Estimating the fundamental matrix of a random walk transition matrix

Clara De Paolis Kaluza
Math250- Graph Algorithms

Final project

Abstract

The analysis of distances between nodes in networks that contain many low-degree vertices and some
high-degree hubs requires more sophisticated distance metrics than, for example, simple shortest-
path distances. In the study of one type of these networks, protein-protein interaction networks,
a promising distance metric is the diffusion state distance, but calculating requires an expensive
matrix inversion. Through reforming the problem as a linear system theoretical performance im-
provements are possible, although the experimental results shown here show numerical instability
issues.

1. Problem Statement and Motivation

1.1. Motivation

Genome sequencing allows for the study of all the proteins expressed by the genome of an organ-
ism (the proteome). For most organisms, some of these proteins have known biological functions,
but for many proteins their biological function is unknown. A protein-protein interaction (PPI)
network relates the structure of the proteins expressed by a genome, representing proteins that
physically interact as connected nodes in a graph. These graphs capture physical interactions be-
tween proteins, including those with known function and those with unknown functions. Therefore
if a proper distance metric can be determined between nodes, the structure of these networks can
be used to discover the function of uncharacterized proteins[5].

However, these networks can be very complex, and furthermore, determining an appropriate
distance metric is not straightforward. Some nodes in the network are considered “hubs,” connect-
ing many proteins that are not functionally similar. Therefore, a distance metric such as a simple
shortest path is not useful in identifying functionally similar proteins. The work in [2] shows a
promising distance metric, the diffusion state distance (DSD), but calculating it exactly requires
the inversion of a matrix corresponding to a large network even for simple organisms. A more effi-
cient method to calculate this metric is needed, especially in order to analyze the much larger PPI
networks of more complex organisms and to apply this metric to other, larger networks. The main
objective of this project is to implement an efficient way to estimate the DSD while avoiding an
exact calculation of the fundamental matrix, an inverse of an n x n matrix, which is approximately
an O(n?) operation.

Math250-Graph Algorithms May 7, 2016

2. Background and Assumptions

2.1. Problem Setup

To more precisely define the problem, consider a connected graph G = (V, E) where nodes
v € V represent proteins expressed by a genome and edges e € E represent physical interaction
between those proteins. The number of edges e connected to any node i is the degree of that node,
represented by d(7). If we define the probability of a transition from node i to any of its neighboring
nodes j as uniform then, the state transition matrix P for this network is given by

1 .o
e ekl

)iy { 0 otherwise (1)
For the Markov chain this network represents, the matrix W = lim P" is such that each row

n—o0

of W is equal to w7, the vector describing the steady state distribution for each v € V. Finally,
the fundamental matriz of P is given by Z = (I — P + W)~ 1,

The distance metric proposed in [2] between two nodes (proteins) u and v is then defined as:
DSD(u,v) = ||(by — by)(I—P + W)~ ![|; (2)

where b; is a basis vector, where all entries are zero except entry in the i** position is one.

2.2. Defining The Graph Problem

For compactness, define the following two vectors bl := (bl —bl) and xL, := bl (I-P+W)™!
so that DSD(u,v) = ||xZ |l1 = ||Xuv|l1. By rearranging the terms, we can state this problem in the
familiar form of solving a linear system:

xI =bl I-P+W)™!

(I-P+ W)T)_lbfv = Xuw
(I-P+W)Tx,, =by,
(I - PT + WT)XUU = buv
From the definition of the state transition matrix in , P can be represented in terms of the
matrices that describe a graph, namely, the degree matrix D, the adjacency matrix A, and the
graph Laplacian L.
P=D'A
= P’ =AD™!
= I-P=1-AD'=(D-A)D'=LD!

So the linear system to be solved becomes

I-PT +WThx,, = (LD™' + W)x,, = by, (3)

To further simplify, consider the Sherman-Morrison formula for inverting the sum of a square
invertible matrix A and the outer product of two vectors u and v:

A-tuvT A

A Ty\—1 — Afl .
(A+uv’) 1+vIA-1u

(4)
with the restriction that 1 + v/ A~tu # 0.
For this problem, the first matrix is (I — P7), and the two column vectors are the vector of all

ones e and 7, the stationary distribution of the Markov chain described by P so that W = en”
So substituting into the above equation, we get a solution to finding the fundamental matrix Z:

Z'=1-PT+ W' =0-PT +(en’)) ' =1 -PT + 1e”)!
1
s

I- P 1rel(1 - PT)-!
=1-pPhH)7 1 - (T (Z,T(I —]-()T)—lﬂ.)
= (LD H ! - (LD~)~ lze’ (LD 1)~ !

