
Functional Adaptive Programming with DemeterF

Bryan Chadwick Karl Lieberherr
College of Computer & Information Science

Northeastern University, 360 Huntington Avenue
Boston, Massachusetts 02115 USA.�

chadwick,lieber � @ccs.neu.edu

Abstract
In this paper we present a new functional traversal ab-
straction for processing OO data structures that decom-
poses traversal computation into three function objects and
a traversal control function. Function objects compute and
combine values over a general traversal while the control
function allows programmers to limit the extent of a traver-
sal. Our new abstraction is supported by a Java library, called
DemeterF, that allows programmers to use OOP techniques
to develop traversal related programs. The library provides a
rich set of default traversal behavior and a multiple dispatch
mechanism to match methods during data structure traversal.
We demonstrate the usefulness of our library by developing
a type checker and evaluator for a small functional OO lan-
guage.

1. Introduction
Data structure traversal is used in all forms of data process-
ing, from programming language implementations to XML
processing. In Object Oriented (OO) Languages the separa-
tion of interface and implementation in makes specification
of different traversals across classes difficult. Patterns and
domain specific languages (traversals/strategies) (Ovlinger
and Wand 1999; Lieberherr 1996) have provided solutions
to this problem by allowing functions (or objects) with local
state (i.e., visitors) to be executed over a specific instance of
a data-structure.

While previous OO solutions allow one to express traver-
sals, both internal and external to the data structure, they rely
solely on state mutation for computation. This makes some
forms of computation (data transformations/rewrites) cum-
bersome to implement in the given abstraction. In this pa-
per we present an innovative functional abstraction for pro-

[Copyright notice will appear here once ’preprint’ option is removed.]

cessing objects that leverages the power and flexibility of
OOP and ideas from structure-shy and functional program-
ming to provide state-free computation over a data structure.
We introduce a Java library, called DemeterF, that supports
our abstraction, giving the programmer control over object
traversals and the values they produce. Our new abstraction
provides the following benefits:
� Separation of traversal and control in a functional setting� Rich traversal specialization and default behavior� Dynamic traversal library with static type checking� No data structure changes or language extension required

Structure-shy programming (Lieberherr 1996) allows a
program to mention only the data-types of interest in a
computation, while uninteresting types receive some de-
fault behavior. In most cases this means separating traversal
code, where-to-go, while using a visitor instance to com-
pute results, what-to-do. In an imperative setting what-to-do
usually modifies local visitor state, making changes during
traversal. At uninteresting nodes we simply do nothing.

In the functional setting, we wish to traverse an instance
of a structure and produce values at interesting nodes; com-
puting some value from the results. To support this style
of programming we have separated traversal computation,
what-to-do, into three function objects1, while a control
function tells the traversal where-to-go. Our DemeterF li-
brary provides general traversal and control functions, with
suitable defaults for each of the function objects. This pro-
vides traversal flexibility while allowing the programmer to
focus on the portions of the data structure related to a com-
putation. In some cases the programmer need only deal with
the type to be transformed, instead of the types that may be
near it in the structure.

Typical solutions in the functional community (Lämmel
and Peyton Jones 2003; Lämmel and Visser 2002) focus on
two specific types of computation: type-preserving trans-
formations and type-unifying folds. Our decomposition of

1 We define a function object as an instance of a class that contains meth-
ods and class or instance specific constants, representing a set of function-
s/methods.

1 2008/4/28

6

3

1

0

5

4

9

7

8

10

abstract class Comp<T>{
abstract boolean comp(T a, T b);

}
class LT extends Comp<Integer>{

boolean comp(Integer a, Integer b){ return a < b; }
}
class BST<T>{

BST<T> insert(T d, Comp<T> c)
{ return new Node<T>(d, this, this); }

}
class Node<T> extends BST<T>{

T data;
BST<T> left, right;

Node(T d, BST<T> l, BST<T> r)
{ data = d; left = l; right = r; }

BST<T> insert(T d, Comp<T> c){
if(c.comp(d, data))

return new Node<T>(data, left.insert(d,c), right);
return new Node<T>(data, left, right.insert(d,c));

}
}

Figure 1. BST Implementation

what-to-do makes these forms of computation special cases.
Because our traversal is separate, we can independently con-
trol where-to-go, and focus on what-to-do with traversal re-
sults. With a static form of traversal specification our dy-
namic traversal can be type-checked as if it was static, using
a class-dictionary (or type schema) to determine what val-
ues sub-traversals will produce. Being written as a reflective
Java library, DemeterF does not require any changes to the
language, existing classes, or the compile process; it simply
runs along side other programs.

2. Motivating Example
As a concrete example, consider a typical generic BST im-
plementation in Java (Figure 1). A BST<Integer> in-
stance constructed with LT is drawn above the code for ref-
erence.

Using this definition there are several functions we may
wish to compute. Traditional visitors (Gamma et al. 1995;
Palsberg and Jay 1998) are good for computing aggregate
values, e.g., the sum of all numbers in a given tree, or its
string representation, but suppose we would like to create a
new tree where some data elements are modified? For in-
stance, given a BST<Integer> we might like to construct
a new one with each data element incremented, leaving the
old tree alone.

