Estimating the fundamental matrix of a random walk transition matrix

Clara De Paolis Kaluza

Math250- Graph Algorithms

Final project

Abstract

The analysis of distances between nodes in networks that contain many low-degree vertices and some high-degree hubs requires more sophisticated distance metrics than, for example, simple shortest-path distances. In the study of one type of these networks, protein-protein interaction networks, a promising distance metric is the diffusion state distance, but calculating requires an expensive matrix inversion. Through reforming the problem as a linear system theoretical performance improvements are possible, although the experimental results shown here show numerical instability issues.

1. Problem Statement and Motivation

1.1. Motivation

Genome sequencing allows for the study of all the proteins expressed by the genome of an organism (the proteome). For most organisms, some of these proteins have known biological functions, but for many proteins their biological function is unknown. A protein-protein interaction (PPI) network relates the structure of the proteins expressed by a genome, representing proteins that physically interact as connected nodes in a graph. These graphs capture physical interactions between proteins, including those with known function and those with unknown functions. Therefore if a proper distance metric can be determined between nodes, the structure of these networks can be used to discover the function of uncharacterized proteins[5].

However, these networks can be very complex, and furthermore, determining an appropriate distance metric is not straightforward. Some nodes in the network are considered "hubs," connecting many proteins that are not functionally similar. Therefore, a distance metric such as a simple shortest path is not useful in identifying functionally similar proteins. The work in [2] shows a promising distance metric, the diffusion state distance (DSD), but calculating it exactly requires the inversion of a matrix corresponding to a large network even for simple organisms. A more efficient method to calculate this metric is needed, especially in order to analyze the much larger PPI networks of more complex organisms and to apply this metric to other, larger networks. The main objective of this project is to implement an efficient way to estimate the DSD while avoiding an exact calculation of the fundamental matrix, an inverse of an $n \times n$ matrix, which is approximately an $O(n^3)$ operation.

2. Background and Assumptions

2.1. Problem Setup

To more precisely define the problem, consider a connected graph G = (V, E) where nodes $v \in V$ represent proteins expressed by a genome and edges $e \in E$ represent physical interaction between those proteins. The number of edges e connected to any node i is the degree of that node, represented by d(i). If we define the probability of a transition from node i to any of its neighboring nodes j as uniform then, the state transition matrix \mathbf{P} for this network is given by

$$(\mathbf{P})_{ij} = \begin{cases} \frac{1}{d(i)} & e(i,j) \in E\\ 0 & \text{otherwise} \end{cases}$$
 (1)

For the Markov chain this network represents, the matrix $\mathbf{W} = \lim_{n \to \infty} \mathbf{P}^n$ is such that each row of \mathbf{W} is equal to $\boldsymbol{\pi}^T$, the vector describing the steady state distribution for each $v \in V$. Finally, the fundamental matrix of \mathbf{P} is given by $\mathbf{Z} = (\mathbf{I} - \mathbf{P} + \mathbf{W})^{-1}$.

The distance metric proposed in [2] between two nodes (proteins) u and v is then defined as:

$$DSD(u,v) = ||(\mathbf{b}_u^T - \mathbf{b}_v^T)(\mathbf{I} - \mathbf{P} + \mathbf{W})^{-1}||_1$$
(2)

where \mathbf{b}_i is a basis vector, where all entries are zero except entry in the i^{th} position is one.

2.2. Defining The Graph Problem

For compactness, define the following two vectors $\mathbf{b}_{uv}^T := (\mathbf{b}_u^T - \mathbf{b}_v^T)$ and $\mathbf{x}_{uv}^T := \mathbf{b}_{uv}^T (\mathbf{I} - \mathbf{P} + \mathbf{W})^{-1}$ so that $\mathrm{DSD}(u,v) = \|\mathbf{x}_{uv}^T\|_1 = \|\mathbf{x}_{uv}\|_1$. By rearranging the terms, we can state this problem in the familiar form of solving a linear system:

$$\mathbf{x}_{uv}^{T} = \mathbf{b}_{uv}^{T} (\mathbf{I} - \mathbf{P} + \mathbf{W})^{-1}$$
$$((\mathbf{I} - \mathbf{P} + \mathbf{W})^{T})^{-1} \mathbf{b}_{uv}^{T} = \mathbf{x}_{uv}$$
$$(\mathbf{I} - \mathbf{P} + \mathbf{W})^{T} \mathbf{x}_{uv} = \mathbf{b}_{uv}$$
$$(\mathbf{I} - \mathbf{P}^{T} + \mathbf{W}^{T}) \mathbf{x}_{uv} = \mathbf{b}_{uv}$$

