use of the => identifier to bind the

result of the test expression. Both of these cases make use of the ability in

syntax-rules macros to identify a list of syntactic “literals,” which play the
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role of syntactic constants in a grammar.

There are several examples in the literature of the use of literals to expose

binding information in ways that would likely defeat the invariants of the λm

system [33, 41, 49]. For this reason, we have so far omitted them from our

investigation. However, the known examples all make use of a particular

interaction between the literals list and lexically nested macros, which we

have also excluded. In fact, even with the addition of both constructs, it

may be possible to provide some amount of support for syntactic literals in a

conservative way that is nevertheless consistent with the existing semantics

of Scheme macros.

7.3.2 Definitions

As we presented them, most of the macro definitions at the beginning of this

chapter are incomplete: they do not support internal definitions. Indeed,

definitions are the other inherent form type in Scheme syntax. By adding

the type defn to our model, we should be able to support a much richer set

of Scheme constructs.

Definitions introduce a few complexities into the semantics of macros.

First, because the exports of a definition are imported by their context (i.e.,

the block that contains it), we must adapt the binding signature types to

accommodate exports that are communicated between a macro and its con-

tainer, not just its sub-terms. Second, the division in a block between the

initial sequence of definitions and the subsequent sequence of expressions is

not explicitly marked, and can even change during expansion by the process

of expanding internal macros definitions. Types should be helpful to reign in

the unpredictable behavior of blocks, but this will require further research.
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7.3.3 Lexically nested macros

Finally, our model does not allow for lexically nested, or “macro-defining”

macros. We have in fact begun investigation into the behavior of macro-

defining macros, and found that the semantics of Scheme macros leads

to very unsatisfying formal models on this score. As it turns out, macro-

defining macros betray some of the worst aspects of the legacy of Lisp’s

raw S-expressions: because the semantics of expansion is defined as simple

textual substitution, without regard for binding structure, macro-defining

macros tend to expose the data representation of syntax employed by par-

ticular macro expansion algorithms. It is therefore quite difficult to present

at once a useful theory that nonetheless remains faithful to the behavior of

Scheme.

We have thus far chosen to restrict our attention to a subset of the seman-

tics of Scheme macros, in order to gain a better understanding of the theory

underlying Scheme. In the future, however, our research into formal foun-

dations of hygienic macros may lead to the design of alternative systems.

We might even dare to hope that principled research could help simplify and

demystify macro-defining macros, which are to date considered one of the

more advanced techniques in macrology.





CHAPTER 8

Discussion

In this dissertation, we have presented λm, a model of hygienic macro ex-

pansion that validates the claim that it is possible for formulate a precise

definition of hygienic expansion by making the intended binding structure

of macros explicit. We have demonstrated that hygiene can be characterized

as the preservation of α-equivalence and proved the property holds for the

λm language. We have also demonstrated that with some minor extensions,

this theoretical model can express many of the macros of the R5RS Scheme

standard—an encouraging initial sign that with further development, our

type system might eventually form the basis for practical language design.

8.1 Related work

The Scheme community has a long history of proposals for macro systems

that attempt, with varying degrees of automation, to address problems with

variable capture. These include a number of hygienic macro expansion sys-

tems [44, 13, 15, 68, 55]. Hygienic expansion algorithms involve intricate

representations of identifiers; expansion must generally perform provisional

variable renamings, since it does not discover the actual syntactic roles of

identifiers until quite late in the expansion process. By contrast, our system

provides all of this information up front, making the specification of expan-

sion relatively simple. (Instead, the complexity of scope and binding struc-
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ture shows up in the λm type system.) In some sense the work on syntactic

closures [7] shares a similar motivation to our work, namely that macro im-

plementors know the binding structure of their macros and should be able to

make this structure explicit. The so-called “first-class macros” of Bawden [6]

also involve some level of checked documentation for macros, although the

types of λm are able to describe richer properties. Another work that shares

a similar spirit is Shivers’s loop macro [58], which renders scope explicit.

That work treats control dominance as the salient property of scope, and

focuses on ensuring control-flow invariants from within a language of loop

sub-forms.

The work of Culpepper and Felleisen on shape types [17] is closest in

nature and in lineage to ours. Shape types provide enough information to

check the syntactic structure of macro arguments, but not enough to track

binding structure. Our work began with the question: “how much could be

gained by adding binding information to shape types?”