Figure 2 shows a class that implements the increment op-
eration using our DemeterF library. The structure-shy ele-
ment of this program comes from the default traversal be-
havior that rebuilds the underlying data structure2. In fact,
this class can be used for any structure that contains ints
2 Similar to SYB transformations (Lämmel and Peyton Jones 2003)

7

4

2

1

6

5

10

8

9

11

class Incr extends IDf{
int apply(int i){ return i+1; }

}

Figure 2. Functional BST Increment

six

three

one

zero

five

four

nine

seven

eight

ten

class Strs extends IDf{
static String nums[] = {"zero","one", /*...*/,

"nine","ten"};
String apply(int i){ return nums[i]; }

}

Figure 3. Functional BST Conversion

that we would like to increment, e.g., lists, queues or stacks.
The class can then be used in a traversal with something like
the statement below, where aBST is the tree we would like
to transform.

BST newBST = new Traversal(new Incr()).traverse(aBST);

Since our function objects are just Java classes, we can
leverage the power of Java generics to produce more than
just BST<Integer>s. Figure 3 shows a class that converts
a BST<Integer> into a BST<String> that contains the
strings of the English words corresponding to the numbers
in the tree.

As an example of a non-standard transformation consider
the task of reversing a given BST. At every Nodewe wish to
swap its left and rightBSTs. Figure 4 shows a class that
implements this transformation. At each Node we combine
recursive results into a new reversed node. These examples
use the default traversal control that proceeds everywhere.
In later sections we introduce the traversal control abstrac-
tion that allows us to both optimize traversals (ignoring un-
interesting portions of a data structure) and implement more
complex recursive algorithms using our generic traversal.

The rest of this paper is organized as follows: Section 3
describes DemeterF traversals, function objects, and their
semantics. Section 4 describes our library classes and im-
plementation. As an larger example, we use our library to
implement an interpreter for a functional OO language, pre-
sented in Section 5. We review related work in Section 6 and
conclude with Section 7.

3. Functional AP
DemeterF traversals merge ideas prevalent in functional pro-
gramming with those found in OOP and Adaptive Program-

2 2008/4/28

6

9

10 7

8

3

5

4

1

0

class Rev extends IDb{
BST combine(BST leaf){ return leaf; }
BST combine(Node t, Object d, BST lf, BST rt)
{ return new Node(d, rt, lf); }

}

Figure 4. Functional BST Reverse

ming (AP) (Lieberherr 1996). Recursive traversals in func-
tional languages are written in an elegant way, but usually
repeat common structure. Typical support for transforma-
tions (Lämmel and Peyton Jones 2003; Lämmel and Visser
2002) relieve the programmer of boilerplate code, but re-
move a lot of the flexibility programmers rely on to imple-
ment algorithms. To support the flexibility of hand-written
traversal code and avoid boilerplate code in typical situa-
tions we abstract traversals to allow functional computation
with the kind of traversal control typically found in AP.

3.1 DemeterF Traversals
A complete DemeterF traversal is defined by three function
objects (what-to-do) and a traversal control function (where-
to-go). The function objects (or sets of functions), which we
call transformers, builders and augmentors, manipulate val-
ues over a predefined recursive traversal aided by a multi-
ple dispatch mechanism. The control function decides which
fields of a data type should be traversed3.

The traversal function, ����� �	�
�� � , and related abstractions
are described in Figure 5. We use sets of functions to de-
scribe our algorithms, though our implementation uses func-
tion objects. The traversal is divided into two cases: user de-
fined types, represented abstractly as a sequence of fields;
and BuiltIn types(e.g., int, boolean, etc.). The traversal
accepts an extra argument,
�� in the figure, which is updated
before traversing any fields of a data type.

To make the traversal sufficiently general, it is parametrized
by function objects and a control function that represent as-
pects of hand-coded traversals:
�

: Transformations; run at each node of the data structure�
: Reconstruction or folds using values from sub-traversals� : Modification or replacement of a traversal argument.� : Decide which sub-traversals of fields should be run.

When traversing a user defined data type (Figure 5) we first
choose a function in � to update the traversal argument
before processing any fields; this allows information to be
passed down during traversal. We then traverse each field of

3 Field numbers and names are interchangeable; though our specification
uses numbers, our implementation uses names.

�
�����
���
�������
�
����
!�#"$"%" �&�('*)+)-,�)� ����./��
102 ��343435�-
6078��
1�����:9<;1=?>@�
102 ��343435�-
607	��
�
���
���
������:
��ACB�A�DFE�GIH!ACDFA ��
�� � �&�KJ�)+L�'
Figure 6. Default Function Definitions

the data type if the control function returns true, otherwise
we simply transform it, with

�
, passing the new traversal

argument in either case. Once all fields have been completed,
we select a function from

�
to combine the result values;

then give
�

a final chance to transform the combined result
before returning it to the caller.

As with most functional traversals, we have formulated
the traversal function to minimize data dependencies be-
tween individual values making it simple to parallelize. Each
calculation of
10M can be done in separate threads, implicitly
synchronizing on the dispatch to

�
. Separating the traversal

computation into sets of functions also increases opportuni-
ties for reuse; allowing our implementation to provide suit-
able defaults for common scenarios.

Figure 6 describes the default functions we have found
useful in practice. The

�
 � and
�

 functions are straightfor-

ward, but the builders
�
 � and

� � are special. The behavior of�
�� being error helps with runtime debugging of programs,
while the constructing builder,

� � , calls the constructor of
type > (the type of .) passing the traversal results as new
fields. Assuming consistent constructor definitions, we can
use

� � to do functional updates as shown in the earlier BST
examples (Figures 2 and 3). The Rev class (Figure 4) that
reverses a BST is an example of a class that extends

�
6� ;
covering both data type cases eliminating any chance for er-
rors. To create a traversal using a Rev object we implicitly
use

�
 � and
�

 , though traversal arguments are not needed

within our combine methods4.

