
Recommender System for Yelp Dataset
CS6220 Data Mining

Northeastern University

Clara De Paolis Kaluza

Fall 2016

1 Problem Statement and Motivation

The goal of this work is to construct a personalized recommender system for the Yelp dataset
that can accurately predict a user’s preference for a business. In particular, the system aims to
predict the value of a user’s rating (from one to five) of a business which they visit. Motivated
by the popularity among real-world recommender systems of collaborative filtering, and matrix
factorization methods in particular, this work explores these methods to build the recommender
system.

2 Background

Methods for recommender systems Recommender systems can be implemented using several
different paradigms. These include content-based recommendations and collaborative filtering [6].
Content-base recommendations rely on calculating item-item or user-user similarities based on
constructed or learned item and user profiles. User profiles represent user preferences of each
dimension (feature) in the profile. Item profiles indicate the amount or presence of each of those
features in that item. For example when considering businesses, some features could be based on
its location, its hours of operation, the items they sell, the friendliness of the staff, etc. Then, user
profiles would be features that indicate to what extent each user prefers each of those features. Items
are recommended that match a user’s preferences, which are based on past reviews or purchases
by the user. In effect, items are recommended if they are similar to items that a user has liked in
the past.[5]. Systems using this approach require accurate profiles for user and items and can fail
to recommend items that differ from past items that a user purchased, but that they might still
enjoy.

In contrast, collaborative filtering methods produce recommender systems that recommend and
item (in this case, a business) based on similarities between users. That is, it relies on the assump-
tion that similar users will like similar items. Specifically, such a recommender system would assess
user similarities and recommend business B to user ui if users similar to ui liked business B. This
method requires plentiful user information but does not rely on extensive information on the items
(businesses)[6].

1



Other methods exist that combine the above methods or introduce additional information, such
as social network structure to inform a user’s recommendations. As a starting point, this project
focuses on collaborative filtering since the dataset in question is large and includes many thousands
of user. More details on that dataset will be provided in later sections.

Collaborative filtering through matrix factorization One method for predicting user ratings based
on past rating is through matrix factorization. This model assumes that user ratings are the result
of only a few factors. For example, we assume that there are only a handful of reasons that account
for a customer rating a restaurant, for example, 3/5. Perhaps the speed of service, the quality of
the food, and the price are enough to account for all user ratings. That is, as these three factors
differ from business to business, the ratings of customers differ accordingly.

The utility matrix is a matrix with rows corresponding to users and columns corresponding to
items. The entries in the matrix are populated by explicit or implicit user evaluations of items.
Implicit evaluations correspond to information gathered through user actions, whereas explicit
evaluations correspond to feedback from a user. For example implicit information may be whether
a user clicked a link, purchased an item, or visited a business. Explicit information may be a review,
a rating, or a “like”/“thumbs-up”/etc provided by a user. In this case, we focus on explicit ratings
provided by users. Then, if rij is the rating user i gave business j the utility matrix R is defines as

Rij =

{
rij if user i reviewed item j
0 otherwise

Matrix factorization methods assume that all the information in the utility matrix can be accounted
for by some k (latent) factors, where k is much smaller than the number of user and the number
of item. If n is the number of users and m is the number of items, the n ×m utility matrix can
be factored as R = PQ, where P is n× k and Q is k ×m. To find such a P and Q is to find the

matrices that when multiplied together are as close to R as possible. Specifically, if S = PQ, then
the root mean squared error, the error that should be minimized, is given by

RMSE =

√
1

n

∑
i,j

(si,j − ri,j)2

Finding optimal P and Q The problem of finding these matrices is reminiscent of another common
problem in machine learning. Namely, (regularized) linear regression. In linear regression, there is
a data matrix X and a target y and the goal is to find a coefficient vector w so that