Macros and similar compile-time meta-programming facilities have been

added to a number of other programming languages outside the Lisp fam-

ily [20, 56, 71, 3, 4, 11, 2, 19, 60, 59, 66, 26]. A few of these systems

attempt to address issues of hygiene. Several research programs outside

of the Scheme tradition have attempted a principled approach to issues of

scope and binding. The proposed language MacroML [27] attempts to deal

with variable scope by limiting the contexts in which binding structures can

be introduced–specifically by making ML’s let into an extensible form. This

leads to a much less expressive macro system, since it does not admit the

construction of wholly new syntaxes for binding forms.

The notational definitions of Griffin [31], later adapted by Taha and Jo-

hann in their work on staged notational definitions [64], are quite similar in

motivation to our work. Notational definitions allow flexible syntactic ex-

tension, and require the extensions to be defined in a style based on higher-

order abstract syntax [50], which represents synthesized binding forms with
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existing binding forms in the meta-language. Thus rather than represent-

ing binding structure as an external property of macros, this structure is

implicit in the implementation. Their approach also requires macros to be

defined externally to a program, which loses the flexibility of Scheme’s lexi-

cally scoped macros. The system of extensible syntax of Cardelli et al. [12]

similarly allows for custom notation while preserving lexical scoping, but

without the power of locally defined macros.

The binding specifications of λm relate to a large body of prior work in

theory and language design. Pottier [54] traces the concept of binding spec-

ifications back to Plotkin [52], Talcott’s binding structures [65], Honsell’s

nominal algebras [34], and Urban et al.’s nominal signatures [67]. Each of

these frameworks provides a specification language for describing binding

structure of programs in an object language. Shinwell’s FreshO’Caml [57]

and Pottier’s Cαml provide more expressive meta-programming constructs

with type systems that can describe the binding structure of abstract syn-

tax. But unlike λm, these languages operate strictly on abstract syntax. By

contrast, the types of λm incorporate syntactic structure, which acommo-

dates the more reflective nature of “macros as embedded meta-programs.”

Context calculi [32] allow for manipulation of programs with open terms,

facilitating some elements of meta-programming; again, these do not deal

directly with macros, though there may be interesting connections worth

exploring.

Several authors have investigated models for describing the behavior of

Scheme macros as well as designing advanced macro systems [46, 29]. Bove

and Arbilla [10] describe a calculus of macro expansion based on de Bruijn

indices [18] that attempts to model hygiene in a formal way. Their work also

identifies confluence as an important property of hygienic macros. However,

similar to the work on notational definitions, their work makes the simplify-

ing assumption that macro definitions are known at the outset of a program.

Their work does not include an analog of our binding signatures, which pro-
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vide a formal notation for user-specified binding structure.

8.2 Future work

There are quite a few interesting areas to explore beyond the simple model

presented in this work. Let us consider some of the open questions by topic.

8.2.1 Expressiveness

The λm model is still not expressive enough for practical programming. In

addition to the open questions detailed in Chapter 7, we would like to ex-

plore more expressive pattern-matching languages such as Kohlbecker and

Wand’s “macro-by-example” ellipsis patterns [45] as well as Culpepper’s ex-

tremely expressive syntax-parse pattern language [16].

Another important question is whether type systems like this one can be

adapted to programmatic macros, which implement their macro templates

in a more conventional programming language (typically the same as the

base language). This would likely require integrating the type system with

a conventional type language, probably using constructs from typed multi-

stage programming [63, 62, 47].

8.2.2 Type system extensions

An alternative approach to static, pre-expansion type checking would be

an expansion-time checking system. This would ideally still allow reasoning

about the binding structure of macros, and would guarantee a kind of partial

correctness:

If a macro returns without an expansion-time error, then its expan-

sion is guaranteed to respect its documented syntax type.

Since macros can be passed to other macros as arguments, such an approach

would likely make use of ideas from prior work on contracts for higher-order
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languages [25].

Another open question is whether this type system can be adapted to

support a typed base language with the guarantee that well-typed input

programs always expand to well-typed expanded programs, as is frequently

the case in multi-staged programming languages. This would ensure that

derived language constructs are always smoothly integrated with the core

language, without resulting in surprising and impenetrable type errors in-

volving the results of expansion.