From the definition of the state transition matrix in (1), \mathbf{P} can be represented in terms of the matrices that describe a graph, namely, the degree matrix \mathbf{D} , the adjacency matrix \mathbf{A} , and the graph Laplacian \mathbf{L} .

$$\mathbf{P} = \mathbf{D}^{-1} \mathbf{A}$$

$$\Rightarrow \mathbf{P}^{T} = \mathbf{A} \mathbf{D}^{-1}$$

$$\Rightarrow (\mathbf{I} - \mathbf{P}^{T}) = \mathbf{I} - \mathbf{A} \mathbf{D}^{-1} = (\mathbf{D} - \mathbf{A}) \mathbf{D}^{-1} = \mathbf{L} \mathbf{D}^{-1}$$

So the linear system to be solved becomes

$$(\mathbf{I} - \mathbf{P}^T + \mathbf{W}^T)\mathbf{x}_{uv} = (\mathbf{L}\mathbf{D}^{-1} + \mathbf{W}^T)\mathbf{x}_{uv} = \mathbf{b}_{uv}$$
(3)

To further simplify, consider the Sherman-Morrison formula for inverting the sum of a square invertible matrix A and the outer product of two vectors u and v:

$$(\mathbf{A} + \mathbf{u}\mathbf{v}^T)^{-1} = \mathbf{A}^{-1} - \frac{\mathbf{A}^{-1}\mathbf{u}\mathbf{v}^T\mathbf{A}^{-1}}{1 + \mathbf{v}^T\mathbf{A}^{-1}\mathbf{u}}$$
(4)

with the restriction that $1 + \mathbf{v}^T \mathbf{A}^{-1} \mathbf{u} \neq 0$.

For this problem, the first matrix is $(\mathbf{I} - \mathbf{P}^T)$, and the two column vectors are the vector of all ones \mathbf{e} and π , the stationary distribution of the Markov chain described by \mathbf{P} so that $\mathbf{W} = \mathbf{e}\pi^T$ So substituting into the above equation, we get a solution to finding the fundamental matrix \mathbf{Z} :

$$\begin{split} \mathbf{Z}^T &= (\mathbf{I} - \mathbf{P}^T + \mathbf{W}^T)^{-1} = (\mathbf{I} - \mathbf{P}^T + (\mathbf{e}\pi^T)^T)^{-1} = (\mathbf{I} - \mathbf{P}^T + \pi\mathbf{e}^T)^{-1} \\ &= (\mathbf{I} - \mathbf{P}^T)^{-1} - \frac{(\mathbf{I} - \mathbf{P}^T)^{-1}\pi\mathbf{e}^T(\mathbf{I} - \mathbf{P}^T)^{-1}}{1 + \mathbf{e}^T(\mathbf{I} - \mathbf{P}^T)^{-1}\pi} \\ &= (\mathbf{L}\mathbf{D}^{-1})^{-1} - \frac{(\mathbf{L}\mathbf{D}^{-1})^{-1}\pi\mathbf{e}^T(\mathbf{L}\mathbf{D}^{-1})^{-1}}{1 + \mathbf{e}^T(\mathbf{L}\mathbf{D}^{-1})^{-1}\pi} \\ &= \mathbf{D}\mathbf{L}^{-1} - \frac{\mathbf{D}\mathbf{L}^{-1}\pi\mathbf{e}^T\mathbf{D}\mathbf{L}^{-1}}{1 + \mathbf{e}^T\mathbf{D}\mathbf{L}^{-1}\pi} \end{split}$$

Substituting into (3), the linear system becomes

$$\begin{split} \mathbf{x}_{uv} &= \mathbf{Z}^T \mathbf{b}_{uv} \\ &= \left(\mathbf{D} \mathbf{L}^{-1} - \frac{\mathbf{D} \mathbf{L}^{-1} \pi \mathbf{e}^T \mathbf{D} \mathbf{L}^{-1}}{1 + \mathbf{e}^T \mathbf{D} \mathbf{L}^{-1} \pi} \right) \mathbf{b}_{uv} \\ &= \mathbf{D} \mathbf{L}^{-1} \mathbf{b}_{uv} - \frac{\mathbf{D} \mathbf{L}^{-1} \pi \mathbf{e}^T \mathbf{D} \mathbf{L}^{-1} \mathbf{b}_{uv}}{1 + \mathbf{e}^T \mathbf{D} \mathbf{L}^{-1} \pi} \\ &= \mathbf{D} \mathbf{y}_{uv} - \frac{\mathbf{D} \mathbf{z} \mathbf{e}^T \mathbf{D} \mathbf{y}_{uv}}{1 + \mathbf{e}^T \mathbf{D} \mathbf{z}} \\ &= \mathbf{D} \mathbf{y}_{uv} - \left(\frac{\mathbf{e}^T \mathbf{D} \mathbf{y}_{uv}}{1 + \mathbf{e}^T \mathbf{D} \mathbf{z}} \right) \mathbf{D} \mathbf{z} \end{split}$$