2



y = Xw + λwTw

To find w that minimized the MSE(
MSE =

1

N

N∑
n=1

(wTxn − yn)2 + λ‖w‖22

)

there is a closed-formed solution:

w =
(
XTX + λI

)−1
XT y

While this problem is similar in structure, the dimensionality of y and w is quite different than in
the matrix factorization problem. We can move a step closer to the problem at hand by considering
(regularized) multivariable linear regression, where If instead of predicting a single target value, we
want to predict a vector for each instance xi, we need to find a matrix of coefficients

and the closed-form solution is

W =
(
XTX + λI

)−1
XTY

The multivariable regression problem

Y = XW + λ‖W‖2

looks very similar to the matrix factorization problem

R = PQ + λ
(
‖P‖2 + ‖Q‖2

)

3



except that unlike in multivariable linear regression, in matrix factorization both P and Q are
unknown. Optimizing for both jointly is non-convex, however if one were fixed, solving for the
other matrix would be a convex quadratic optimization[3]. This approach is represented in the
Alternating Least Squares method of matrix factorization. Specifically, one matrix is fixed and the
other is found through the closed form equation listed in the description of the process below

Repeat:

• Fix Q. Solve for P

– P =
(
QQT + λI

)−1
QR

• Fix P. Solve for Q

– Q =
(
PPT + λI

)−1
PRT

The matrix to be inverted is only k × k, and k is much smaller than n and m. Additionally,
each column of Q and each row of P can be solved for in parallel during each of the steps in the
algorithm1.

To regularize each matrix P and Q proportionally with the number of non-zero entries in each
row or column of each matrix, we modify the objective value to use weighted-λ-regularization[10]

R = PQ + λ
(
nu‖P‖2 + nb‖Q‖2

)
Where nu is the number of nonzero entries in each row of P and nb is the number of nonzero

entries in each column of Q. The process then becomes
Repeat:

• Fix Q. Solve for P

– P =
(
QQT + nuλI

)−1
QR

• Fix P. Solve for Q

– Q =
(
PPT + nbλI

)−1
PRT

3 The Data: Yelp Dataset Challenge 2016

The Yelp Dataset Challenge data offers a rich collection of data about businesses and users on
Yelp. These data include information about users, businesses, reviews, user ratings, and other
information collected by Yelp, such as user “tips” for businesses and counts of user “check-ins” to
businesses.

The dataset includes businesses and users from ten cities in North American and Europe. These
include Edinburgh, U.K., Karlsruhe, Germany, Montreal and Waterloo, Canada, and six cities in
the U.S. The number of businesses, users, and reviews in each cities is not uniform. For example,
the dataset includes 36,500 businesses in Las Vegas, but only 530 in Toronto. Table 1 shows the
counts of types of data by location.

User data includes information about the each user’s account, such as the account creation date,
the number of reviews generated by the user, the average rating given by the user, the user’s

1However this parallelization is not implemented in the code accompanying this project

4



State restaurants reviews check-ins

AZ 9427 622446 8570

NV 5912 662428 5505

QC 3385 63987 2741

NC 2421 112794 2212

PA 1671 78754 1457

EDH 1232 15189 822

WI 1172 49243 1018

BW 571 2714 160

ON 372 4814 297

IL 317 13054 259

SC 143 3532 125

Table 1: Counts of different data by state

Category count

Restaurants 26729

Shopping 12444

Food 10143

Beauty & Spas 7490

Health & Medical 6106

Home Services 5866

Nightlife 5507

Automotive 4888

Bars 4727

Local Services 4041

Table 2: Counts of top 10 cate-
gories in data set

“friends,” “compliments” from other users, and votes from other users on reviews written by the
user. In addition, each review and tip is linked to the user who wrote the review or tip. Business
data includes information about the business category, location, hours of operation, average rating,
number of reviews, the count of user check-in by date (though the specific user ID for each check-in is
not provided), and lastly every review is linked to the business about which it was written. Business
categories are tags provided for each business such as “Restaurants,” “Shopping,” etc. A business
may have multiple categories, for example a single business may be tagged with the categories
“Restaurants” as well as “Bars,” “Food,” and “Sandwiches,” etc. There are 1,017 categories of
businesses in the dataset, with the top 10 most common ones listed in Table 2.