3.2 Dispatch: Function Selection
Our dispatch function, N , selects the most specific function
from a set (or object) based on the types of all actual argu-
ments during traversal. Figure 7 describes our algorithm for
function dispatch where O is the traditional transitive, anti-
symmetric subtype relation and P is its reflexive extension.
To select a function we first filter the set, leaving only those
applicable to prefixes of the given argument types. We can
then sort the functions in QR0 based on the defined compari-
son function better; applying the least (most specific) func-
tion, S , to the first T arguments provided.

The filter step and implementations of better and more-
Specific are chosen to allow later function arguments to be

4 Traversal arguments are optional in DemeterF.

3 2008/4/28

� ��� ���
�� � � ./��
 � �U� if .?VW�
 2 ��"4"4"��X
 7 � then :: user defined types

let
10�ZY N�� � �[� .\��
 � �X� – traversal argument update

10M Y if � � ./� � � – traverse the field?

then � ��� �	�
	� � �
 M ��
10� � – yes!

else N�� � �[��
 M ��
10� �]� – no, just apply an
�

^. Y N�� � �_� .\�<
102 ��"4"�"*�X
107 ��
����]� – combine Results

in N�� � �_� ^./��
��`�]� – apply an
�

else N�� � �_� ./��
��`�X� :: BuiltIn (primitive) types

� � � � and � are sets of functions; � is a two argument predicate.

N�� Q@�_� a	b`�4"�"4"*�-a 7 �X� applies Sdc/Q to a prefix of the arguments, � a!bF��"4"4"��Xa�ef� , where T is the

arity of S , choosing the most specific function based on the types of the actual arguments

and the types of functions in Q . (multiple dispatch)

Figure 5. DemeterF Traversal Algorithm

N���Q@�[� a bIg > b "�"4"	a 7 g > 7 �]�U�h ;1ijQk0 Y � S5��l b "�"4"ml e �nc/QpoFTrqjsutwv � qxTy"6> M Pzl M �
S Y H!A a1
{��|C} DF~ � Qk0���� AC~�~�ACD �]�
T Y a D � ~�E ��S	�� 9�S5� a b "�"4"]a e �

� AC~�~�ACD �FS5��l�b<"�"4"ml 7 �+� H ���&b<"4"�"-��ef�]�U�
��sy��T/���!��� s Y T��	9<��T�} D�A l�� AF� � � � � �	��l�b<"4"�"-l 7 �*�_����b�"4"4"+� 7 �*��s��]�

T�} D�A l5� AF� � � � � �	��l�b�"�"4"Xl 7 �+�_����b<"�"4"m� 7 �+��s����
��s Y�� ���!����l�bIOz�&b*��������l�b Y �&b��	9<��T�} DFA l�� AF� � � � � �	��l5 �"�"4"Xl 7 �+�_���� �"�"4"m� 7 �+��s�¡�¢F�]�

Figure 7. DemeterF Function Dispatch Algorithm

optional. Sorting functions with more arguments to the front
of the list is a consequence of optional arguments, which al-
lows more general functions with a greater number of argu-
ments to be selected ahead of those with fewer but more spe-
cific arguments. This also avoids the algorithmic (and theo-
retic) complexity of comparing function types with different
numbers of arguments.

The function moreSpecific compares equal length se-
quences of argument types, stopping at the first inequality.
This ensures that arguments at the front of the signature are
given priority in function selection. It also compliments the
original data element being the first argument— the most
important argument for structuring traversal code is also the
most important in function dispatch. These functions (N , bet-
ter, and moreSpecific) are implemented in DemeterF using
sets built by reflecting on the function objects given when a
traversal is created. We simply compare the types of traver-
sal results with the sets of functions that parametrize each
traversal as in the algorithm.

3.3 Type Checking Traversals
Another benefit of this functional traversal organization is
the ability to type check traversals and results. We define a
traversal type-error as the case when the filter step of the
dispatch algorithm returns the empty-set. Because of the
way our default functions have been defined, this can only
occur when dispatching builders. Not surprisingly, this kind
of error can be caught with static information about the data
structures to be traversed, the function objects provided, and
the traversal control function.

For simplicity of presentation, Figure 8 shows our three
typing rules for DemeterF traversals ignoring traversal argu-
ments and control. We reuse a modified form of the Deme-
terJ Class Dictionary (CD) syntax to differentiate between
type definitions. Sum (or union) types are shown with ’ £ £ ’
(meaning “is supertype of ”) using ’ ¤ ’ to separate variants.
Sum types represent abstract Java classes, specifying the re-
verse of extension. Product (or record) types are described
with ’=’ using ’ ¥�3-¦ ’ for field definitions followed by their

4 2008/4/28

§ c BuiltIns ¨�� � �_� § �]� Y § 0©Zª ��� � � § � g § 0
§ £ £ § b	¤�3�343�¤ § 7 ©�ª ��� � � § M � g | M « § 0 " v � "¬| M P § 0©Zª ��� ��� § � g § 0

§ = ¥�­ b*¦ § b�343�3�¥ ­ 7 ¦ § 7 ª ��� � � § M � g | M ¨�� � �[� § ��|�b<"4"�"-| 7 �]� Y § 0®¨�� � �_� § 0¯�]� Y § 0 0©fª ��� ��� § � g § 0 0
Figure 8. DemeterF Traversal Typing Rules

type. They represent normal Java class definitions with any
number fields.