It would also be useful to investigate the addition of more powerful type

system constructs. Polymorphic types would be a useful addition, since

generic macros appear to be common, such as macros that accept a “con-

tinuation” macro argument. Since duplicating arguments is the source of

many bugs such as the duplication of run-time effects, linear types [70, 69,

53, 9, 1] could be a useful construct for ensuring that input expressions

appear exactly once in the results of expansion.

8.2.3 Applications

We have demonstrated the applicability of binding signatures to typed hy-

gienic macros. It may be the case that these constructs have applications

beyond Scheme. For example, the theorem prover ACL2 [39, 38] makes ex-

tensive use of macros, yet reasons only about the results of expansion. It

could be helpful to users to be able to provide more robust syntactic abstrac-

tions that can integrate into the theorem prover without depending on the

results of expansion. Furthermore, the constructs of binding signatures and

binding signature types may have additional applications to other forms of

meta-programming.





Bibliography

[1] A. Ahmed, M. Fluet, and G. Morrisett. L3: A linear language with

locations. Technical Report TR-24-04, Harvard University, 2004.

[2] Jonathan Bachrach and Keith Playford. D-Expressions: Lisp power,

Dylan style, 1999. http://people.csail.mit.edu/jrb/Projects/

dexprs.pdf.

[3] Jonthan Bachrach and Keith Playford. The Java syntactic extender

(JSE). In OOPSLA ’01: Proceedings of the 16th annual ACM SIGPLAN

Conference on Object Oriented Programming, Systems, Languages, and

Applications, pages 31–42, New York, NY, USA, 2001. ACM.

[4] J. Baker and W. Hsieh. Maya: Multiple-dispatch syntax extension in

Java. In PLDI ’02: Proceedings of the ACM SIGPLAN 2002 Conference

on Programming Language Design and Implementation, pages 270–281,

June 2002.

[5] H. P. Barendregt. The Lambda Calculus: Its Syntax and Semantics.

North-Holland, Amsterdam, revised edition, 1984.

[6] Alan Bawden. First-class macros have types. In POPL ’00: Proceedings

of the 27th ACM SIGPLAN-SIGACT Symposium on Principles of Program-

ming Languages, pages 133–141, New York, NY, USA, 2000. ACM.

[7] Alan Bawden and Jonathan Rees. Syntactic closures. In LISP and Func-

tional Programming, pages 86–95, 1988.

125



126 BIBLIOGRAPHY

[8] Jon Bentley. Programming pearls: little languages. Communications of

the ACM, 29(8):711–721, 1986.

[9] P. N. Benton. A mixed linear and non-linear logic: Proofs, terms and

models. In CSL ’94: Proceedings of the 8th International Workshop on

Computer Science Logic, number 933 in Lecture Notes in Computer Sci-

ence, pages 121–135, Heidelberg, 1995. Springer-Verlag.

[10] Ana Bove and Laura Arbilla. A confluent calculus of macro expansion

and evaluation. In LISP and Functional Programming, pages 278–287.

ACM Press, June 1992.

[11] C. Brabrand, M. Schwartzbach, and M. Vanggaard. The metafront sys-

tem: Extensible parsing and transformation. In LDTA ’03: Proceedings

of the 3rd ACM SIGPLAN Workshop on Language Descriptions, Tools and

Applications, April 2003.

[12] Luca Cardelli, Florian Matthes, and Mart́ın Abadi. Extensible syntax

with lexical scoping. Technical Report SRC-RR-121, DEC Systems Re-

search Center, February 1994.

[13] William Clinger and Jonathan Rees. Macros that work. In POPL ’91:

Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages, pages 155–162, 1991.

[14] William Clinger and Jonathan Rees. Revised4 report on the algorithmic

language Scheme. Technical report, 1991.

[15] William D. Clinger. Hygienic macros through explicit renaming. Lisp

Pointers, (4):25–28, December 1991.

[16] Ryan Culpepper. Refining Syntactic Sugar: Tools for Supporting Macro

Development. PhD thesis, Northeastern University, April 2010.



BIBLIOGRAPHY 127

[17] Ryan Culpepper and Matthias Felleisen. Taming macros. In GPCE ’04:

Proceedings of the 3rd International Conference on Generative Program-

ming and Component Engineering, pages 153–165, October 2004.

[18] N. G. de Bruijn. Lambda-calculus notation with nameless dummies,

a tool for automatic formula manipulation, with application to the

Church-Rosser theorem. Indagationes Mathematicae, 34(5):381–392,

1972.