where $\mathbf{y}_{uv} = \mathbf{L}^{-1}\mathbf{b}_{uv}$ and $\mathbf{z} = \mathbf{L}^{-1}\pi$. Therefore to solve this system, the following two linear systems of graph Laplacian must be solved:

$$\mathbf{L}\mathbf{y}_{uv} = \mathbf{b}_{uv} \text{ and } \mathbf{L}\mathbf{z} = \pi \tag{5}$$

3. Methods

3.1. Approach

Using the solution to the systems in (5), the original problem can be solved by following the approach outlined in Algorithm 1. Here, we use an aggregation-based algebraic multigrid approach to solve the two linear systems in steps 1 and 2, however this method can be substituted by an alternative linear system solving method.

Algorithm 1 Compute DSD(u, v) given \mathbf{b}_{uv} , graph Laplacian $\mathbf{L} = \mathbf{D} - \mathbf{A}$, and π

- 1. Solve $\mathbf{L}\mathbf{y}_{uv} = \mathbf{b}_{uv}$
- 2. Solve $\mathbf{L}\mathbf{z} = \pi$
- 3. Compute $\mathbf{f} = \mathbf{D}\mathbf{y}_{uv}$ and $\mathbf{g} = \mathbf{D}\mathbf{z}$
- 4. Compute $\mathbf{x}_{uv} = \mathbf{f} \left(\frac{\mathbf{e}^T \mathbf{f}}{1 + \mathbf{e}^T \mathbf{g}}\right) \mathbf{g}$
- 5. Compute $DSD(u, v) = \|\mathbf{x}_{uv}^T\|_1 = \|\mathbf{x}_{uv}\|_1$

3.2. Solving the Linear Systems

The two linear systems could be solved using several possible methods to achieve a performance gain over directly computing the fundamental matrix (if it can even be computed), but the method implemented in this work is an aggregation-based algebraic multigrid (AMG) method. AMG methods can be used to solve graph Laplacian systems and take the general form of forming aggregates to form P_l then constructing the graph Laplacian for each coarser level using $L_{l+1} = P_l^T L_l P_l$, then recursively calling the AMG cycle algorithm (Algorithm 2)

Algorithm 2 Algebraic Multigrid with Aggregations, AMGCyle(x_l, L_l, b_l, l)

- if at coarsest level:
 - solve $x = L_l^{-1} b_l$ directly
- else:
 - Pre-smoothing (update to x_l)
 - Compute residual $r_l \leftarrow b_l L_l x_l$
 - Restriction $r_c \leftarrow P_l^T r_l$
 - Coarse-grid correction (recursive call to AMG Cycle)
 - Prolongation $x_l \leftarrow x_l + P_l e_{l+1}$
 - Post-smoothing (update to x_l)

4. Results

4.1. Solving $\mathbf{L}\mathbf{y}_{uv} = \mathbf{b}_{uv}$

Table 1 shows the performance of AMG in solving $\mathbf{L}\mathbf{y}_{uv} = \mathbf{b}_{uv}$. Since the DSD between each pair or nodes in the PPI is needed, the calculation must be performed for each pair of unique nodes (since DSD(u, u) = 0 and DSD(u, v) = DSD(v, u), as shown in [2]).

					method	setup	num	solve
						time(s)	iters	time(s)
Species	V	E	d_{\max}	d_{avg}				
worm	5,281	13,829	225	5.237				
					two-level AMG	2.327	23	3.641
					V-cycle AMG	2.358	24	3.138
					W-cycle AMG	2.389	23	5.193
mouse	6,596	18,697	714	5.669				
					two-level AMG	2.100	29	10.959
					V-cycle AMG	3.274	30	8.824
					W-cycle AMG	3.133	29	10.97
yeast	6,096	216,531	3,472	71.040				
					two-level AMG	2.434	10	269.132
					V-cycle AMG	3.209	10	277.139
					W-cycle AMG	4.059	10	270.089
human	15,129	155,866	9,388	20.605	_			
					two-level AMG	5.556	14	1543.422
					V-cycle AMG	9.300	*	*
					W-cycle AMG	9.644	*	*

Table 1: Results of solving the linear system $\mathbf{L}\mathbf{y}_{uv} = \mathbf{b}_{uv}$ with a tolerance for the relative residual of for the largest connected component of the PPI network for several species.