1+ el (LD 1)~"Ix
DL l7e’DL!
1+ eTDL- 17

=DL ! -

Substituting into , the linear system becomes
Xuv = ZTbuv
DL 'me’DL™!
— (DL ! - e by
1+e’DL- 17
DL '7e’DL™'by,
1+e’DL- 17

Dz eTDyuU
1+efDz

= DL by, —

= DYUv -

where y,, = L™ 'by, and z = L~ 7. Therefore to solve this system, the following two linear systems
of graph Laplacian must be solved:

Ly, =byand Lz=7 (5)

3. Methods

3.1. Approach

Using the solution to the systems in (5), the original problem can be solved by following the
approach outlined in Algorithm 1. Here, we use an aggregation-based algebraic multigrid approach
to solve the two linear systems in steps 1 and 2, however this method can be substituted by an
alternative linear system solving method.

Algorithm 1 Compute DSD(u, v) given by, graph Laplacian L =D — A, and 7

1. Solve Ly, = byy
2. Solve Lz =nm

3. Compute f = Dy,, and g = Dz

4. C P t =f - — g
. ompute X

5. Compute DSD(u,v) = [|xL, |l1 = [|Xuv]1

3.2. Solving the Linear Systems

The two linear systems could be solved using several possible methods to achieve a performance
gain over directly computing the fundamental matrix (if it can even be computed), but the method
implemented in this work is an aggregation-based algebraic multigrid (AMG) method. AMG meth-
ods can be used to solve graph Laplacian systems and take the general form of forming aggregates
to form P, then constructing the graph Laplacian for each coarser level using L;11 = PlTLlPl, then
recursively calling the AMG cycle algorithm (Algorithm 2)

Algorithm 2 Algebraic Multigrid with Aggregations, AMGCyle(x;, Ly, by, 1)

e if at coarsest level:
— solve x = Ll_lbl directly
e clse:

— Pre-smoothing (update to ;)

— Compute residual r; < b — Ljay

Restriction r. < PlTrl

— Coarse-grid correction (recursive call to AMG Cycle)

Prolongation z; < z; + Pej41

— Post-smoothing (update to x;)

4. Results

4.1. Solving Ly, = buyy

Table [I] shows the performance of AMG in solving Ly, = by,. Since the DSD between each
pair or nodes in the PPI is needed, the calculation must be performed for each pair of unique nodes
(since DSD(u,u) = 0 and DSD(u,v) =DSD(v, u), as shown in [2]).

method setup num solve

time(s) | iters | time(s)
Species \4 |E| Amax dave
worm 5,281 | 13,829 225 | 5.237

two-level AMG | 2.327 23 3.641
V-cycle AMG | 2.358 24 3.138
W-cycle AMG | 2.389 23 5.193

mouse 6,596 | 18,697 714 | 5.669

two-level AMG | 2.100 29 10.959

V-cycle AMG | 3.274 30 8.824

W-cycle AMG | 3.133 29 10.97
yeast 6,096 | 216,531 | 3,472 | 71.040

two-level AMG | 2.434 10 269.132

V-cycle AMG | 3.209 10 277.139
W-cycle AMG | 4.059 10 270.089

human | 15,129 | 155,866 | 9,388 | 20.605

two-level AMG | 5.556 14 1543.422
V-cycle AMG | 9.300 * *
W-cycle AMG | 9.644 * *

Table 1: Results of solving the linear system Ly, = b., with a tolerance for the relative residual of for the largest
connected component of the PPI network for several species.

The number of proteins (vertices in G) is indicated by |V| the number of edges by |E|, the maximal degree by dmax,
and the average degree by dav.