[19] Rodrigo B. de Oliveira. The Boo programming language. Online, 2007.

http://boo.codehaus.org/.

[20] Daniel de Rauglaudre. Camlp4 reference manual. Online, September

2003. http://pauillac.inria.fr/caml/camlp4/manual/.

[21] Akim Demaille, Joel E. Denny, and Paul Eggert. Bison 2.4.1. Free

Software Foundation, 2009. http://www.gnu.org/software/bison/

manual/html_node/index.html.

[22] R. Kent Dybvig. The Scheme Programming Language. MIT Press, 4th

edition, 2009.

[23] Matthias Felleisen. The Calculi of Lambda-v-CS Conversion: A Syntactic

Theory of Control and State in Imperative Higher-Order Programming

Languages. PhD thesis, Indiana University, 1987.

[24] Matthias Felleisen, Robert Bruce Findler, and Matthew Flatt. Semantics

Engineering with PLT Redex. MIT Press, 2009.

[25] Robert Bruce Findler and Matthias Felleisen. Contracts for higher-

order functions. In International Conference on Functional Program-

ming, pages 48–59, October 2002.

[26] Fabien Fleutot. Man Metalua. Online reference manual, April 2007.

http://metalua.luaforge.net/metalua-manual.html.



128 BIBLIOGRAPHY

[27] Steven E. Ganz, Amr Sabry, and Walid Taha. Macros as multi-stage

computations: Type-safe, generative, binding macros in MacroML.

In International Conference on Functional Programming, pages 74–85.

ACM Press, 2001.

[28] Vladimir Gapeyev, Michael Y. Levin, and Benjamin C. Pierce. Recursive

subtyping revealed. Journal of Functional Programming, 12(6):511–

548, 2002.

[29] Martin Gasbichler. Fully-parameterized, first-class modules with hygienic

macros. PhD thesis, University of Tübingen, August 2006.
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APPENDIX A

Additional Proofs

This appendix expands on the material in Chapter 6 with additional lemmas

and details of proofs.

A.1 Freshness

Let us define a partial inverse to the region displacement operation:

``0 � `0
def
= `

and lift (and totalize) this definition to bound variable maps:

{`i 7→ xi, `j 7→ xj} � `
def
= {`i � ` 7→ xi}

where ∀i.`i � ` is defined

and ∀j.`j � ` is undefined

Lemma A.1.1. If the following propositions hold:

• {`i 7→ xi} = bindings(σ0, sexp)

• {`′j 7→ xj} = bindings(σ, sexp.`) = {`i 7→ xi} � ` where {j} ⊆ {i}

• zi#sexp

• Σ0 = parse(σ0, sexp, ε) is defined

• Σ1 = parse(σ, sexp.`, `) v Σ0 is defined
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• ∀`′ ∈ dom(Σ0).resolve(Σ0,Σ0(`′)) is defined

then the following conclusions hold:

• Σ2 = parse(σ, sexp[`i 7→ zi].`, `) is defined; and

• ∀`′ ∈ dom(Σ3).resolve(Σ3,Σ3(`′))

where Σ3 = Σ0[`′j 7→ zj].

Proof. By induction on parse(σ, sexp.`, `).

Let us consider the case where Σ1 = parse(µA.σ, sexp.`, `). By definition:

• Σ1 = {` 7→ P(σ[µA.σ/A], sexp.`, ε)(ε)}; and

• Σ′0 = parse(σ[µA.σ/A], sexp.`.ε, ε) is defined; and

• Σ′1 = Σ′0 = Σ′0 v Σ0 is defined; and

• ∀`′ ∈ dom(Σ′0).resolve(Σ′0,Σ
′
0(`′)) is defined.

Note that bindings(µA.σ, sexp.`) = bindings(σ[µA.σ/A], sexp.`) = {`′j 7→ xj}.

By the induction hypothesis, Σ′2 = parse(σ[µA.σ/A], sexp.`[`′j 7→ zj].ε, ε) is

defined and ∀`′ = dom(Σ′3).resolve(Σ′3,Σ
′
3(`′)) is defined, where

Σ′3 = Σ′0[`′j 7→ zj] = Σ′2

Now, sexp.`[`′j 7→ zj].ε = sexp[`i 7→ zi].`, so P(σ[µA.σ/A], sexp[`i 7→ zi].`) is

defined and fully resolved. Thus Σ2(`) is defined and fully resolved.