When typing traversals, the judgment ©�ª ��� � � § � g |
means traversing a value of type § returns a value of type| . The type dispatch function, ¨ , follows the selection algo-
rithm described earlier, but produces the return type of the
chosen function. Though slightly informal5, this description
has been used to produce a static type checker for DemeterF,
written in DemeterF. Static traversal control adds a few spe-
cial cases to the presentation but does not affect our ability to
check traversals for violations. The need for type safety has
driven our choice of static traversal control in DemeterF.

4. DemeterF Library
The DemeterF library (Chadwick 2008) contains generic
traversal and function classes written in pure Java that use
reflection for data structure traversal and argument match-
ing dispatch. It provides a simple Java translation of ����� �	�
	� �
(Figure 5), the dispatch function, N , and various combina-
tions of the default function sets defined in Figure 6.

We use function objects to represent sets of functions,
which allows users to override and overload methods to ex-
tend or separate functionality and support new data struc-
tures. To differentiate the three types of functions within the
same object we use a different method name for each. The
various sets of functions

�
,
�

, and � are implemented by
writing apply(), combine(), and update() methods
respectively. This allows users to assemble function objects
that implement a number of methods of any kind.

Figure 9 describes provided class names and the imple-
mentation of traversal related functions and objects. Most of
the default implementations are as simple as the one below.

class IDfa{
Object apply(Object D, Object da){ return D; }
Object update(Object D, Object da){ return da; }

}

Programmers can then use Java inheritance to implement
desired functionality over the traversal.

A Traversal instance is constructed with instances
of Function, Builder, Augmentor, and EdgeCon-

5 Complete formalization and proof of type safety are items of future work.

Traversal Generic reflective traversal function

EdgeControl Allows control over field traversal

Function interface of IDf

Builder interface of IDb

Augmentor interface of IDa

IDf Java implementation of °�±6²
IDb Java implementation of °�±`³
Bc Java implementation of ´�µ

IDa Java implementation of °�±`¶
ID Java implementation of ·�°�±6²�¸¹°�± ³ ¸R° ± ¶�º

IDfa, IDfb, IDba Various default combinations

Figure 9. DemeterF Provided Classes & Function Objects

Traversal(IDf f) » Traversal(f, Bc, IDa)

Traversal(IDb b) » Traversal(IDf, b, IDa)

Traversal(IDfa fa) » Traversal(fa, Bc, fa)

Traversal(IDfb fb) » Traversal(fb, fb, IDa)

Traversal(IDba ba) » Traversal(IDf, ba, ba)

Traversal(ID fba) » Traversal(fba, fba, fba)

Figure 10. DemeterF Default Traversal Constructions

trol. The static factory methodEdgeControl.everywhere()
is used to create the default traversal control function, an im-
plementation of '4¼F'4)+½�¾�¿	'4)X' . Users can also use EdgeCon-
trol .create(...) to specify Edges (class/field-name
pairs) that should not be traversed. Figure 10 describes a
few of the provided Traversal constructors and default
function choices for each case. The various combinations
of function objects implement multiple interfaces, allowing
programmers use a single class to implement a traversal so-
lution.

The Incr and Rev classes from Figures 2 and 4 are ex-
amples that extend IDf and IDb. Incr implements an ap-
ply method that transforms integers, relying on the default
builder, Bc, to rebuild Nodes during traversal. Rev can be

5 2008/4/28

class Height extends IDba{
int update(Node n, int h){ return h+1; }
int combine(BST l, int h){ return h; }
int combine(Node t, Object d, int l, int r)
{ return Math.max(l,r); }

}

Figure 11. BST Top-down Height using update()

used in a traversal with IDf (the default) or any other trans-
former. If paired with Incr we get a traversal that incre-
ments and reverses a given BST.

The function object that we have not seen is an aug-
mentor. Figure 11 shows a function class that calculates the
height of a BST top-down. The traversal argument is placed
at the end of our method argument lists. At a Node we in-
crease the height argument by 1; when reaching a non-Node
BST, we return the accumulated height. After sub-traversal
completes at a Node, within the combine method we re-
turn the greater height of the two sub-trees. The traversal
argument is ignored since it does not affect the height cal-
culation. The method dispatch allows signatures to leave out
later arguments for situations when they are not needed.

Traversal control in DemeterF is encapsulated in a the
EdgeControl class. Instances of the class decide which
fields to traverse and which classes are considered BuiltIns
on a per-traversal basis. Declaring classes as builtins allows
the programmer to define new leafs of the data structure,
cutting off traversal at such instances. Adding Edges to be
bypassed gives programmers concise control over the depth
of specific portions of the traversal. Control is important
both for optimizing traversals, when results do not affect
a computation, and implementing algorithms over possibly
recursive objects.

5. Extended Example: FOOP
As a real example of data structure traversals and computa-
tion using DemeterF we discuss the implementation of an in-
terpreter for a Functional, OOP Language we’ll call FOOP.
The FOOP syntax is a subset of Java that only allows assign-
ment to fields within a class constructor. Our syntax for the
major structures of FOOP are shown in Figure 12. We leave
out the syntax for Exp as it will be discussed later.