*For the human PPI network, the V-cycle AMG method reached a relative residual of 2.021 x 10~% at 12 iterations
before starting to increase again. For the W-cylce, the relative residual reached 8.647 x 107% at 5 iterations before
increasing

4.2. Solving Lz ==

Using the same method as above was used to solve Ly, = by, the AMG method for solving
Lz = 7 does not converge, with the rate oscillating around 1, therefore the residual never converging
towards the tolerance set by the algorithm. To investigate this behavior, the system Lz = =
was solved using two different solvers available through Python’s SciPy and NumPy packages[3].
SciPy provides a sparse matrix solver scipy.sparse.linalg.spsolve and Numpy provides a solver
numpy . 1inalg.solve. When used on this linear system, the former found z = (4.876 x 10*!)e and
the latter found z = (6.546 x 10'2)e for the worm PPI network, where e denotes the vector of all
ones. Both solutions are clearly very far from both the starting guesses for z (z = ones(n, 1) and
z = zeros(n, 1)) which were attempted with the AMG method. However, changing the initial guess
for z to z = 10 ones(n, 1) did not lead to converging behavior either, suggesting a different cause
of the numerical issue.

5. Conclusion

The theory presented in this work shows that the calculation of the fundamental matrix corre-
sponding to a Markov chain can be replaced by solving a set of linear systems and some matrix-
vector and vector-vector multiplications. Although the experimental results show numerical issues

with one of the linear systems, changes to the implemented method or substituting for another
solving method may yield positive results.

5.1. Future Work and Applications

The goal of this work is to develop a method to calculate the DSD distance metric when
finding the fundamental matrix is unfeasible. The PPI networks presented here are relatively
small, containing thousands or tens of thousands of vertices. However, this same distance metric
can prove useful in identifying similar entities in other much larger graphs which excibit similar
properties as the PPI networks, namely networks that contain hubs which link otherwise unrelated
entities to each other over potentially short paths. Examples of such networks include large social
networks or a network representing linked article on Wikipedia or linked webpages on the Internet.
In 2011, the largest connected component of the Facebook social network was found to contain
99.91% of Facebook’s 721 million active(signed in within 28 days of the analysis) users, with the
number of edges |E| in the entire graph equal to 68.7 billion, although the edges in the largest
component were not specified [4]. A more recent statistic showed 1.65 billion active in March 2016
[1[]. When undertaking analyses of such networks, a matrix inversion at O(n?) is prohibitive and
an efficient algorithm such as that proposed by the theory in the project would prove even more
useful.

References

[1] Facebook: Company Info- Stats, http://newsroom.fb.com/Company-Info/, Accessed: 2016-
05-05.

[2] Mengfei Cao, Hao Zhang, Jisoo Park, Noah M. Daniels, Mark E. Crovella, Lenore J. Cowen, and
Benjamin Hescott, Going the distance for protein function prediction: A new distance metric
for protein interaction networks, PLoS ONE 8 (2013), no. 10, 1-12.

[3] Eric Jones, Travis Oliphant, Pearu Peterson, et al., SciPy: Open source scientific tools for
Python, 2001, [Online; accessed 2016-05-05].

[4] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow, The anatomy of the
facebook social graph, CoRR abs/1111.4503 (2011).

[5] Alexei Vazquez, Alessandro Flammini, Amos Maritan, and Alessandro Vespignani, Global pro-
tein function prediction from protein-protein interaction networks, Nature biotechnology 21
(2003), no. 6, 697-700 (English), Copyright - Copyright Nature Publishing Group Jun 2003;
Last updated - 2013-02-06.

http://newsroom.fb.com/Company-Info/

A. Appendix: Code

To run code:
need python 3 and the packages networkx, numpy, scipy, argparse, and timeit
to execute:

> python dsdAMG.py -f [ppi file name without the .ppi extension]
for example

> python dsdAMG.py -f worm

import networkx as nx
import argparse
import numpy as np
import scipy.sparse
import dsd_solveAMG

Lrsszossinsinssinssinsssnssnnniin s s s nns s s s s s s i s
The following code is adapted from code authored by Ben Hescott:
##
#Precondition: adj is a NetworkX adjacency matrix of a connected undirected graph
#Postcondition: Returns a NetworkX matrix of transintion probabilties for
a random walk in the graph represented by adjacency.
def createTransitionMatrix(adj):
number of nodes
n = np.size(adj[0])
initialize the matrices
P = np.zeros((n, n))
degree = np.zeros((n, 1))
#for every node calculate the transition probability
for j in range(n):
degree[j] = sum(adj[jl)
compute the transition matrix of the markov chain
if degree[j] != 0:
25 plj]l = adjl[jl/degreelj]
26 return p, degree
27
28
29 # Takes in a networkx graph, ’graph’, and a list of nodes in the graph
30 # and returns the adjacency matrix of the graph with the ordering