Corollary. If {`i 7→ xi} = bindings(σ, sexp) and P(σ, sexp) is defined and

zi#sexp then P(σ, sexp[`i 7→ zi]) is defined.

Lemma A.1.2. Let {`i 7→ zi} = bindings(σ0, sexp) where ∀i 6= j.zi 6= zj. If

Σ0 = parse(σ0, sexp[`i 7→ zi], ε) and Σ = parse(σ, sexp[`i 7→ zi].`, `) v Σ0 are

defined and ∀`′ ∈ dom(Σ0).resolve(Σ0,Σ0(`′)) is defined, then sexp{zi/xi}σΣ1
is

defined, where Σ1 = {`′ 7→ resolve(Σ0,Σ0(`′))}.
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Proof. By induction on parse(σ, sexp[`i 7→ zi].`, `)).

Consider the case of recursive types:

Σ = parse(µA.σ, sexp[`i 7→ zi].`, `)

= {` 7→ P(σ[µA.σ/A], sexp[`i 7→ zi].`)}

= {` 7→ P(σ[µA.σ/A], sexp.`[`j 7→ zj].ε)}

where {`j 7→ zj} = {`i 7→ zi} � `. From this we conclude that

Σ′0 = parse(σ[µA.σ/A], sexp.`[`j 7→ zj].ε, ε)

is defined and Σ′ = Σ′0 v Σ′0 is defined and ∀`′ ∈ dom(Σ′0).resolve(Σ′0,Σ
′
0(`′))

is defined. Thus by the induction hypothesis:

sexp.`[`j 7→ zj].ε{zj/xj}σ[µA.σ/A]
Σ′

1
is defined

= sexp[`i 7→ zi].`{zj/xj}σ[µA.σ/A]
Σ1

= sexp[`i 7→ zi].`{zj/xj}µA.σΣ1

= sexp[`i 7→ zi].`{zi/xi}µA.σΣ1

The last step is due to the fact that ∀k ∈ i− j.zk 6∈ bindings(µA.σ, sexp).

Corollary. If {`i 7→ zi} = bindings(σ, sexp) where ∀i 6= j.zi 6= zj and Σ =

P(σ, sexp) is defined, then sexp{zi/xi}σΣ is defined.

Lemma (6.2.1). Let sexp be parseable at σ and {`i 7→ xi} = bindings(σ, sexp).

If zi#sexp then

sexp{`i 7→ zi}{zi/xi}σPσsexp{`i 7→zi}

is defined.

Proof. Follows directly from the preceding two lemmas.

A.2 Alpha-conversion preserves type

Lemma A.2.1 (Base variable renaming). Let x ∈ dom(Γ). Then:

Γ� Γ0; Π ; Σ ` sexp : σ ⇐⇒ Γ{z/x} � Γ0; Π ; {z/x} ◦ Σ ` sexp{z/x} : σ
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Proof. By induction on the type derivation.

As a warm-up, let us consider the case of [F-MACDEF], which has a nice

fixed binding structure.

(Γ :: Γ)� Γ0; • ` ((letrec-syntax ((y m)) form)) : expr
⇐⇒ {inversion of Rule [F-MACDEF]}

(({y :τ} :: Γ) :: Γ)� Γ0; • ` form : expr
∧ (({y :τ} :: Γ) :: Γ)� Γ0; • ` m : τ
⇐⇒ {induction hypothesis}

(({y :τ} :: Γ) :: Γ){z/x} � Γ0; • ` form{z/x} : expr
∧ (({y :τ} :: Γ) :: Γ){z/x} � Γ0; • ` m{z/x} : τ
⇐⇒ {definition of renaming}

(({y{z/x} :τ} :: Γ{z/x}) :: Γ{z/x})� Γ0; • ` form{z/x} : expr
∧ (({y{z/x} :τ} :: Γ{z/x}) :: Γ{z/x})� Γ0; • ` m{z/x} : τ
⇐⇒ {Rule [F-MACDEF]}

(Γ :: Γ){z/x} � Γ0; • ` ((letrec-syntax ((y m)) form)){z/x} : expr

A somewhat more interesting case is Rule [S-IMPORT]:

(Γ :: Γ)� Γ0; Π; Σ ` sexp : σ↓β
⇐⇒ {inversion of Rule [S-IMPORT]}

((resolve(Σ, β),Γ) :: Γ)� Γ0; Π; Σ ` sexp : σ
⇐⇒ {induction hypothesis}

((resolve(Σ, β),Γ) :: Γ){z/x} � Γ0; Π; {z/x} ◦ Σ ` sexp{z/x} : σ
⇐⇒ {distributivity}

((resolve({z/x} ◦ Σ, β),Γ{z/x}) :: Γ{z/x})� Γ0 · · ·
⇐⇒ {Rule [S-IMPORT]}

(Γ :: Γ){z/x} � Γ0; Π; {z/x} ◦ Σ ` sexp{z/x} : σ↓β

The remainder of the proof is straightforward.

For convenience, let ς range over sets of variable substitutions from a

single rib, i.e.:

ς ::= {yi/xi} where ∀i 6= i.yi 6= yj ∧ xi 6= xj

Lemma A.2.2 (Bindings-directed substitutions). Let Σ = P(σ, sexp) and Σ′ =

P(σ, sexp[`i 7→ zi]), where {`k 7→ xi} = bindings(σ, sexp) and zi#sexp. If B =

resolve(Σ, attr) = Pj and B′ = resolve(Σ′, attr ′), where attr = attr ′ = β or

attr = Σ(`) and attr ′ = Σ′(`), then the following hold:
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1. {zi/xi}B′
= ςj

2. B′ = Pjςj

3. ∀j.ςj = {zk/xk} for some permuted subset {k} ⊆ {i}

4. ∀i.xi 6∈ dom(B′)

Proof. By induction on the definition of resolve(Σ′, attr ′) and P(σ, sexp). In

the case of a rib attr = attr ′ = ρ, the rib signature contains some number of

VAR members and some number of RIB members. The former must all resolve

to distinct xk or pattern variables, and the latter form an inductive case. The

other cases are applications of the induction hypothesis.

Lemma A.2.3 (Bindings-directed α-conversion). Let Σ = P(σ, sexp) and

Σ′ = P(σ, sexp[`i 7→ zi]) where {`i 7→ xi} = bindings(σ, sexp) and zi#sexp.

Then

(resolve(Σ, β),Γ0) :: Γ; Π; Σ′ ` sexp.` : σ

⇐⇒ (resolve(Σ′, β),Γ0) :: Γ; Π; Σ′ ` sexp{zi/xi}resolve(Σ,β).` : σ

Proof. By Lemma A.2.2, we perform some number of rib substitutions, all

the while enforcing the invariant that a growing prefix of the environment

contains no occurrences of the bound base variables xi. At each rib, we

perform some number of variable renamings, using Lemma A.2.1.

Lemma (Type-directed α-conversion, 6.3.1). If the following properties hold:

• {`i 7→ xi} = bindings(σ0, sexp)

• Σ = P(σ0, sexp)

• Σ′ = Σ[`i 7→ zi] where zi#sexp

• Σ : Υ0

• ` ` σ : Υ v σ0 : Υ0
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then:

Γ; Π; Σ ` sexp.` : σ ⇐⇒ Γ; Π; Σ′ ` sexp[`i 7→ zi].`{zi/xi}σΣ′ : σ

Proof. By induction on the type derivation. Let us consider the most inter-

esting case, Rule [S-IMPORT]:

Γ :: Γ; Π; Σ ` sexp.` : σ↓β
⇐⇒ {inversion of Rule [S-IMPORT]}

(resolve(Σ, β),Γ) :: Γ� Γ0; Π; Σ ` sexp.` : σ
⇐⇒ {induction hypothesis}

(resolve(Σ, β),Γ) :: Γ� Γ0; Π; Σ′ ` sexp[`i 7→ zi].`{zi/xi}σΣ′ : σ
⇐⇒ {Lemma A.2.3}

(resolve(Σ′, β),Γ) :: Γ� Γ0; Π; Σ′ `
sexp[`i 7→ zi].`{zi/xi}σΣ′{zi/xi}resolve(Σ′,β) : σ

⇐⇒ {definition of resolve}
(resolve(Σ′, β),Γ) :: Γ� Γ0; Π; Σ′ ` sexp[`i 7→ zi].`{zi/xi}σ↓βΣ′ : σ

⇐⇒ {Rule [S-IMPORT]}
Γ :: Γ� Γ0; Π; Σ′ ` sexp[`i 7→ zi].`{zi/xi}σ↓βΣ′ : σ↓β

The remaining cases are straightforward.