4.2. Solving $\mathbf{Lz} = \pi$

Using the same method as above was used to solve $\mathbf{L}\mathbf{y}_{uv} = \mathbf{b}_{uv}$, the AMG method for solving $\mathbf{L}\mathbf{z} = \pi$ does not converge, with the rate oscillating around 1, therefore the residual never converging towards the tolerance set by the algorithm. To investigate this behavior, the system $\mathbf{L}\mathbf{z} = \pi$ was solved using two different solvers available through Python's SciPy and NumPy packages[3]. SciPy provides a sparse matrix solver $\mathbf{scipy.sparse.linalg.spsolve}$ and Numpy provides a solver $\mathbf{numpy.linalg.solve}$. When used on this linear system, the former found $\mathbf{z} = (4.876 \times 10^{11})\mathbf{e}$ and the latter found $\mathbf{z} = (6.546 \times 10^{12})\mathbf{e}$ for the worm PPI network, where \mathbf{e} denotes the vector of all ones. Both solutions are clearly very far from both the starting guesses for \mathbf{z} ($\mathbf{z} = \mathrm{ones}(n,1)$) which were attempted with the AMG method. However, changing the initial guess for \mathbf{z} to $\mathbf{z} = 10^{11}\mathrm{ones}(n,1)$ did not lead to converging behavior either, suggesting a different cause of the numerical issue.

5. Conclusion

The theory presented in this work shows that the calculation of the fundamental matrix corresponding to a Markov chain can be replaced by solving a set of linear systems and some matrix-vector and vector-vector multiplications. Although the experimental results show numerical issues

The number of proteins (vertices in G) is indicated by |V| the number of edges by |E|, the maximal degree by d_{max} , and the average degree by d_{avg} .

^{*}For the human PPI network, the V-cycle AMG method reached a relative residual of 2.021×10^{-8} at 12 iterations before starting to increase again. For the W-cylce, the relative residual reached 8.647×10^{-6} at 5 iterations before increasing

with one of the linear systems, changes to the implemented method or substituting for another solving method may yield positive results.

5.1. Future Work and Applications

The goal of this work is to develop a method to calculate the DSD distance metric when finding the fundamental matrix is unfeasible. The PPI networks presented here are relatively small, containing thousands or tens of thousands of vertices. However, this same distance metric can prove useful in identifying similar entities in other much larger graphs which excibit similar properties as the PPI networks, namely networks that contain hubs which link otherwise unrelated entities to each other over potentially short paths. Examples of such networks include large social networks or a network representing linked article on Wikipedia or linked webpages on the Internet. In 2011, the largest connected component of the Facebook social network was found to contain 99.91% of Facebook's 721 million active(signed in within 28 days of the analysis) users, with the number of edges |E| in the entire graph equal to 68.7 billion, although the edges in the largest component were not specified [4]. A more recent statistic showed 1.65 billion active in March 2016 [1]. When undertaking analyses of such networks, a matrix inversion at $O(n^3)$ is prohibitive and an efficient algorithm such as that proposed by the theory in the project would prove even more useful.

References

- [1] Facebook: Company Info- Stats, http://newsroom.fb.com/Company-Info/, Accessed: 2016-05-05.
- [2] Mengfei Cao, Hao Zhang, Jisoo Park, Noah M. Daniels, Mark E. Crovella, Lenore J. Cowen, and Benjamin Hescott, Going the distance for protein function prediction: A new distance metric for protein interaction networks, PLoS ONE 8 (2013), no. 10, 1–12.
- [3] Eric Jones, Travis Oliphant, Pearu Peterson, et al., SciPy: Open source scientific tools for Python, 2001–, [Online; accessed 2016-05-05].
- [4] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow, *The anatomy of the facebook social graph*, CoRR **abs/1111.4503** (2011).
- [5] Alexei Vazquez, Alessandro Flammini, Amos Maritan, and Alessandro Vespignani, Global protein function prediction from protein-protein interaction networks, Nature biotechnology 21 (2003), no. 6, 697–700 (English), Copyright Copyright Nature Publishing Group Jun 2003; Last updated 2013-02-06.