© 00 N 3 O R W N

I I I B I N = T S e s T
AW N R O © 0 N3 O W N~ O

31 # in ’nodelist’ as a numpy array

32 def createAdjacencyMatrix(graph, nodelist):

33 return np.array(nx.adjacency_matrix(graph, nodelist).todense())
34

35 # Return the canonical node ordering, which is the nodes of the graph
36 # in sorted order

37 def getNodeOrdering(graph):

38 return sorted(graph.nodes())

39 HHHHHHHHHH R R R R R R R
40 def basis_uv(u,v, n):

41

42 #b_uv = scipy.sparse.coo_matrix(([1,-1], (u, v)), shape=(n, 1))
43

44 b_uv = np.zeros((n,1))

45 b_uv([u,0] =1

46 b_uv([v,0] = -1

a7 return b_uv

48

49

50 def createMatrix(G):

51 nodeList = getNodeOrdering(G)

52 adj = createAdjacencyMatrix(G, nodeList)

53

54 # number of nodes

55 n = np.size(adj[0])

56 _, degree = createTransitionMatrix(adj)

57

58 # create w using the fact that the

59 # steady state of an undirected random walk

60 # is proportional to node degree

61 pi = (degree)/sum(degree)

62

63 # create degree matrix with correct ordering

64 D = scipy.sparse.dia_matrix((degree.T, [0]), shape=(n,n))
65

66 L = D - scipy.sparse.csc_matrix(adj)

67 return L, pi, D

68

69 def main():

70 parser = argparse.ArgumentParser ()

71 parser.add_argument ("-f", required=True, help="PPI file")
72 args = parser.parse_args()

73 ppi = args.f

74 # ppi = ’worm’

75 ppi_file = ’../../data/’ + ppi + ’.ppi’

76

77 # Create graph and needed matrices and vectors

78 G = nx.read_edgelist(ppi_file, nodetype=str)

79 L, pi, D = createMatrix(G)

80 n = len(pi)

81 (u,v) = (0,1)

82 b_uv = basis_uv(u,v,n)

83

84 print (’AMG Solve for ’, ppi)

85 for cycle in [’W’]:

86 print (’AMG Cycle type’, cycle)

87 # Set up AMG levels and parameters

88 # only needs to be done once for solving for linear systems,
89 # unless different cycle_types are necessary

90 amgData, amgParam = dsd_solveAMG.setup_AMG(L,cycle_type=cycle)
91

92 # Solve the two linear systems Ly_{uv}=b_{uv} and Lz=pi
93 # z = dsd_solveAMG.solve_AMG(amgData, pi, amgParam)

94 y_uv = dsd_solveAMG.solve_AMG(amgData, b_uv, amgParam)
95

96 # Compute the vertices for finding fundamental matrix (I - P + W)
97 # £ = D.dot(y_uv)

98 #g = D.dot(z)

99 #x_uv = f - ((np.ones(n).dot(£f))/(1 + np.ones(n).dot(g))).dot(g)
100

101 # Compute DSD

102 #dsd_uv = np.linalg.norm(x_uv)
103 if __name__ == "__main__":
104 main()
1 import numpy as np
2 from AMG_Setup import *
3 from AMG_Solve import *
4
5
6 # solve graph Laplacian using AMG
7T #
8 # adapted from matlab code from @ Xiaozhe Hu, Tufts University
9
10
11 def setup_AMG(L, cycle_type=’V’):
12 e
13 Sets up levels and parameters for solving Lx=b using cycle-type specified
14
15 Parameters
6 —mm————-—-
17 L: Graph Laplacian
18 cycle_type: AMG cycle type, either ’TL’ for two-level, ’V’ for V-cycle (default), or ’W’ for W-cycle
19
20 Returns
21 ——————-
22 amgData
23 amgParams
24 e
25
26 #-—mm
27 # AMG parameters
28 Homm e
29 amgParam = {}
30 amgParam.update ({’print_level’: 1}) # how much information to print when using AMG solve only
31 # 0: print nothing | positive number print information
32 # setup phase parameters
33 amgParam.update ({’max_level’: 20}) # maximal number of level in AMG
34 amgParam.update ({’coarsest_size’: 100}) # size of the coarest level
35
36 # solve pahse parameters
37 amgParam.update ({’cycle_type’:cycle_type}) # ’’TL: Two-level | ’V’: V-cycle | ’W’: W-cycle
38 amgParam.update({’n_presmooth’: 1}) # number of presmoothing
39 amgParam.update ({’n_postsmooth’: 1}) # number of postsmoothing
40
41 amgParam.update({’max_it’: 100}) # when AMG is used as standalone solver, maximal number of iterations that is
42 amgParam.update({’tol’: 1e-8}) # when AMG is used as standalone solver, tolerance for the reletive residual
43
44 -
45 # setup phase
46 H-—mm
47 amgData = AMG_Setup(L, amgParam)
48
49 return amgData, amgParam

