

Subset Selection and Summarization in Sequential Data

Ehsan Elhamifar

e-mail: eelhami@ccs.neu.edu

M. Clara De Paolis Kaluza

e-mail: clara@ccs.neu.edu

College of Computer and Information Science, Northeastern University, Boston, USA

Motivation

Subset selection finds a small a subset of most informative items from a large ground set to be used for summarization and other inference and learning tasks.

Sequential data, including time-series, such as video and speech, and ordered data, such as text, form a significant part of modern datasets.

- There exist structural dependencies among sequential data, imposed by the underlying dynamic model, that must play a vital role in summarization.
- Existing subset selection methods **ignore dynamics**, treating data as a bag of randomly permutable items.

Contributions

- Develop a **sequential subset selection** framework, incorporating dynamics.
- Form potentials to optimize encoding, cardinality and **coherency** of the summary.
- Propose a **binary optimization** over data assignments to representatives.
- Develop a **max-sum message passing** and an ADMM framework.

Prior Work

Determinantal Point Processes (DPPs) choose subset(s) Y of data \mathbb{Y}

- Markov DPP [1]: successively selects items, diverse from previously selected items.
- SeqDPP [2]: divides a sequence into windows Y_t and selects sets Y_t diverse within window and with respect to items selected in previous window.

• Limitations: i) do not consider dynamics of data; ii) single set summarization.

Facility Location Review

- Given: source set X, target set Y, and pairwise dissimilarity d_{ij} .
- d_{ij} : how well \boldsymbol{x}_i represents \boldsymbol{y}_i , smaller means better.
- Goal: find a small subset $S \subseteq X$ to represent every item $y_i \in Y$.
- Minimize cardinality plus encoding quality of the representative set:

$$\min_{\mathcal{S} \subseteq \mathbb{X}} |\lambda|\mathcal{S}| + \sum_{i \in \mathbb{Y}} \min_{i \in \mathcal{S}} d_i$$

Sequential Facility Location

- Approach: Introduce transition model among source set items $p(\boldsymbol{x}_{i'}|\boldsymbol{x}_{i_1},\ldots,\boldsymbol{x}_{i_n})$
- -Target set has a sequential structure $\mathbb{Y} = (\boldsymbol{y}_1, \dots, \boldsymbol{y}_T)$.
- $-\boldsymbol{x}_{r_t}$ denotes the representative of \boldsymbol{y}_t , for $t \in \{1, \ldots, T\}$.

-Maximize potential function over representative assignments $(r_1, \ldots, r_T) \subseteq \{1, \ldots, M\}^T$.

$$\mathbf{\Psi}(r_1, \dots, r_T) \triangleq \Phi_{\text{enc}}(r_1, \dots, r_T) \times \Phi_{\text{card}}(r_1, \dots, r_T) \times \Phi_{\text{dyn}}(r_1, \dots, r_T)$$
Encoding:
$$\Phi_{\text{enc}}(r_1, \dots, r_T) = \prod_{t=1}^T \phi_{\text{enc},t}(r_t) = \prod_{t=1}^T e^{-d_{r_t,t}}$$

Cardinality:
$$\Phi_{\text{card}}(r_1, \dots, r_T) = \exp(-\lambda |\{r_1, \dots, r_T\}|)$$

Dynamics:
$$\Phi_{ ext{dyn}}(r_1,\ldots,r_T) = \left(\prod_t p_t(m{x}_{r_t}|m{x}_{r_{t-1}},\ldots,m{x}_{r_{t-n}})\right)^{eta}$$

- Integer Binary Optimization Formulation:
- -Binary assignment variable $z_{i,t} \in \{0,1\}$, indicates if \boldsymbol{x}_i is a representative of \boldsymbol{y}_t .
 -Consider first-order Markov model and maximize $\log \boldsymbol{\Psi}$

$$\max_{\{z_{i,t}\}} \sum_{t=1}^{T} \sum_{i=1}^{M} -z_{i,t} d_{i,t} - \lambda \sum_{i=1}^{M} \| \left[z_{i,1} \cdots z_{i,T} \right] \|_{\infty} + \beta \left(\sum_{i=1}^{M} z_{i,1} \log p_{1}(\boldsymbol{x}_{i}) + \sum_{t=2}^{T} \sum_{i,i'=1}^{M} z_{i,t-1} z_{i',t} \log p(\boldsymbol{x}_{i'} | \boldsymbol{x}_{i}) \right) \quad \text{s. t.} \quad z_{i,t} \in \{0,1\}, \quad \sum_{i=1}^{M} z_{i,t} = 1, \ \forall \ i,t.$$

• Optimization via Max-Sum Message Passing: cast the optimization as a MAP inference on binary random variables.

 $\theta_t^D(z_{i,t}) \triangleq \log p(\boldsymbol{x}_{i'}|\boldsymbol{x}_i)z_{i,t-1}z_{i',t}$

Experiments

Figure 1: Dynamic cost, total cost and diversity score as a function of the number of representatives.

-SeqFL achieves **lower costs** and **higher diversity** than DPP methods.

Figure 2: Number of representatives, encoding cost and dynamic cost of SeqFL as a function of the parameters (β, λ) .

• Instructional Video Summarization:

Use the Instructional Video dataset [5]: 5 tasks, 30 videos per task available.

- Fit HMM to training data to construct transition model.
- Use SeqFL to choose representative HMM states for each test video.
- -Assign labels to states based on training set nearest neighbors.
- Align sequences of representatives from all test videos to form final summary.

Task		kDPP[4]	M-kDPP[1]	Seq-kDPP[2]	DS3[3]	SeqFL
Change	(P, R)	(0.56, 0.50)	(0.55, 0.60)	(0.44, 0.40)	(0.56, 0.50)	(0.60, 0.60)
tire	F-score	0.53	0.57	0.42	0.53	0.60
Make	(P, R)	(0.38, 0.33)	(0.50, 0.44)	(0.63, 0.56)	(0.50, 0.56)	(0.50, 0.56)
coffee	F-score	0.35	0.47	0.59	0.53	0.53
CPR	(P, R)	(0.71, 0.71)	(0.71, 0.71)	(0.71, 0.71)	(0.71, 0.71)	(0.83, 0.71)
	F-score	0.71	0.71	0.71	0.71	0.77
Jump	(P, R)	(0.50, 0.50)	(0.56, 0.50)	(0.56, 0.50)	(0.50, 0.50)	(0.60, 0.60)
car	F-score	0.50	0.53	0.53	0.50	0.60
Repot	(P, R)	(0.57, 0.67)	(0.60, 0.50)	(0.57, 0.67)	(0.57, 0.67)	(0.80, 0.67)
plant	F-score	0.62	0.55	0.62	0.62	0.73
All tasks	(P, R)	(0.54, 0.54)	(0.58, 0.55)	(0.58, 0.57)	(0.57, 0.59)	(0.67, 0.63)
	F-score	0.54	0.57	0.57	0.58	0.65

Figure 3: Summaries obtained for the task of repotting a plant (top) and performing CPR (bottom).

- [1] R. H. Affandi, A. Kulesza, and E. B. Fox, Markov determinantal point processes, UAI, 2012.
- [2] B. Gong, et al., Diverse sequential subset selection for supervised video summarization, NIPS, 2014
- [3] E. Elhamifar, G. Sapiro, S. Sastry. Dissimilarity-based sparse subset selection, PAMI,2016. [4] A. Kulesza and B. Taskar, K-DPPs: Fixed-size determinantal point processes, ICML, 2011.
- [5] J.-B. Alayrac, et al., Unsupervised learning from narrated instruction videos, CVPR, 2016.