What (reasonable) programming language is complete
without a definition of factorial? A factorial program in
FOOP is shown in Figure 13. From this example, a few
differences from Java are obvious. The first is that FOOP
uses if/then expressions; this is done to avoid the need for
statements and assignments. The second is that construc-
tors are required. To simplify its presentation (and type-
checking/interpretation) we have eliminated class extension.
The other major change (not evident here) is the removal
of explicit field access; fields are only available implicitly
within methods of the class to which they belong. Methods
are implicitly public, but the implicit parameter this is not
available within constructors, so methods cannot be called

Program := ClassList Exp

ClassDef := “class” Ident “ À ” FieldList MethodDefs “ Á ”
ClassList := ClassDef *

Field := Type Ident “;”
FieldList := Field *

MethodDefs := Constructor MethodList
Constructor := Ident “(” FormalList “)” “ À ” Assign * “ Á ”

Assign := Ident “=” Exp “;”
Method := Type Ident “(” FormalList “)” “ À ” Def * Return “ Á ”

Def := Type Ident “=” Exp “;”
Return := “return” Exp “;”

MethodList := Method *
FormalList := [Type Ident [“,” FormalList]]

Type := “int” Â “boolean” Â Ident

Figure 12. FOOP Syntax

class Fact{
Fact(){}
int fact(int i){

return if (i < 2) then 1
else i * this.fact(i + -1);

}
}

new Fact().fact(7) // = 5040

Figure 13. Factorial Program in FOOP

until an object is fully constructed. To simplify the parsing
and structures we introduce only four binary operators (addi-
tion, multiplication, less-than, and conjunction) and a unary
operator for negation (hence “+ -1” in fact).

5.1 Parsing Translation
For the implementation of FOOP we chose to use the pro-
gramming tool DemeterJ (The Demeter Group 2007) to gen-
erate Java classes and a corresponding parser from a mix of
concrete and abstract syntax description known as a Class
Dictionary (CD) file. Creating parsable data structures poses
the limitation that they must be LL(k) and cannot be general-
ized; parsing List<X> requires a concrete data definition6.
Infix expression parsing provides its own difficulties as the
hierarchy of operations must be built to ensure correct prece-
dence ordering.

To alleviate the eventual type checking and evaluation
traversals from the hassles of overly verbose data struc-
tures we use a translation step to reduce more complicated
Exps to simpler, more programmer (and traversal) friendly
structures. Figure 14 shows a small portion of the FOOP
CD file that encodes the precedence between addition and
multiplication; Term is a subtype of Exp. We use an in-
terface (TermI) to simplify the translation of Terms and
TermLists to AddExps. The fields are not named because
we will not use them after the parse tree is translated. Sim-
ilar structures are repeated for parsing Conjunct (‘&&’),
Compare (‘ Ã ’), and Factor (‘*’) expressions, introduc-

6 This is a limitation of the DemeterJ class and parser generation.

6 2008/4/28

//* In place of parsing generics...
interface ConsList = .
interface EmptyList = .

//* Parse the complicated...
Term = Factor TermList extends Exp implements TermI.
TermList: TermCons | TermEmpty common implements TermI.
TermCons = "+" Factor TermList implements ConsList.
TermEmpty = implements EmptyList.
interface TermI = .

//* Want the much simpler...
AddExp = <left> Exp *s <right> Exp.

Figure 14. Term Parse CD Snippet

Exp combine(Exp h, Exp left, EmptyList el)
{ return left; }

Exp combine(ConsList h, Exp left, EmptyList el)
{ return left; }

Exp combine(ConjunctI h, Exp left, Exp right)
{ return new AndExp(left, right); }

Exp combine(CompareI h, Exp left, Exp right)
{ return new LessExp(left, right); }

Exp combine(TermI h, Exp left, Exp right)
{ return new AddExp(left, right); }

Exp combine(FactorI h, Exp left, Exp right)
{ return new MultExp(left, right); }

Figure 15. Parser Translate Class Snippet

MethodBody: Return | RevDef.
Return = "return" *s <ret> Exp ";".
RevDef = <exp> Exp <rest> RevDefRest.
RevDefRest = <type> Type <id> Ident <rest> MethodBody.

TypePair = <bind> Type <rest> Type.

Figure 16. Abstract Syntax for Reversed Defs

ing analogous interfaces, ConjunctI, CompareI, and
FactorI, used in Figure 15.

Once parsed, the data structures are traversed and re-
structured to produce simpler binary expressions. A por-
tion of this code (from the Translate class) is shown
in Figure 15. We translate the rightmost expression into it-
self (first two cases) and convert other kinds of complex ex-
pressions into the corresponding simpler expressions. The
two list interfaces, ConsList and EmptyList, allow our
methods to be more general. To reconstruct non-Exps (e.g.,
Method bodies) we create a traversal that goes to all Exps
and transforms them using a Translate instance. In addi-
tion to rewriting expressions, we also transform variable def-
initions, Defs, into RevDefs to reverse the binding and ex-
pression into a nested structure; the related classes are shown
in Figure 16. After this translation evaluation is simplified
and type checking can proceed without any traversal inter-
vention.