50

52

© 00 N U R W N =

W oW oW ON N NN NN NN NN R R e e e
R = O © 00 9 & O & @ N B O © 0 1 & G b W N = O

def solve_AMG(amgData, b, amgParam):

Solve Lx=b through AMG

Parameters

amgData: AMG data produced through AMG_Setup

b: Right-hand side

amgParam: AMG parameters produced through AMG_Setup

cycle_type: AMG cycle type, either ’TL’ for two-level, ’V’ for V-cycle (default), or ’W’ for W-cycle

Returns

x: solution to Lx=b

nnn

n = b.shape[0]

x = np.zeros((n,1)) #initial guess

(x, k, err) = AMG_Solve(amgData, b, x, amgParam)

return x

import numpy as np

import scipy.sparse

from timeit import default_timer as timer
import support_scripts, form_aggregates

def AMG_Setup(Lf, amgParam):
Setup phase for AMG method
#
adapted from Matlab code by@ Xiaozhe Hu, Tufts University

print_level = amgParam[’print_level’]
max_level = amgParam[’max_level’]

if amgParam[’cycle_type’]=="TL’:
max_level =2

coarsest_size = amgParam[’coarsest_size’]

level = 0

AMG information

AMG_Datal[0] .update({’L’:Lf,

10

33 ’N’:Lf.shape[0],

34 ’DL’: scipy.sparse.tril(Lf, format=’csr’),

35 ’DU’: scipy.sparse.triu(Lf, format=’csr’),

36 ’D’: Lf.diagonal(),

37 ‘max_level’: 0})

38 Hommm

39 # main loop

40 -

41 print (’------ St)

42 print (° Calling AMG setup ”)

43 print (P ————=—=————)

44

45 setup_start = timer()

46

a7 while (level < max_level-1) and (AMG_Datal[level] [’N’] > coarsest_size):

48

49 #-—mm

50 # form aggregation

51 Ho—m

52 # implement your own aggregation algorithm

53 # input: L{level} -- graph Laplacian on current level

54 # output: aggregation -- information about aggregates

55 # (aggregation(i) = j mean the i-th vertex belong to aggregates]
56 # num_agg -- number of aggregations

57 #

58 (aggregation, num_agg) = form_aggregates.form_aggregates(AMG_Datal[level] [’L’])
59

60

61 #-—mm

62 # generate prolongation

63 #o—m

64 AMG_Data[level] [’P’] = support_scripts.generate_unsmoothed_P(aggregation, num_agg)
65

66 Ho—m

67 # generate restriction

68 Ho—m

69 AMG_Data[level] [’R’] = AMG_Data[level] [’P’].transpose()

70

71 Ho—mm

72 # compute coarse grid matrix

73 #o—mmm

74 AMG_Data[level+1] [’L’] = AMG_Data[level] [’R’].dot(AMG_Data[level] [’L’]).dot(AMG_Data[level] [’P’])
75

76 AMG_Data[level+1] [’N’] = AMG_Data[level+1][’L’].shape[0]

77

78 #-—mmm

79 # extra information for smoothers

80 Ho—m

81 AMG_Data[level+1] [’DL’] = scipy.sparse.tril (AMG_Data[level+1][’L’], format=’csr’)
82 AMG_Data[level+1] [’DU’] = scipy.sparse.tril (AMG_Data[level+1][’L’], format=’csr’)
83 AMG_Data[level+1] [’D’] = AMG_Data[level+1][’L’].diagonal()

