Motivation

Subset selection finds a small a subset of most informative items from a large
eround set to be used for summarization and other inference and learning tasks.

Sequential data, including time-series, such as video and speech, and ordered
data, such as text, form a significant part of modern datasets.

e There exist structural dependencies among sequential data, imposed by the
underlying dynamic model, that must play a vital role in summarization.

e Existing subset selection methods ignore dynamics, treating data as a bag of
randomly permutable items.

Contrlbutlons

e Develop a sequential subset selection framework, incorporating dynamics.
e Form potentials to optimize encoding, cardinality and coherency of the summary:.

e Propose a binary optimization over data assignments to representatives.

e Develop a max-sum message passing and an ADMM framework.

Prior Work

Determinantal Point Processes (DPPs) choose subset(s) Y of data Y
e Markov DPP [1]: successively selects items, diverse from previously selected items.

e SeqDPP [2]: divides a sequence into windows Y; and selects sets Y; diverse within
window and with respect to items selected in previous window.
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e Limitations: i) do not consider dynamics of data; ii) single set summarization.

Facility Location Review
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o Glven: source set X, target set Y, and pairwise dissimilarity d;;.
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o d;;: how well @; represents y;, smaller means better.
e Goal: find a small subset & C X to represent every item y; € Y.

e Minimize cardinality plus encoding quality of the representative set:
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Sequential Facility Location

e Approach: Introduce transition model among source set items p(ax; L, &)
— Target set has a sequential structure Y = (yq, ..., yp).
—x,, denotes the representative of y,, for t € {1,...,T}.
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— Maximize potential function over representative assignments (71, ...,rr) C {1,..., M},
U(ry,...,r7) = Pone(r1, ..., 77) X Peawa(T1, .. ., 77) X Payn(r1y .-y 77)
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e Integer Binary Optimization Formulation:
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Dynamics:  ®gyy(r1, ..., 77

— Binary assignment variable z;; € {0, 1}, indicates if @, is a representative of y,.
— Consider first-order Markov model and maximize log W
M
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e Optimization via Max-Sum Message Passing: cast the optimization as a MAP
inference on binary random variables.
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Experiments
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Figure 1: Dynamic cost, total cost and diversity score as a function of the number of representatives.

—SeqFL ach1eves lower costs and hlgher dlver81ty than DPP methods
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Figure 2: Number of representatives, encoding cost and dynamic cost of SeqFL as a function of the parameters (5, ).

e Instructional Video Summarization:
Use the Instructional Video dataset [5]: 5 tasks, 30 videos per task available.

— Fit HMM to training data to construct transition model.

— Use SeqFL to choose representative HMM states for each test video.

— Assign labels to states based on training set nearest neighbors.

— Align sequences of representatives from all test videos to form final summary:.

Task kDPP[4] [M-kDPP[1]/Seq-kDPP2]| DS3[3] | SeqFL
Change | (P, R) (0.56, 0.50) (0.55, 0.60)  (0.44, 0.40) (0.56, 0.50) (0.60, 0.60)
tire | F-score 0.93 0.57 0.42 0.93 0.60
Make | (P, R) (0.38,0.33) (0.50, 0.44)| (0.63, 0.56) (0.50, 0.56) (0.50, 0.56)
coffee | F-score 0.35 0.47 0.59 0.53 0.53
cpr | (PR) (071, 0.71) (0.71,0.71) | (0.71,0.71) (0.71, 0.71) (0.83, 0.71)

F-score 0.71 0.71 0.71 0.71 0.77
Jump | (P, R) (0.50, 0.50) (0.56, 0.50)| (0.56, 0.50) |(0.50, 0.50)|(0.60, 0.60)
car | F-score 0.50 0.93 0.93 0.50 0.60
Repot | (P, R) (0.57, 0.67)|(0.60, 0.50) (0.57, 0.67) |(0.57, 0.67) (0.80, 0.67)
plant | F-score 0.62 0.55 0.62 0.62 0.73
A1l ok (P> R) (054, 054) (0.58, 0.55) | (0.58, 0.57) (057, 0.59) (0.67, 0.63)
F-score 0.54 0.57 0.57 0.58 0.65
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Figure 3: Summaries obtained for the task of repotting a plant (top) and performing CPR (bottom).

R. H. Affandi, A. Kulesza, and E. B. Fox, Markov determinantal point processes, UAI, 2012.

B. Gong, et al., Diverse sequential subset selection for supervised video summarization, NIPS, 2014
E. Elhamifar, G. Sapiro, S. Sastry. Dissimilarity-based sparse subset selection, PAMI.2016.

A. Kulesza and B. Taskar, K-DPPs: Fixed-size determinantal point processes, ICML, 2011.

J.-B. Alayrac, et al., Unsupervised learning from narrated instruction videos, CVPR, 2016.

S O