5.2 Type Checking FOOP Programs
As defined, FOOP is a language without subtypes, which
makes method calls and field accesses significantly easier
to type check. Figure 17 shows the mixed abstract/concrete

syntax of primary expressions in FOOP and the Types and
Values that are used during type checking and evaluation.
We introduce Types and Values for integers, booleans,
and user defined objects. VarT is a name/type pair that is
used as an element of the generic class Env<T> representing
various (i.e., Type and Value) environments.

Type checking FOOP expressions can be done without
traversal control because the language contains static type
declarations. Figure 18 shows a class that implements a type
checker for simple expressions. This class extends ID; the
class that implements all three traversal function class in-
terfaces. It is very similar to hand written functional type
checkers with one exception: our traversal abstraction elim-
inates the need to write any traversal code. The two meth-
ods for IfExp use the argument matching to differentiate
between valid and invalid cases. The first (more specific)
method simply checks that the then and else expressions
have the same type. The second catches all cases where the
type of the condition expression is not boolean.

Figure 19 adds methods to support the type checking of
methods to the simple expression type checker. The update
methods add variables to the type environment. Class-
Meth is a structure that contains the name of the class and
a list of MethodDescs for a given class. When traversal
reaches a ClassMeth we add the fields of the class with
their types and the special variable this to the environment
with the type of the given class. When we reach a Method-
Desc, we add the arguments to the type environment, and
finally, when reaching a RevDefRestwe can add the bind-
ing to the environment.

The combine method for SymExp looks up the variable
type in the environment; the type of a Return is just the
type of the inner expression. Reverse definitions require a
TypePair to return both the type of the binding and the
type of the nested expression. Once the expression within
a RevDef has been typed we check it against the defined
type, returning the result type if they match. We leave out
the checking of constructors as it follows the same style;
checking that the types of all assignments are correct. After
type checking a FOOP program, we then convert variable
names (SymExps) into stack addresses using a version of de
Bruijn indices, making the evaluation function classes very
easy to follow.

5.3 Evaluating FOOP Programs
Evaluation is the first traversal that requires a change to
the default traversal control. We begin with an Eval class
(Figure 20) that contains a Traversal as an optimization
for implementing recursion. We use assignment to tie the
knot, creating a traversal that will skip then and else of
each IfExp, and the rest field of RevDefs. The way the
language is defined requires each definition within a method
to be evaluated in order, adding it to the environment before
evaluating other definitions.

7 2008/4/28

Primary: Negate | ParenExp | IntLit | BoolLit
| VarExp | NewExp | IfExp.

Negate = "-" Exp.
ParenExp= "(" Exp ")".
IntLit = <value> int.
BoolLit = <value> boolean.
VarExp: SymExp.
SymExp = <id> Ident.
NewExp = "new" <type> Type "(" <args> ExpList ")".
IfExp = "if" "(" Exp ")" "then" <thn> Exp

"else" <els> Exp.

Type: IntT | BoolT | UserT.
IntT = "int".
BoolT = "boolean".
UserT = <name> Ident.

VarT = <name> String <type> Type.

Value: IntV | BoolV | ObjV | NullV.
NullV = .
IntV = <val> int.
BoolV = <val> boolean.
ObjV = <type> Type <fields> ValueList.

Figure 17. Left: Primary Expression Syntax Right: Type and Value Structures

class ExpCheck extends ID{
static Type intt = new IntT();
static Type boolt = new BoolT();

Type combine(IntLit il){ return intt; }
Type combine(BoolLit il){ return boolt; }
Type combine(AddExp e, IntT l, IntT r){ return intt; }
Type combine(MultExp e, IntT l, IntT r){ return intt; }
Type combine(LessExp e, IntT l, IntT r){ return boolt; }
Type combine(NegExp e, IntT l){ return intt; }
Type combine(AndExp e, BoolT l, BoolT r){ return boolt; }
Type combine(OpExp e){ throw new TypeErr("Bad OpExp"); }

Type combine(IfExp e, BoolT c, Type thn, Type els){
if(thn.equals(els))return thn;
throw new TypeErr("IfExp: Then & Else Mismatch");

}
Type combine(IfExp e, Type c)
{ throw new TypeErr("IfExp: Non-boolean Condition"); }

}

Figure 18. Simple expression type checker

class MethodCheck extends ExpCheck{
MethodCheck(ClassList c){ /* ... */ }

Env<VarT> update(ClassMeth c, Env<VarT> env){
return env.push(classes.find(c.name).flds.env())

.push(new VarT("this", new UserT(c.name)));
}
Env<VarT> update(MethodDesc m, Env<VarT> env){ return env.push(m.args.env()); }
Env<VarT> update(RevDefRest d, Env<VarT> env){ return push(env, ""+d.id,d.type); }

Type combine(SymExp s, Ident id, Env<VarT> env)
{ return env.find(new VarT(id)).type; }

Type combine(Return r, Type t){ return t; }
Type combine(RevDef h, Type exp, TypePair def){

if(exp.equals(def.bind))return def.rest;
throw new TypeErr("Def: Type Mismatch");

}
TypePair combine(RevDefRest h, Type b, Ident n, Type r){ return new TypePair(b,r); }

Type combine(MethDesc h, String n, MethType mt, TypeList arg, Type body){
if(!mt.ret.equals(body))

throw new TypeErr("Method: Return Type Mismatch");
return body;

}
}

Figure 19. Method type checker

8 2008/4/28

class Eval extends ID{
static Env<Value> empty = Env.<Value>empty();
Traversal trav;

static Value doEval(Exp e, ClassList c){
Eval eval = new MethodEval(c);
EdgeControl ctrl = //** Skip traversal of these ’Edges’

