PageRank Lecture Note

Keshi Dai
June 22, 2009

1 Motivation

Back in 1990s, the occurrence of the keyword is the only important rule to judge if a document
is relevant or not. The document with the highest number of occurrences of keywords
receives the highest score based on the traditional text retrieval model. This approach works
fine on text retrieval, but it has its flaws. It only looks the content of a document, but
ignore its influence. All documents in the collection are seen as equally important. In
the large-scale web, this may undermine the retrieval quality. For example, if you search
“harvard” in your browser, you would expect that your search engine ranks the homepage
of the Harvard University as the most relevant page. Suppose word “harvard” appears
much more often in a Harvard student’s homepage than in “www.harvard.edu” because that
student listed all courses he has taken in Harvard, and all papers he has published, etc, which
all contain “harvard”. Should we consider this student’s homepage is more relevant than
“www.harvard.edu” to our query. In worst scenario, if we create a web page that contains
“harvard” a million times. Should we consider this page is relevant to the query “harvard”?
The answer is of course not.

2 PageRank

In 1998, Larry Page and Sergey Brin, two graduate students at Stanford University, has
invented the PageRank algorithm that model the structure of pages on the web and quantize
the importance of each page. PageRank is one of the most known and influential algorithms
for computing the relevance of web pages, and is used by Google, the most successful search
engine on the web. The basic idea of PageRank is that the importance of a web page depends
on the pages that link to it. For instance, we create a web page ¢ that includes a hyperlink
to web page j. If there are a lot pages also link to j, we then consider j is important on
the web. On the hand, if j only has one in-link, however, this link is from an authoritative
web page k (like www.google.com, www.yahoo.com, or www.bing.com), we also think j is
important because k can transfer its popularity or authority to j.

Suppose for instance we have the following directed graph based on a tiny web (see
Figure 1) that have only 6 pages, one for each node. When web page i references j, we add
a directed edge between node ¢ and j in the graph. In PageRank model, each page should
transfer evenly its importance to the pages that it links to. For example, page A has 3
out-links, so it will pass on % of its importance to B, C, and F. In general, if a page has k

Figure 1: A tiny web with 6 pages

out-links, it will pass on % of its importance to each of the pages that it links to. According
to this importance transition rule, we can define the transition matrix of the graph, say P,

INREEE

il0103
P=|3 § | 4

R IR RO

1 2 1 3

5 1 0 300

Starting with the uniform distribution, the importance of each node is %. Let 7 denote
the initial PageRank value vector, having all entries equal to é. Because each incoming link
increase the PageRank value of a web page, we update the rank of each page by adding to
the current value the importance of the incoming links. This is the same as multiplying the
matrix P with v. Nummeric computation give [1]:

0.167 0.264 0.300 0.265 0.265
0.167 0.111 0.134 0.138 0.138
0.167 ~10.139 o 10.147 12 | 0.150 13 | 0.150
"loaer | P {oazs [T Jooor | T Lot |8 T {0110
0.167 0.222 0.175 0.187 0.187
0.167 0.139 0.147 0.150 0.150
We can the sequences of iterations 7, P, ---, P*r tends to converge to the value
0.265
0.138
. 0.150 .
™=10110 | This is the PageRank vector of our web graph.
0.187
0.150

3 Markov chain

The popularity of a web page can also be viewed as the probability of visiting this page
during a random surfer on the Internet. A web page with high populairty has more chances

2

of being visited than a web page with low populairty. Because a popular page has many
pages linking to it, if you visit one of them, you will have a chance of vising this popular
page. We can model this process as a random walk on a Markov chain. All pages starts
with the uniform distribution, so 7 = [0.167,0.167,0.167,0.167,0.167,0.167]" and P is the
transition matrix of this Markov chain. The probability that page ¢ will be visited after one
step is equal to Pm,. The probability that page ¢ will be visited after k steps is P*mw. The
sequence Pm, P%m, P3m, ---, Pkr, ... converges in our example to a unique probabilistic
vector v*, and 7* is the stationary distribution and it will be our PageRank values.

4 Egeinvector

We can also model this problem in the linear algebra point of view [3]. Let zy, xo, -, ¢
be the importance of 6 pages in our graph. Because the importance of a page is summation
of importances from all pages that link to it, we get:

(1 1
=7 w4+l 25+ 35 w6
_ 1 1
$2—§'$1+§'$6
_ 1 1 1
) $3—§‘$1+Z‘LE2+Z'Q}4
$4:}1'$2+%'$3
_ 1 1 1 1
ZL‘5—Z'ZL‘2+§'ZL’3+Z'ZE4+§'ZJZ6
1 1 1
(T6 =35 T1+ 3 -T2+ 7 Ta

This is equivalent to solve the equations P -7 = 7, where m = [11, T, 3, 24, T5, 76]T . We
know that 7 is the eigenvector corresponding to the eigenvalue 1. Normalizing 7, so it
would be the unique eigenvector with the sum of all entries equal to 1, also known as the
probabilistic eigenvector. It is also our PageRank vector.

5 Dangling nodes and disconnected components

Extend our simple example, suppose that there some pages that do not have any out-links
(we call them dangling nodes), our random surfer will get stuck on these pages, and the
importance received by these pages cannot be propagated. In the other senario, if our web
graph has two disconnected components, the random surfer that starts from one component
has no way to get into the other component. All pages in other component will receive 0
importance.