84

85 #o—mmm

86 # update

87 #-——m

88 level += 1

11

89

920
91 setup_duration = timer() - setup_start
92
93 # construct the data structure
94 for 1 in range(level+l):
95 AMG_Data[1] [’max_level’] = level
96
97
98 # print information
99 if print_level > O:
100
101 total N = 0
102 total_NNZ = O
103
104 print(°-- S ”)
105 print (° # Level\t|\t# Row\t|\t# Nonzero\t|\tAvg. NNZ/Row\t|’)
106 print(°-- -—- -—- =)
107
108 for i in range(level+1):
109 nonzero_i = len(AMG_Datali] [’L’] .nonzero() [0])
110 N_i = AMG_Datal[i] [’N’]
111 total_N += N_i
112 total_NNZ += nonzero_i
113
114 print (°\t%2d\t [\t%9d\t [\t%10d\t [\t%7.3f\t|’> % (i, N_i, nonzero_i, nonzero_i/N_i))
115
116
117 print (’————-—————-————————- -—- -—- =)
118 print(’ Grid complexity: %0.3f | Operator complexity: %0.3f ’ % (total_N/AMG_Datal[0][’N’], total_NNZ/len(AVM
119 print (P --———————————— - ”)
120
121 # print cputime
122 print(’——————————————)
123 print AMG setup costs’, setup_duration, ’seconds’)
124 print(’------ mm)
125
126
127 return AMG_Data
128
1 import numpy as np
2 from timeit import default_timer as timer
3 import support_scripts
4 from AMG_Cycle import *
5
6 def AMG_Solve(amgData, b, x, amgParam):
7 # Solve phase for AMG method
8 #
9 # adapted from Matlab code by@ Xiaozhe Hu, Tufts University
10
11 # parameters
12 print_level = amgParam[’print_level’]
13 max_it = amgParam[’max_it’]

12

14 tol = amgParam[’tol’]
15

16 # prepare solve

17 level = 0

18 err = np.zeros((max_it+1,1))

19

20 r = b - amgDatal[0] [’L’].dot(x)

21 err[0] = np.linalg.norm(r)

22

23 # print

24 print (P ————=—=————)
25 print (° Calling AMG solver)

26 print (?-—---- ANttt)
27

28 if print_level > O:

29 print (’-- Attt ittt)
30 print(’ # It | [|lrl|/Ilx0ll | [1rll | Rate. |?)
31 print(°-- -—- -—- =)
32 print(’ %4d | %e | %e | %f 1> % (0, 1.0, err[0], 0.0))
33

34

35 # main loop

36 solve_start = timer()

37

38 for k in range(max_it):

39

40 # call multigrid

41 x = AMG_Cycle(amgData, b, x, level, amgParam)

42

43 # compute residual

44 r = b - amgData[level] [’L’].dot(x)

45

46 # compute error

47 err[k+1] = np.linalg.norm(r)

48

49 # display

50 if print_level > O:

51 print(’ %4d | %e | e | %f |’ % (k+1, err[k+1]/err[0], err[k+1], err[k+1]/err[k]))
52

53

54 if (err[k+1]/err[0]) < tol:

55 break

56

57

58 solve_duration = timer() - solve_start

59

60 # cut err

61 err = err[:k+1]

62

63 # print

64 print (’-—---- - ittt)
65 if k == max_it:

66 print (° AMG reached maximal number of iterations ’)
67 else:

68 print(’ AMG converged or reached max iterations’)
69 print (° Number of iterations =’, k+1)

13

70
71
72
73
74
75
76
77
78
79

© 00 9 O s W N =

R R R W W W W W W W W W W NN NN NN NN NN R e e e e e e e e
W N H O © 00 O g B W N O © N O U E WD E O W OO W N = O

print (° Relative residual =’, err[-1]/err[0])
print(’------ -—= ————)
print(’ AMG solve costs’, solve_duration, ’seconds’)
print (’?——=—===——————)

return x, k, err

import numpy as np
import scipy.sparse, scipy.sparse.linalg
import support_scripts

def AMG_Cycle(amgData, b, x, level, amgParam):
Multigid cycle
adapted from Matlab code of @ Xiaozhe Hu, Tufts University
Clara De Paolis

parameters
max_level = amgData[0] [’max_level’]

n_presmooth = amgParam[’n_presmooth’]
n_postsmooth = amgParam[’n_postsmooth’]
cycle_type = amgParam[’cycle_type’]

coarsest level
if level == max_level:
X = scipy.sparse.linalg.spsolve(
(amgData[level] [’L’] + 1.0e-12* scipy.sparse.eye(len(b), len(b))), b).reshape((len(x),1))