To narrow the scope of recommendations, we choose to predict ratings of a single category of
businesses, namely restaurants. Of the 85,901 businesses in the dataset, 26,729 of them are tagged
as “Restaurants,” so the choice to focus on this type of business is reasonable. Focusing on one
business category also allows the system to model user preferences specific to restaurants that may
not apply to other business categories, such as “Automotive.” It is reasonable to expect that users
judge restaurants and automotive businesses quite differently and users that agree about restaurants
may not agree about automotive businesses or vice versa.

To further narrow the scope of the model, and to promote faster computation, we focus on data
from a single city. Namely, we choose Pittsburgh,PA as the city for which to build the recommender
system because with 78,754 reviews for restaurants it provides abundant information for training
without requiring computation on “too much” data2. By focusing the model on one type of business
and one location, we hope to be able to accurately model the user preferences that may differ by
business type or by location, or both, better than trying to model preferences for all categories in
all locations at once.

2Here we (conspicuously) omit a precise definition or analysis of “too much” data, but suffice it to say that a dataset
small enough to work with locally on a laptop was desirable

5



Figure 1: Average user rating distribution of
Pittsburgh data

Figure 2: Average restaurant rating distribu-
tion of Pittsburgh data

3.1 Constructing the Utility Matrix

To build the recommender system, we do not use any of the check-in, tips, or business and user
features provided in the dataset. Instead, we use only the ratings associated with reviews as explicit
preferences provided by users. In particular, associated with each review written by a user is a
rating from 1 to 5 indicating the user’s rating of the business. Figure 1 shows the distribution of
the average rating given by users and Figure 2 shows the average rating given to restaurants. These
ratings are used to populate the utility matrix R. As is common in the setting of recommender
systems, each user has only rated a small fraction of the total number of items available, therefore
the utility matrix is very sparse. See Figure 3 for the distribution of the number of restaurants
reviewed by users and Figure 4 for a representation of the nonzero entries in the utility matrix.

Figure 3: Review counts by user. Note
that more than 10,000 users
provide 10 or fewer reviews

Figure 4: Sparcity of utility matrix. Black dots indicate the
0.18% of entries in the matrix that are non-zero.

6



4 Experiments

4.1 Separating the data

To train and evaluate the recommender system, the dateset must be split by time. The first time
period is used to train the recommender system and the later time period is used to evaluate
it. This scenario mimics the real-world scenario where a system can train on past data to predict
future ratings. To find the appropriate train-test split, the number of reviews over time is analyzed.
The number of reviews in the dataset over time are shown in Figure ??. The cutoff was identified
such that 80% of reviews occurred before the cutoff and 20% occurred after. The test set were
the reviews after the cutoff that were made by users with at least one review during the training
period.

Figure 5: Number of reviews over time. The black line indicates the cut-off such that 80% of reviews
occurred before and 20% afterwards

4.2 Training the model

The number of iterations of ALS was fixed to 20 iterations. The algorithm was implemented to
find P and Q to approximate the utility matrix containing the testing ratings. The RMSE for each
iteration is shown in Figure 6

4.3 Cross Validation

To cross validate the model hyperparameters, namely the number k of latent factors and the
regularization coeffiecient, we set aside 20% of the training data and remove it from the training
set. The average MSE was calculated for each parameter combination and used to select the
best values in the grid search. The result of this cross validation is shown in Table 3. The best
parameters were found to be λ = 1 and k = 2. Figures 7 and 8 show the values of the MSE on the
validation set for each combination of hyperparameters. These figures show that for large values of
λ, the value of k did not affect the error as much as for smaller values of λ. Furthermore, increasing

7



Figure 6: The RMSE for each iteration for different hyperparameter settings. The top row shows
the training RMSE. This quickly converges. The middle row shows the validation set
RMSE. The bottom row shows the test set RMSE. The ALS algorithm finds P and Q
to approximate R, which only includes the training set. This explains why predicting
values outside the test set does not have the same convergence behavior, though all lines
eventually converge as P and Q converge

the value of k after some point for a fixed λ did not have much effect on the error. Overall however,
Table 3 shows that the average MSE varies a small amount all hyperparameter settings.