EdgeControl.create(new Edge(IfExp.class, "thn"),
new Edge(IfExp.class, "els"),
new Edge(RevDef.class, "rest"));

eval.trav = new Traversal(eval, ctrl);
return eval.eval(e, empty);

}
Value eval(Object e, Env<Value> env){ return trav.traverse(e, env); }

}

Figure 20. Base Evaluator Class

We choose a simple stack for an environment, pushing
values in order of: object fields, this, then method argu-
ments. After rewriting variable expressions into stack ad-
dresses, the evaluation follows the format seen in the type
checker; our FOOP evaluation classes are shown in Fig-
ure 21. For incremental development and testing it makes
sense to divide the functionality into separate classes. We
then add features to support more expressions. LitEval
handles simple Values; ExpEval adds support for binary
and if expressions. MethodEval contains the evaluation of
a VarExp variant (AddrExp) that represents the stack ad-
dress of a variable (field, method argument, or local defini-
tion).

CallExp allows the evaluation of recursive calls, setting
up the environment before evaluating the body of a method.
For a RevDefwe recall the traversal on the rest field with
the new Value on the stack; remember that we did not tra-
verse the rest field due to the EdgeControl. As with the
type checking example, constructors are similar to method
evaluation, dealing with assignments to a list of fields, re-
turning an ObjV. Because we can use Java inheritence with
function objects, we can divide the evaluator into modular
units, which is useful for testing and organizing code.

6. Related Work
DemeterF’s functional traversals and dynamic dispatch are
closely related to several disjoint technologies in both the
functional and OOP communities. The Scrap Your Boiler-
plate (Lämmel and Peyton Jones 2003, 2004, 2005) series
and related papers on strategic programming (Lämmel et al.
2004; Lämmel and Visser 2002) discuss similar typed trans-
formations through traversals. They divide traversal compu-
tation into two main cases: type-preserving (TP) and type-
unifying (TU). The TP case is similar to our Incr exam-
ple (Figure 2), where the given BST is transformed into an-
other BST. Our Height example (Figure 11) is a form of
TU traversal, as all methods return int. Our traversal de-
composition makes TP and TU computations special cases
while allowing programmers to express traversals that are
not entirely TP or TU, e.g., MethodCheck in Figure 19.

Our main contribution in this space is the addition of traver-
sal control from functional computation while maintaining
traversal separation and the addition of a traversal argu-
ments.

Our dispatch function is similar to ideas found in predi-
cate and multiple dispatch. JPred (Millstein 2004) and Multi-
Java (Clifton et al. 2000) introduce a special syntax for mul-
tiple dispatch methods, available in general class definitions.
Our version of multiple dispatch is strictly available during
traversal on function objects. Though our library implemen-
tation could be used outside of the traversal, it is not meant
for general class dispatch. It is not clear if our traversal dis-
patch could be implemented or statically generated for those
languages, but traversals could certainly be written that take
advantages of predicate of multiple dispatch similar to our
decomposition.

The functional computations that result from our traversal
organization are similar to attribute grammars (Knuth 1968).
Our augmentors allow computation of inherited attributes,
while other function objects can be used to synthesize at-
tributes. Since our library is written in Java, traversal com-
putation is similar to Reference Attribute Grammars (Hedin
2000) as we allow any Java value to be passed between
traversal functions. Using our traversal function program-
mers must compute their own attributes, though our library
could be used as a lower level implementation language for
attribute evaluation.

The traversal and control found in DemeterF are clearly
related to ideas from Adaptive Programming (AP) (Lieber-
herr 1996). AP specifies traversal computation using a do-
main specific strategy language (where-to-go) for use with
visitors (what-to-do). Strategies are very expressive, com-
bining static class descriptions and dynamic instance con-
ditions (generally type existence) to control the extent of
visitor method execution. A static description of the class
hierarchy is used to guide dynamic traversal execution (Or-
leans and Lieberherr 2001) or static traversal method gener-
ation (Lieberherr et al. 2004). Besides removing the need for
mutation in traversals, DemeterF allows only a static subset
of traversal control found in other Demeter related tools. As

9 2008/4/28

class LitEval extends Eval{
Value combine(IntLit lit, int i){ return new IntV(i); }
Value combine(BoolLit lit, boolean b){ return new BoolV(b); }

}

class ExpEval extends LitEval{
Value combine(AddExp e, IntV l, IntV r){ return l.add(r); }
Value combine(MultExp e, IntV l, IntV r){ return l.mult(r); }
Value combine(NegExp e, IntV l){ return new IntV(-l.val); }
Value combine(LessExp e, IntV l, IntV r){ return l.less(r); }
Value combine(AndExp e, BoolV l, BoolV r){ return l.and(r); }

Value combine(IfExp f, BoolV c, Exp t, Exp e, Env<Value> env)
{ return eval((c.val?t:e), env); }

}

class MethodEval extends VarEval{
ClassMethList mthds;
MethodEval(ClassList c){ /* ... */ }

Value combine(CallExp c, ObjV v, SymMethExp m, ValueList args, Env<Value> env){
MethDesc meth = mthds.findMethod(v.type, m.id);
Env<Value> nenv = empty.push(v.fields.env())

.push(v).push(args.env());
return eval(meth.body, nenv);

}
Value combine(AddrExp a, int addr, Env<Value> env)
{ return env.get(addr); }

Value combine(RevDef rd, Value v, RevDefRest rst, Env<Value> env)
{ return eval(rst.rest, env.push(v)); }

Value combine(Return r, Value v){ return v; }
}

Figure 21. Evaluator Traversal Classes

traversals produce values, we limit control to eliminate pos-
sible typing issues at runtime.