Dangling nodes and disconnected components actually are quite common on the Internet,
considering the large scale of the web. In order to deal with these two problems, a positive
constant d between 0 and 1 (typically 0.15) is introduced, which we call the damping factor
[2]. Now we modify previous transition matrix based on d into P’ = (1 —d)- P+d- R, where

1
R=—.|: : -
N

11 --- 1
This new transition matrix models the random walk as follows: most of the time, a
surfer will follow links from a page if that page has outgoing links. A smaller, but positive

percentage of the time, the surfer will dump the current page and choose arbitrarily a different
page from the web, and “teleports” there. The damping factor d reflects the probability that
the surfer quits the current page and “teleports” to a new one. Since every page can be
teleported, each page has % probability to be chosen. This justifies the structure of R.

6 Implementation

The PageRank formula based on the previous discussion is as follows:

1—d

p; links to p;

PR(p))
> 2,

p; has no out-links

Here is the pseudocode of my implementation of PageRank algorithm:

Algorithm 1 PageRank algorithm

procedure PAGERANK(G, iteration)

1:

2 d «— 0.85

3 oh — G

4: ih — G

5: N «— G

6 for all p in the graph do
7 1

8

9

opglp] — %
end for
: while iteration > 0 do

10: dp — 0
11: for all p that has no out-links do
12: dp — dp + d 232
13: end for
14: for all p in the graph do
15: npglp] — dp + ¢
16: for all ip in ih[p| do
17: npg[p] « npglp] + <
18: end for
19: end for
20: opg <— npg
21: iteration < iteration — 1
22: end while

23: end procedure

> G: inlink file, iteration: # of iteration

> damping factor: 0.85

> get outlink count hash from G
> get inlink hash from G

> get # of pages from G

> initialize PageRank

> get PageRank from pages without out-links

> get PageRank from random jump

> get PageRank from inlinks

> update PageRank

A PageRank Source Code

#! /usr/bin/python

Who: Keshi Dai

What: PageRank.py

When: 06/20/09

Usage: PageRank.py [-t] [-i iteration_num] inlink_file > output

import sys

if len(sys.argv)==1:
print >> sys.stderr,
"Usage: PageRank.py [-t] [-i iteration_num] inlink_file > output\n"
sys.exit()

if sys.argv([1l] == "-t":
teleport = True
if sys.argv([2] == "-i":
iternum = int(sys.argv[3])
inlink_file_name = sys.argv[4]
else:
iternum = 10
inlink_file_name = sys.argv[2]
else:
teleport = False
inlink_file_name = sys.argv[1]

#damping factor
d=0.85

inlink file = open(inlink_file_name, ’r’)
outlink_count = {}

inlinks = {}

oldpagerank = {}

newpagerank = {}

docids = {}

dangling_docs = {}

print >> sys.stderr, "Processing inlink file", inlink file_name, "..... "

inlink_docnum = O
outlink_docnum = O
docnum = 0

for line in inlink_file:
line = line.strip(Q);
nodes = line.split(" ");
inlink_docnum += 1

inlinks[nodes[0]] [1;
inlinks[nodes[0]] = tuple(nodes[1:]);
if not docids.has_key(nodes[0]):
docids[nodes[0]] = 1
docnum += 1
for node in nodes[1:]:
if outlink_count.has_key(node):
outlink_count[node] += 1
else:
outlink_count[node] = 1
outlink_docnum += 1
if not docids.has_key(node):
docids[node] = 1;
docnum += 1

print >> sys.stderr, "Number of Documents:", docnum
print >> sys.stderr, "Number of Documents with in-links:", inlink_docnum
print >> sys.stderr, "Number of Documents with out-links:", outlink_docnum

for key in docids.keysQ:
if not inlinks.has_key(key):
inlinks[key] = ()

oldpagerank [key] = 1.0/docnum
if not outlink_count.has_key(key):
dangling_docs[key] = 1
print >> sys.stderr, "Number of Dangling Documents:", len(dangling_docs)

while iternum > O:
if teleport:
dp =0
for key in dangling docs.keys():
dp += dxoldpagerank[key]/docnum

for key in oldpagerank.keys():
if teleport:
newpagerank [key]
else:
newpagerank [key] (1-d) /docnum
for inlink in inlinks[key]:
if outlink_count.has_key(inlink):
newpagerank [key] += dxoldpagerank[inlink]/outlink_count[inlink]

(1-d)/docnum + dp

for key in newpagerank.keys():
oldpagerank [key] = newpagerank[key]
iternum -= 1

print >> sys.stderr, "PageRank iteration remaining", iternum
for key in newpagerank.keys():
print key, newpagerank [key]

References

[1] Pagerank algorithm. http://www.math.cornell.edu/~mec/Winter2009/RalucaRemus/
Lecture3/lecture3.html.

[2] S. Brin and L. Page. The anatomy of a large-scale hypertextual Web search engine.
Computer networks and ISDN systems, 30(1-7):107-117, 1998.

[3] K. Bryan and T. Leise. The$ 25,000,000,000 Eigenvector: The Linear Algebra behind
Google. SIAM REVIEW, 48(3):569, 2006.