else:
presmoothing
x = support_scripts.forward_gs(amgData[level] [’L’], b, x, amgData[level] [’DL’], n_presmooth)

compute residual
r = b - amgData[level] [’L’].dot(x)

restriction
r_c = amgData[level] [’R’].dot(x)

coarse grid correction
e_c = np.zeros((amgData[level+1] [’L’].shape[0],1))

if cycle_type=="TL’:

coarse grid correction for two-level method here

e_c = AMG_Cycle(amgData, r_c, e_c, level+l, amgParam)
elif cycle_type=="V’:

coarse grid correction for V-cycle here

e_c = AMG_Cycle(amgData, r_c, e_c, level+l, amgParam)
elif cycle_type=="W’:

coarse grid correction for W-cycle here

14

44 for k in range(2):

45 e_c = AMG_Cycle(amgData, r_c, e_c, level+l, amgParam)

46

47

48 # prolongation

49 x = x + amgData[level] [’P’].dot(e_c)

50

51 # postsmoothing

52 X = support_scripts.backward_gs(amgData[level] [’L’], b, x, amgData[level] [’DU’], n_postsmooth)
53

54 return x

import numpy as np
import scipy.sparse, scipy.sparse.linalg

1
2

3

4 def assembleGraphLaplace(N):

5 # Adapted from matlab code

6 # Copyright (C) Xiaozhe Hu.
7

8

9

e = np.ones(N)
NN = Nx*x2

11 L1d = scipy.sparse.spdiags([-1*e, 2xe, -1xe], [-1,0,1], N, N)
12 I = scipy.sparse.eye(N,N)

14 L = scipy.sparse.kron(L1ld, I) + scipy.sparse.kron(I, L1d)

15 L = L - scipy.sparse.spdiags(L.diagonal(), 0, NN, NN)

16 L = L + scipy.sparse.spdiags(-L.sum(axis=1).T, O, NN, NN) #row sum
17

18

19 return L

20

21 def backward_gs(A, b, x, DU, nsmooth):

22 # Backward Gauss-Seidel smoother

23 # Adapted from matlab code from @ Xiaozhe Hu, Tufts University
24

25 #- -—- -——

26 # Step 1: Main loop

27 o

28 for i in range(nsmooth):

29 # GS iteration

30 X += scipy.sparse.linalg.spsolve(DU, (b - A.dot(x))).reshape((len(x),1))
31 return x

32

33 def forward_gs(A, b, x, DL, nsmooth):

34 # Forward Gauss-Seidel smoother

35 # Adapted from matlab code from

36 # Q@ Xiaozhe Hu, Tufts University

37

38 #-——- ittt bttt

39 # Step 1: Main loop

40 #-——- e

41 for i in range(nsmooth):

42 # GS iteration

15

43 X += scipy.sparse.linalg.spsolve(DL, (b - A.dot(x))).reshape((len(x),1))
44 return x

45

46 def generate_unsmoothed_P(aggregation, num_agg):

47 # Construct unsmoothed prolongation P

48 # Adapted from matlab code from

49 # @ Xiaozhe Hu, Tufts University

50

51 n = len(aggregation)

52 p = scipy.sparse.csr_matrix((np.ones(n), (np.array(range(n)), aggregation)), shape=(n, num_agg))
53

54 return p

1 import numpy as np

2 import scipy.sparse

3

4 def form_aggregates(L):

5

6 # Heavy edge Coarsening

7 n = L.shape[0]

8 count = -1

9 aggregates = np.zeros(n)

10 for i in range(n):

11 if aggregates[i]==0:

12 # pick j for edge with max weight
13 (_, js, w) = scipy.sparse.find(-L[i]) #find edges and weights
14 e = np.where(w == max(w))[0] # e lists the indices that match the max weight
15 j = jslel-1]1]

16

17 if aggregates[j] == 0:

18 count += 1

19 aggregates[i] = int(count)

20 aggregates[j] = int(count)

21

22 else:

23 aggregates[i] = aggregates[j]
24

25 num_agg = count+1

26

27 return aggregates, num_agg

16

	Problem Statement and Motivation
	Motivation

	Background and Assumptions
	Problem Setup
	Defining The Graph Problem

	Methods
	Approach
	Solving the Linear Systems

	Results
	Solving L yuv = buv
	Solving L z =

	Conclusion
	Future Work and Applications

	Appendix: Code