A. Appendix: Code

```
To run code:
   need python 3 and the packages networkx, numpy, scipy, argparse, and timeit
   to execute:
   > python dsdAMG.py -f [ppi file name without the .ppi extension]
   for example
   > python dsdAMG.py -f worm
   import networkx as nx
   import argparse
4
   import numpy as np
   import scipy.sparse
   import dsd_solveAMG
   ## The following code is adapted from code authored by Ben Hescott:
10
   #Precondition: adj is a NetworkX adjacency matrix of a connected undirected graph
11
   #Postcondition: Returns a NetworkX matrix of transintion probabilties for
12
                 a random walk in the graph represented by adjacency.
13
   def createTransitionMatrix(adj):
14
       # number of nodes
15
             = np.size(adj[0])
16
       # initialize the matrices
17
             = np.zeros((n, n))
18
       degree = np.zeros((n, 1))
19
       #for every node calculate the transition probability
20
       for j in range(n):
21
          degree[j] = sum(adj[j])
22
          # compute the transition matrix of the markov chain
23
          if degree[j] != 0:
24
              p[j] = adj[j]/degree[j]
25
       return p, degree
26
28
   # Takes in a networkx graph, 'graph', and a list of nodes in the graph
29
   # and returns the adjacency matrix of the graph with the ordering
30
   # in 'nodelist' as a numpy array
31
   def createAdjacencyMatrix(graph, nodelist):
       return np.array(nx.adjacency_matrix(graph, nodelist).todense())
33
34
   # Return the canonical node ordering, which is the nodes of the graph
35
   # in sorted order
36
   def getNodeOrdering(graph):
37
       return sorted(graph.nodes())
38
   40
   def basis_uv(u,v, n):
41
       \#b_uv = scipy.sparse.coo_matrix(([1,-1], (u, v)), shape=(n, 1))
42
43
       b_uv = np.zeros((n,1))
44
```

```
b_uv[u,0] = 1
45
        b_uv[v,0] = -1
46
47
        return b_uv
48
49
    def createMatrix(G):
50
        nodeList = getNodeOrdering(G)
51
52
        adj = createAdjacencyMatrix(G, nodeList)
53
        # number of nodes
55
        n = np.size(adj[0])
        _, degree = createTransitionMatrix(adj)
56
57
        # create w using the fact that the
58
        # steady state of an undirected random walk
59
60
        # is proportional to node degree
        pi = (degree)/sum(degree)
61
62
        # create degree matrix with correct ordering
63
        D = scipy.sparse.dia_matrix((degree.T, [0]), shape=(n,n))
64
65
        L = D - scipy.sparse.csc_matrix(adj)
66
        return L, pi, D
67
68
69
    def main():
        parser = argparse.ArgumentParser()
70
        parser.add_argument("-f", required=True, help="PPI file")
71
        args = parser.parse_args()
72
        ppi = args.f
73
        # ppi = 'worm'
74
        ppi_file = '../../data/' + ppi + '.ppi'
75
76
        # Create graph and needed matrices and vectors
77
        G = nx.read_edgelist(ppi_file, nodetype=str)
78
        L, pi, D = createMatrix(G)
79
        n = len(pi)
80
81
        (u,v) = (0,1)
        b_uv = basis_uv(u,v,n)
82
83
        print('AMG Solve for ', ppi)
84
        for cycle in ['W']:
85
            print('AMG Cycle type', cycle)
86
            # Set up AMG levels and parameters
87
            # only needs to be done once for solving for linear systems,
88
            # unless different cycle_types are necessary
89
            amgData, amgParam = dsd_solveAMG.setup_AMG(L,cycle_type=cycle)
90
91
            # Solve the two linear systems Ly_{uv}=b_{uv} and Lz=pi
92
            # z = dsd_solveAMG.solve_AMG(amgData, pi, amgParam)
93
94
            y_uv = dsd_solveAMG.solve_AMG(amgData, b_uv, amgParam)
95
            # Compute the vertices for finding fundamental matrix (I - P + W)
96
            # f = D.dot(y_uv)
97
            \#g = D.dot(z)
98
            \#x_uv = f - ((np.ones(n).dot(f))/(1 + np.ones(n).dot(g))).dot(g)
99
```