4.4 Evaluation

Finally, we evaluate the recommender system against a baseline method to compare the perfor-
mance. A simple way to recommend items is purely on the item’s popularity, disregarding a specific
user’s preference. This approach is used here as a baseline. For each user i in the test set, the
rating for business j is predicted to be the average rating for business j during the training period.
If a business does not have an average rating for the training period (because it had no ratings
then), the prediction is given by the average for all businesses. Specifically, for this dataset, the
average for all businesses in the training set is 2.919 stars out of 5. Across all users, the average
Baseline MSE was 1.1550.

The matrix factorization approach predicts the rating user i gave business j as the value in Sij

where S = PQ. Specifically, we use the P and Q found using the hyperparameters chosen through
cross validation. With these parameters, the system achieves an average MSE of 1.1531, beating

8



k = 2 k = 5 k = 10 k = 20

λ = 0.1 1.0147 1.0973 1.1478 1.1303

λ = 1 0.9807 1.0564 1.1174 1.0953

λ = 2 0.9940 1.0471 1.0767 1.0682

λ = 5 1.0715 1.0663 1.0795 1.0749

λ = 10 1.1944 1.1900 1.1902 1.1904

Table 3: Average MSE on validation set for various parameter settings

Figure 7: Validation MSE as a function of λ
for varying values of k

Figure 8: Validation MSE as a function of k
for varying values of λ

the baseline (barely). Note that a different setting of hyperparamters (k = 2, λ = 2) achieves
an average MSE of 1.1375, a more significant improvement over baseline. These parameters were
the second-best in cross validation and when analyzing the convergence behavior of λ = 1 and
λ = 2 for k = 2, it is suggested that these values had not yet converged after 20 iterations. As
the RMSE appears to still be decreasing, it is possible that running further iterations would yield
better results. This is left to future work.

References

[1] Gediminas Adomavicius, Lior Rokach, and Bracha Shapira, Recommender Systems Handbook,
vol. 54, 2015.

[2] Yifan Hu, Yehuda Koren, and Chris Volinsky, Collaborative Filtering for Implicit Feedback
Datasets Yifan, IEEE Int. Conf. Data Min. (2008), 263–272.

[3] Y. Koren, R. Bell, and C. Volinsky, Matrix Factorization Techniques for Recommender Sys-
tems, Computer (Long. Beach. Calif). 42 (2009), no. 8, 42–49.

[4] Yehuda Koren, Robert Bell, Chris Volinsky, et al., Matrix factorization techniques for recom-
mender systems, Computer 42 (2009), no. 8, 30–37.

9



[5] A. Rajaraman and J.D. Ullman, Mining of massive datasets, Cambridge University Press,
2011.

[6] Francesco Ricci, Lior Rokach, Bracha Shapira, and Paul B. Kantor, Recommender Systems
Handbook, vol. 53, 2011.

[7] Hsiang-fu Yu, Cho-jui Hsieh, Si Si, and Inderjit S Dhillon, Parallel Matrix Factorization for
Recommender Systems.

[8] Dave Zachariah, Martin Sundin, Magnus Jansson, and Saikat Chatterjee, Alternating Least-
Squares for Low-Rank Matrix Reconstruction, 1–4.

[9] Wei Zeng, An Zeng, Ming Sheng Shang, and Yi Cheng Zhang, Information filtering in sparse
online systems: Recommendation via semi-local diffusion, PLoS One 8 (2013), no. 11.

[10] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan, Large-scale parallel col-
laborative filtering for the netflix prize, Lect. Notes Comput. Sci. (including Subser. Lect. Notes
Artif. Intell. Lect. Notes Bioinformatics) 5034 LNCS (2008), 337–348.

10


	Problem Statement and Motivation
	Background
	The Data: Yelp Dataset Challenge 2016
	Constructing the Utility Matrix

	Experiments
	Separating the data
	Training the model
	Cross Validation
	Evaluation


