Definition: a partial order (sometimes called a partially ordered set or poset) is a pair, (D, C) where:
D is a set and
C is a reflexive, transitive, and anti-symetric relation such that:
Ve. x Cx
Vz,y,z. @Cy)A(yEz) = (zC2)
Vry. (1 Cy) A(yCx) = (z=y
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Definition: Let X be a subset of D, then:
d € D is an upper-bound (or UB) for X iff Vz € X. (z C d)

¢ is an upper-bound for {a,b,c} and
¢ & d are both upper-bounds for {a,b}

a b

Definition: d is a least-upper-bound (or LUB) for X iff:
(1) d is an upper-bound for X and
(2) if d’' is any upper-bound for X then d C d’

Property: if d & d' are both LUBs of X then d = d’
Proof: Since d and d’ are LUBs of X, (d C d') and (d’' C d), (d = d’) by anti-symetry of C
- If C is not anti-symetric we call it a pre-order
- We write | | X for the least-upper-bound of X, if it exists
What kinds of sets have LUBs ?
(1) no restrition: (poset)
(2) Every finite subset has a LUB (lattice)
(3) Every subset has a LUB (complete lattice)

Somewhere between 1 & 2 is our interesting class of sets

Definition: Given a poset (D,C), X C D is directed iff every finite set F' C X has an upper-bound in X

directed ‘ not directed
‘ a {a,c} {a,0}
{a,b,c} {a,b,c,d}
singleton sets
a b pairs of C

Definition: a complete-partial-order (CPO) is a poset where every directed subset has a LUB .
Definition: a pointed-CPO is a CPO with a least-element, usually bottom, (L)

Any finite PO is a CPO since any directed set X is finite, choose F' = X so X has an upper-bound in X, that
must be the LUB .



Interesting posets:
Singleton:  {-}, 1, or U

-
2 element: I or O
1L
true false
3 element: ‘\/’ ,B,or T
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If A is any set then (P(A), C) is a CPO
XCP), | UX=UX

If A is any set then (A, {(z,y) | x = y}) is a CPO (but not pointed)
but, (AU{L}{(9) | (& =y)V (= )} is

Definition: Products of Posets
(D,Cp) x (E,Cg) = (D x E,Cpxg)
where
(d,e) CEpxp (d',¢') iff (dCp)A(eCge)
If PC D x FE is directed then P has a LUB

Claim: Let P be directed, P, = {z | Jy.(z,y) € P} and P, = {y | Jy.(z,y) € P},
then P; & P, are directed

Proof: if {z1,...,x,} € Py and {y1, ..., yn} € P2 such that {(z1,91), ..., (Tn,yn)} C P then
by the definition of Cp, « p,, since P is directed so are P; and P

Partial Functions

If S and T are sets then S —e—» T defines the set of partial-functions from S to T
fEgiff Vo € S, if f(z) is defined then so is g(z), and f(z) = g(z)

Alternatively:
graph(f) ={(x,y) |r €S N y= f(x)}, then f C g iff graph(f) C graph(f)

X C[S —e- T is directed iff for any finite F C X, F hasa UB in X

Let X C S —» T, F C X with F finite.
Let f € F'= {(z1, f(21)), s (Tn, f(zn))}

We want g : S — T such that g(z) = f(z) if 3If € X such that f(z) is defined
Lemma I: if fi, fo € X and fi(x) & fa(x) are defined, then fi(z) = fa(z)

Proof: {fi, f2} is a finite subset of X, therefore it has an UB in X,
i.e. 3f3 such that fi C f3 and fo C f3. So fi(x) = f3(z) and fa(x) = f3(x)

This all means that:

S —— T is a CPO



Definition: Let f: D — E where D = (D,Cp) and F = (E,Cg)
The function f is monotone iff Vd,d’, if d Cp d’ then f(d) Cg f(d)

Lemma (Exchange):
Let D & D’ be CPOs, P C D & Q C D’ be directed, and D" be any poset.
Let f: D x D — D" be monotone, then:

L U @y =] [ e

TP yeQ YyEQ TEP

Proof: Must show that:

Ll L] f@wc | | f@y) and || || f@yc ] ] f@y)
yeQ zeP

zEP yeQ yeEQ zEP zEP yeQ

First, | |,.p is a LUB , so it suffices to show that
|_| |_| f(z,y) is an upper-bound for {|_| flz,y) | x € P}
yeEQ z€P yeQ
So it remains to show that for any x € P
L] r@yc|] ] fa@y
yeQ yeEQ TEP
From there it remains to show that for any y € Q
fayc || ] f@y
yEQ zEP

which is obvious since f is monotone
Options:
(1) ... if these LUBs exist ...
(2) ... let D" be a CPO, then these LUBs exist ...