100

```
# Compute DSD
101
102
             #dsd_uv = np.linalg.norm(x_uv)
     if __name__ == "__main__":
103
104
         main()
     import numpy as np
    from AMG_Setup import *
    from AMG_Solve import *
 4
 5
 6
     # solve graph Laplacian using AMG
 7
     # adapted from matlab code from @ Xiaozhe Hu, Tufts University
 8
 9
10
     def setup_AMG(L, cycle_type='V'):
11
12
         Sets up levels and parameters for solving Lx=b using cycle-type specified
13
14
         Parameters
15
16
         L: Graph Laplacian
17
         cycle_type: AMG cycle type, either 'TL' for two-level, 'V' for V-cycle (default), or 'W' for W-cycle
19
        Returns
20
21
         amgData
22
         amgParams
23
^{24}
25
         #-----
26
         # AMG parameters
27
28
         amgParam = {}
29
         amgParam.update({'print_level': 1}) # how much information to print when using AMG solve only
30
31
                                              # 0: print nothing | positive number print information
32
        # setup phase parameters
         amgParam.update({'max_level': 20}) # maximal number of level in AMG
33
         amgParam.update({'coarsest_size': 100}) # size of the coarest level
34
35
         # solve pahse parameters
36
         amgParam.update({'cycle_type':cycle_type}) # ''TL: Two-level | 'V': V-cycle | 'W': W-cycle
37
         amgParam.update({'n_presmooth': 1}) # number of presmoothing
38
         amgParam.update({'n_postsmooth': 1}) # number of postsmoothing
39
40
         amgParam.update({'max_it': 100}) # when AMG is used as standalone solver, maximal number of iterations that is
41
         amgParam.update({'tol': 1e-8})
                                           \mbox{\tt\#} when AMG is used as standalone solver, tolerance for the reletive residual
42
43
         #-----
44
45
         # setup phase
46
         amgData = AMG_Setup(L, amgParam)
47
48
         return amgData, amgParam
49
```

```
50
    def solve_AMG(amgData, b, amgParam):
51
52
53
        Solve Lx=b through AMG
54
        Parameters
55
56
        amgData: AMG data produced through AMG_Setup
57
58
        b: Right-hand side
        amgParam: AMG parameters produced through AMG_Setup
60
        cycle_type: AMG cycle type, either 'TL' for two-level, 'V' for V-cycle (default), or 'W' for W-cycle
61
        Returns
62
63
        x: solution to Lx=b
64
65
        n = b.shape[0]
66
        x = np.zeros((n,1)) #initial guess
67
        (x, k, err) = AMG_Solve(amgData, b, x, amgParam)
68
69
        return x
70
    import numpy as np
    import scipy.sparse
    from timeit import default_timer as timer
3
    import support_scripts, form_aggregates
4
5
    def AMG_Setup(Lf, amgParam):
6
        # Setup phase for AMG method
7
8
        # adapted from Matlab code by@ Xiaozhe Hu, Tufts University
9
10
11
        # local variable
12
13
        print_level = amgParam['print_level']
14
        max_level = amgParam['max_level']
15
16
        if amgParam['cycle_type']=='TL':
17
            max_level = 2
18
19
        coarsest_size = amgParam['coarsest_size']
20
^{21}
        level = 0
^{22}
23
        #-----
24
        # AMG information
25
        #-----
^{26}
27
        AMG_Data={level:{} for level in range(max_level)}
        #-----
29
        # finest level
30
31
        AMG_Data[0].update({'L':Lf,
32
```

```
'N':Lf.shape[0],
33
                          'DL': scipy.sparse.tril(Lf, format='csr'),
34
                          'DU': scipy.sparse.triu(Lf, format='csr'),
35
36
                          'D': Lf.diagonal(),
                          'max_level': 0})
37
       #-----
38
       # main loop
39
40
       print('----')
41
                                             ')
42
       print('
                          Calling AMG setup
43
       print('----')
44
45
       setup_start = timer()
46
       while (level < max_level-1) and (AMG_Data[level]['N'] > coarsest_size):
47
48
           #-----
49
           # form aggregation
50
51
           # implement your own aggregation algorithm
52
           # input: L{level} -- graph Laplacian on current level
53
           # output: aggregation -- information about aggregates
54
                                                   ( aggregation(i) = j mean the i-th vertex belong to aggregates j
56
           #
                         num_agg -- number of aggregations
57
           (aggregation, num_agg) = form_aggregates.form_aggregates(AMG_Data[level]['L'])