Functional Visitors in DJ (Wu et al. 2003) are the most
similar AP tool, though this is mainly because they are also
functional. Functional visitors have methods that return val-
ues and a single combine method that is used to combine
all sub-traversal values at each portion of the traversal, simi-
lar to SYB type-unifying transformations. Visitor methods
all return the type Object while the combine method
takes an Object array as an argument. Because our func-
tion objects can be written with more specific types, traver-
sal can be statically verified. Our traversal decomposition is
more flexible allowing separate combine methods for differ-
ent parts of the traversal.

7. Conclusion and Future Work
We have introduced an innovative functional abstraction that
merges ideas from structure shy and functional program-
ming to support OO traversals. Traversal computation is de-
composed into three function objects and a control function,
which allow programmers to leverage the power and flexibil-
ity of OOP to write mutation free algorithms. Our new ab-
straction is supported by a Java library, called DemeterF, that
uses reflection to implement data structure traversal and mul-
tiple argument dispatch for method execution. Our library
provides a rich set of classes and default function objects
that support structure shy programming without language or
data structure changes.

In the future we will work towards proving type safety for
our traversals and exploring more complex traversal control
specifications. In addition we would like to consider alter-
native implementation techniques to enhance performance
such as static code generation or traversal optimizations.

Acknowledgment: We would like to thank Ralf Lämmel for
helpful comments on earlier versions of our work.

References
Bryan Chadwick. DemeterF library and examples. Website,

2008. http://www.ccs.neu.edu/home/chadwick/
demeterf/.

Curtis Clifton, Gary T. Leavens, Craig Chambers, and Todd D.
Millstein. Multijava: modular open classes and symmetric mul-
tiple dispatch for java. In OOPSLA, pages 130–145, 2000.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides.
Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Addison-Wesley, 1995.

Görel Hedin. Reference attributed grammars. Informatica (Slove-
nia), 24(3), 2000.

Donald E. Knuth. Semantics of context-free languages. Theory
of Computing Systems, 2(2):127–145, June 1968. URL http:
//dx.doi.org/10.1007\%2FBF01692511.

R. Lämmel, E. Visser, and J. Visser. The essence of strate-
gic programming, 2004. URL citeseer.ist.psu.edu/
lammel02essence.html.

10 2008/4/28

R. Lämmel and J. Visser. Typed Combinators for Generic Traver-
sal. In Proc. Practical Aspects of Declarative Programming
PADL 2002, volume 2257 of LNCS, pages 137–154. Springer-
Verlag, January 2002.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate: a
practical design pattern for generic programming. volume 38,
pages 26–37. ACM Press, March 2003. Proceedings of the
ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI 2003).

Ralf Lämmel and Simon Peyton Jones. Scrap more boilerplate:
reflection, zips, and generalised casts. In Proceedings of the
ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP 2004), pages 244–255. ACM Press, 2004.

Ralf Lämmel and Simon Peyton Jones. Scrap your boilerplate
with class: extensible generic functions. In Proceedings of the
ACM SIGPLAN International Conference on Functional Pro-
gramming (ICFP 2005), pages 204–215. ACM Press, September
2005.

Karl J. Lieberherr. Adaptive Object-Oriented Software: The Deme-
ter Method with Propagation Patterns. PWS Publishing Com-
pany, Boston, 1996. URL http://www.ccs.neu.edu/
research/demeter/biblio/dem-book.html. 616
pages, ISBN 0-534-94602-X.

Karl J. Lieberherr, Boaz Patt-Shamir, and Doug Orleans. Traversals
of object structures: Specification and efficient implementation.
ACM Trans. Program. Lang. Syst., 26(2):370–412, 2004.

Todd Millstein. Practical predicate dispatch. SIGPLAN Not., 39
(10):345–364, 2004. ISSN 0362-1340.

Doug Orleans and Karl J. Lieberherr. DJ: Dynamic Adaptive Pro-
gramming in Java. In Reflection 2001: Meta-level Architec-
tures and Separation of Crosscutting Concerns, Kyoto, Japan,
September 2001. Springer Verlag. 8 pages.

Johan Ovlinger and Mitchell Wand. A language for specifying re-
cursive traversals of object structures. In OOPSLA ’99: Proceed-
ings of the 14th ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications, pages 70–
81, New York, NY, USA, 1999. ACM Press. ISBN 1-58113-
238-7.

Jens Palsberg and C. Barry Jay. The essence of the visitor pattern.
In COMPSAC ’98: Proceedings of the 22nd International Com-
puter Software and Applications Conference, Washington, DC,
USA, 1998. ISBN 0-8186-8585-9.

The Demeter Group. The DemeterJ website.
http://www.ccs.neu.edu/research/demeter,
2007.

Pengcheng Wu, Shriram Krishnamurthi, and Karl Lieberherr.
Traversing recursive object structures: The functional visitor in
demeter. In AOSD 2003, Software engineering Properties for
Languages and Aspect Technologies (SPLAT) Workshop, 2003.

11 2008/4/28