Lemma (Diagonal):
Let D & D’ be CPOs, P C D be directed, and f : D x D — D’ be monotone

then:
|_| |_| flz,y) = |_| f(z,z)

rzeP yeP zEP

Proof: Homework Excercize #5

There are more notes here from the discussion the day after...

Definition: a function f: D — E where D & E are pointed-CPOs is strict iff it is bottom-preserving.

Definition: a function f: D — E where D & E are CPOs is continuous iff
VX C D where X is directed, f(|]X) = | ],cx f(2).



This leads to the following properties:
(1) If f is continuous, then f is monotone (continuity = monotonicity)
Let X = {a,b} where a C b. Then X is directed.
Therefore f(| | X) = |{f(z) | x € X}, So

f(0) = L{f(a), £(b)}, therefore f(a) C f(b)

(2) If f is monotone and D is finite, then f is continuous
(3) If f is monotone and D has no infinite-increasing-chains, then f is continuous
(4) f is monotone # f is continuous
Example:
f:w’ — O with f(T)=T and f(n) = L

|| f@)y=1 and f(||a2)=T

reX zeX

f is not continuous since | | f(x) # f(|]z)

Lemma: If f: D — E is continuous and X C D is directed, then

L] r@c ]|

reX rzeX

Proof: For any zo € X, ¢ C | | X, since f is monotone, f(xo) C | | f(x)
This is true for all zp € X, so | | f(z) is an UB for {f(z) | z € X} and is least

Claim: If f: D — E and g: E — F are continuous then (go f): D — F is continuous

Proof: Must show that:

o (| |=E [ |goh(x)

zeX zeX
Since X is directed, so is {f(z) | € X} by the above Lemma.
g(f(UX) = g(LK f(z) [z € X}) : by continuity of f
LI{ g(f(x)) | x € X} : by continuity of g
= Uge (=)



Definition: [D — E] is the set of all continuous functions from D — E such that

fCp_gyg iff Vde D. f(d) Cg g(d)
For some S and T'

S —— T is a partial-function-order
S — T is a one to one correspondence by replacing undefined by L

Let o : (S —T.) — (S —e= T) be a function which converts a (total?) function from S — T to the
corresponding partial function, such that ¢(f) = g where:

g(x) is undefined if f(z) = L
g(z) = f(z) otherwise

Claim: f Cgp, giff o(f) C ¢(g)

Proof: Vs e S. (f(s) Er, 9(s)) < f(s)=g(s)V f(s) =L
So, either ¢(f(s)) = g(s) or ¢(f(s)) is undefined

Property: [D — E]is a CPO
Let P C [D — E] be directed
Define g : D — E such that g(z) = | |{ f(z) | f € P}

Claim: g=|[|P

Proof: We must show that:
(1) g is continuous,

(2) VfeP. fCg,and
(3) Vf' eub(P). f'Cyg

7?7 I'm not sure where this section fits, my notes might be out of order...
Claim: If P is directed then Q = { f(d) | f € P} is directed

Proof: Let fi, fo € P with f; (d), fo(d) € Q
If f1, fo € P then that share an UB, say f3 € P therefore fi(d) and f2(d) have an UB, f3(d) € Q.

So, @ is directed and g (from above?) is defined.

Let Q@ C D be directed. We want to show that:

z€Q z€Q
So:
q( |_| r) = |_| (f( |_| z)) by definition of g
T€Q fer  zeQ

- |_| (l_l f(x)) since f is continuous
fEP z€Q

= |_| ( |_| f(z)) by the Exchange lemma
zeQ fEP



Reminder:

Continuous = f(| | X) = | |,cx f(®)

- Az.z is continuous
-D — E, {(d,ey) | d € D} is continuous
- E — [D — E] for any D, E is continuous

Definition: Kg. = Ae.\d.e

If X C F is directed then:

K( |x)=|] K(e)=| | (Ad.e)

eeX ecX
|| K@@= | @ =]]x
ecX eeX
| | dedde=||(e)=| |X
eeX ecX

Deﬁniti;ni S(f)9)(x) = (f(2))(9(x))
g D — F
f:D—[E—F]
S:[[D—[E—F|]|]-[D—E|—D]—F

Claim: S is continuous

Proof: Homework Excercize #6

Must show that if f & g are continuous then F is (continuous ?)
- Requires three results...

S:[[[D=[D=F]]=[D= E|= D]=F|
K :[D=[D= E]

Application:
D=F D
E

These are complete for propositional logic of pure-implication

Definition: Terms
t:$|K|S|(t1 t2)
S = A Ag A (f )(g @)
K=\t )\yx

Claim: Any lambda expression is eqivalent to some combinatory term [e]

Conclusion... continuous functions are closed under composition