58
59
60
           #-----
61
           # generate prolongation
62
           #-----
63
           AMG_Data[level]['P'] = support_scripts.generate_unsmoothed_P(aggregation, num_agg)
64
65
66
           # generate restriction
67
           AMG_Data[level]['R'] = AMG_Data[level]['P'].transpose()
69
70
71
           # compute coarse grid matrix
72
73
           AMG_Data[level+1]['L'] = AMG_Data[level]['R'].dot(AMG_Data[level]['L']).dot(AMG_Data[level]['P'])
74
75
           AMG_Data[level+1]['N'] = AMG_Data[level+1]['L'].shape[0]
76
77
           #-----
78
           # extra information for smoothers
79
           #-----
80
           AMG_Data[level+1]['DL'] = scipy.sparse.tril(AMG_Data[level+1]['L'], format='csr')
82
           AMG_Data[level+1]['DU'] = scipy.sparse.tril(AMG_Data[level+1]['L'], format='csr')
           AMG_Data[level+1]['D'] = AMG_Data[level+1]['L'].diagonal()
83
84
85
           # update
86
           #-----
87
           level += 1
88
```

```
89
90
       setup_duration = timer() - setup_start
91
92
       # construct the data structure
93
       for 1 in range(level+1):
94
           AMG_Data[1]['max_level'] = level
95
96
97
       # print information
99
       if print_level > 0:
100
           total N = 0
101
           total_NNZ = 0
102
103
           print('----')
104
           print(' # Level\t|\t# Row\t|\t# Nonzero\t|\tAvg. NNZ/Row\t|')
105
106
107
           for i in range(level+1):
108
                  nonzero_i = len(AMG_Data[i]['L'].nonzero()[0])
109
                  N_i = AMG_Data[i]['N']
110
111
                  total_N += N_i
112
                  total_NNZ += nonzero_i
113
                  print('\t%2d\t|\t%9d\t|\t%10d\t|\t%7.3f\t|' % (i, N_i, nonzero_i, nonzero_i/N_i))
114
115
116
           print('----')
117
           print('Grid complexity: %0.3f | Operator complexity: %0.3f '% (total_N/AMG_Data[0]['N'], total_NNZ/len(AN
118
           print('----')
119
120
       # print cputime
121
       print('----')
122
       print('
                  AMG setup costs', setup_duration, 'seconds')
123
       print('----')
124
125
126
       return AMG_Data
127
128
    import numpy as np
    from timeit import default_timer as timer
    import support_scripts
    from AMG_Cycle import *
 4
 5
    def AMG_Solve(amgData, b, x, amgParam):
 6
       # Solve phase for AMG method
 7
 8
       # adapted from Matlab code by@ Xiaozhe Hu, Tufts University
 9
10
       # parameters
11
       print_level = amgParam['print_level']
12
       max_it = amgParam['max_it']
13
```

```
tol = amgParam['tol']
14
15
16
       # prepare solve
17
       level = 0
       err = np.zeros((max_it+1,1))
18
19
       r = b - amgData[0]['L'].dot(x)
20
       err[0] = np.linalg.norm(r)
21
^{22}
23
       # print
       print('----')
^{24}
       print('
                        Calling AMG solver ')
25
       print('-----')
26
27
       if print_level > 0:
28
          print('----')
29
          print(' # It | ||r||/||r0|| | ||r|| | Rate. |')
30
31
          print(' %4d | %e | %e | %f | ' % (0, 1.0, err[0], 0.0))
32
33
34
       # main loop
35
36
       solve_start = timer()
37
       for k in range(max_it):
38
39
          # call multigrid
40
          x = AMG_Cycle(amgData, b, x, level, amgParam)
41
42
          # compute residual
43
          r = b - amgData[level]['L'].dot(x)
44
45
          # compute error
46
          err[k+1] = np.linalg.norm(r)
47
48
          # display
50
          if print_level > 0:
              print(' %4d | %e | %e | %f |' % (k+1, err[k+1]/err[0], err[k+1], err[k+1]/err[k]))
51
52
53
          if (err[k+1]/err[0]) < tol:</pre>
54
              break
55
56
57
       solve_duration = timer() - solve_start
58
59
       # cut err
60
       err = err[:k+1]
61
62
       # print
63
       print('----')
64
       if k == max_it:
65
          print('
                        AMG reached maximal number of iterations ')
66
       else:
67
          print('
                        AMG converged or reached max iterations')
68
          print('
                        Number of iterations =', k+1)
```

```
70
       print('
                  Relative residual =', err[-1]/err[0])
71
       print('----')
72
73
                    AMG solve costs', solve_duration, 'seconds')
       print('-----')
74
75
76
77
78
79
       return x, k, err
   import numpy as np
    import scipy.sparse, scipy.sparse.linalg
2