A.3 Type soundness

Lemma (Transcription, 6.5.7). Let M = ΣRu ◦ Π−1
d and • ` Σu ok. Given the

following hygiene conditions:

• dom(Γd) ∩ P ⊆ dom(Πd)

• dom(Γd) ∩ B#µ

• fv(sexp) σΣd
∩ ⋃

a bv(µ(a))
Πd(a)
Σu

= ∅

• bv(sexp) σΣd
#µ

and a well-typed match:

Γu; •; Σu ` µ : Πd

then a well-typed macro template:

Γd :: Γu; Πd ; Σd ` sexp : σ
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leads to a well-typed transcription:

M(Γd)� Γu; • ; M ◦ Σd ` µ(sexp) : σ

Proof. By induction on the type derivation.

• Case [F-MACDEF]: impossible, since Πd 6= •.

• Case [F-MACAPP]: (already presented)

• Case [F-VAR]: By assumption, dom(Γd) ∩ B#µ, so:

(M(Γd)� Γu)(x) = (Γd � Γu)(x)

• Case [F-PEXPR]:

Γd :: Γu; Πd; Σd ` a : expr
=⇒ {Rule [F-PEXPR]}

Πd(a) <: expr↓Π−1
d (Γd|P)

=⇒ {assumption}
Γu; •; Σu ` µ(a) : Πd(a) <: expr↓Π−1

d (Γd|P)
=⇒ {subsumption}

Γu; •; Σu ` µ(a) : expr↓Π−1
d (Γd|P)

=⇒ {inversion of Rule [S-IMPORT]}
M(Γd|P)� Γu; •; Σu ` µ(a) : expr

=⇒ {inversion of Rule [S-EXPR]}
M(Γd|P)� Γu; • ` µ(a) : expr

=⇒ {dom(Γd) ∩ B#µ}
M(Γd)� Γu; • ` µ(a) : expr

=⇒ {Rule [F-EXPR]}
M(Γd)� Γu; •; M ◦ Σd ` µ(a) : expr

• Case [F-PBVAR]: (already presented)

• Case [M-VAR]: similar to [F-VAR].

• Case [M-PRIM]: trivial.

• Case [M-MACRO]: straightforward induction.
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• Case [S-PVAR]:

Γu; •; M ◦ Σd ` µ(a) : Πd(a) <: σ↓Π−1
d (Γd|P)

=⇒ {subsumption}
Γu; •; M ◦ Σd ` µ(a) : σ↓Π−1

d (Γd|P)
=⇒ {inversion of [S-IMPORT]}

ΣRu (Π−1
d (Γd|P))� Γu; Πu; Σ′d ` µ(a) : σ

=⇒ {dom(Γd) ∩ B#µ}
Γ′d; Πu; Σ′d ` µ(a) : σ

• Case [S-EXPR]: straightforward induction.

• Case [S-IMPORT]: (already presented)

• Case [S-REC]:

Γd :: Γu; Πd; Σd ` sexp : µA.σ
=⇒ {inversion of Rule [S-REC]}

Γd :: Γu; Πd;P(σ′, sexp) ` sexp : σ′

∧ σ′ = σ[µA.σ/A]
∧ Πd ` P(σ′, sexp) ok

=⇒ {induction hypothesis}
M(Γd)� Γu; •; M ◦ P(σ′, sexp) ` µ(sexp) : σ′

∧ σ′ = σ[µA.σ/A]
∧ Πd ` P(σ′, sexp) ok

=⇒ {Lemma 6.5.6}
M(Γd)� Γu; •; M ◦ P(σ′, sexp) ` µ(sexp) : σ′

∧ σ′ = σ[µA.σ/A]
∧ • ` M ◦ P(σ′, sexp) ok

=⇒ {Lemma 6.5.5}
M(Γd)� Γu; •;P(σ′, µ(sexp)) ` µ(sexp) : σ′

∧ σ′ = σ[µA.σ/A]
∧ • ` P(σ′, µ(sexp)) ok

=⇒ {Rule [S-REC]}
M(Γd)� Γu; •; M ◦ Σd ` sexp : µA.σ

• Case [S-UNION]: similar.
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