    import support_scripts
3
4
    def AMG_Cycle(amgData, b, x, level, amgParam):
       # Multigid cycle
       # adapted from Matlab code of @ Xiaozhe Hu, Tufts University
       # Clara De Paolis
8
9
       # parameters
10
11
12
       max_level = amgData[0]['max_level']
13
       n_presmooth = amgParam['n_presmooth']
14
       n_postsmooth = amgParam['n_postsmooth']
15
       cycle_type = amgParam['cycle_type']
16
17
       # coarsest level
18
       if level == max_level:
          x = scipy.sparse.linalg.spsolve(
20
               (amgData[level]['L'] + 1.0e-12* scipy.sparse.eye(len(b), len(b))), b).reshape((len(x),1))
21
22
       else:
23
           # presmoothing
^{24}
           x = support_scripts.forward_gs(amgData[level]['L'], b, x, amgData[level]['DL'], n_presmooth)
25
26
           # compute residual
27
           r = b - amgData[level]['L'].dot(x)
28
29
           # restriction
30
           r_c = amgData[level]['R'].dot(r)
31
32
           # coarse grid correction
33
           e_c = np.zeros((amgData[level+1]['L'].shape[0],1))
34
35
           if cycle_type=='TL':
36
               # coarse grid correction for two-level method here
37
               e_c = AMG_Cycle(amgData, r_c, e_c, level+1, amgParam)
38
39
           elif cycle_type=='V':
               # coarse grid correction for V-cycle here
40
               e_c = AMG_Cycle(amgData, r_c, e_c, level+1, amgParam)
41
           elif cycle_type=='W':
42
               # coarse grid correction for W-cycle here
43
```

```
for k in range(2):
44
                     e_c = AMG_Cycle(amgData, r_c, e_c, level+1, amgParam)
45
46
47
            # prolongation
48
            x = x + amgData[level]['P'].dot(e_c)
49
50
            # postsmoothing
51
            x = support_scripts.backward_gs(amgData[level]['L'], b, x, amgData[level]['DU'], n_postsmooth)
52
        return x
    import numpy as np
1
    import scipy.sparse, scipy.sparse.linalg
2
3
    def assembleGraphLaplace(N):
4
      # Adapted from matlab code
      # Copyright (C) Xiaozhe Hu.
6
      e = np.ones(N)
8
      NN = N**2
9
10
      L1d = scipy.sparse.spdiags([-1*e, 2*e, -1*e], [-1,0,1], N, N)
11
12
      I = scipy.sparse.eye(N,N)
13
     L = scipy.sparse.kron(L1d, I) + scipy.sparse.kron(I, L1d)
14
     L = L - scipy.sparse.spdiags(L.diagonal(), 0, NN, NN)
15
      L = L + scipy.sparse.spdiags(-L.sum(axis=1).T, 0, NN, NN) #row sum
16
17
18
      return L
19
20
    def backward_gs(A, b, x, DU, nsmooth):
21
      # Backward Gauss-Seidel smoother
22
      # Adapted from matlab code from @ Xiaozhe Hu, Tufts University
^{23}
24
      #-----
25
26
      # Step 1: Main loop
27
      for i in range(nsmooth):
28
          # GS iteration
29
          x += scipy.sparse.linalg.spsolve(DU, (b - A.dot(x))).reshape((len(x),1))
30
      return x
31
32
    def forward_gs(A, b, x, DL, nsmooth):
33
        # Forward Gauss-Seidel smoother
34
        # Adapted from matlab code from
35
        # @ Xiaozhe Hu, Tufts University
36
37
        #-----
        # Step 1: Main loop
39
40
        for i in range(nsmooth):
41
            # GS iteration
42
```

```
x += scipy.sparse.linalg.spsolve(DL, (b - A.dot(x))).reshape((len(x),1))
43
44
        return x
45
46
    def generate_unsmoothed_P(aggregation, num_agg):
        # Construct unsmoothed prolongation P
47
        # Adapted from matlab code from
48
        # @ Xiaozhe Hu, Tufts University
49
50
        n = len(aggregation)
51
        p = scipy.sparse.csr_matrix((np.ones(n), (np.array(range(n)), aggregation)), shape=(n, num_agg))
52
53
54
        return p
    import numpy as np
    import scipy.sparse
2
    def form_aggregates(L):
5
        # Heavy edge Coarsening
6
        n = L.shape[0]
        count = -1
 8
        aggregates = np.zeros(n)
 9
        for i in range(n):
10
11
            if aggregates[i]==0:
                 # pick j for edge with max weight
12
                 (_, js, w) = scipy.sparse.find(-L[i]) #find edges and weights
13
                 e = np.where(w == max(w))[0] # e lists the indices that match the max weight
14
                j = js[e[-1]]
15
16
                 if aggregates[j] == 0:
17
                     count += 1
18
                     aggregates[i] = int(count)
19
                     aggregates[j] = int(count)
20
21
                 else:
^{22}
23
                     aggregates[i] = aggregates[j]
24
        num_agg = count+1
25
26
27
        return aggregates, num_agg
```