
Hygienic Macros for ACL2

Carl Eastlund and Matthias Felleisen

{cce,matthias}@ccs.neu.edu
Northeastern University

Boston, MA, USA

Abstract. ACL2 is a theorem prover for a purely functional subset of
Common Lisp. It inherits Common Lisp’s unhygienic macros, which are
used pervasively to eliminate repeated syntactic patterns. The lack of
hygiene means that macros do not automatically protect their producers
or consumers from accidental variable capture. This paper demonstrates
how this lack of hygiene interferes with theorem proving. It then explains
how to design and implement a hygienic macro system for ACL2. An
evaluation of the ACL2 code base shows the potential impact of this
hygienic macro system on existing libraries and practices.

1 Unhygienic Macros Are Not Abstractions

ACL2 [1] is a verification system that combines a first-order functional subset of
Common Lisp with a first-order theorem prover over a logic of total functions.
It has been used to model and verify large commercial hardware and software
artifacts. ACL2 supports functions and logical statements over numbers, strings,
symbols, and s-expressions. Here is a sample program:

(defun double (x) (+ x x))

(defthm double⇒evenp (implies (integerp x) (evenp (double x))))

The defun form defines double, a function that adds its input to itself. The
defthm form defines double⇒evenp, a conjecture stating that an integer input to
double yields an even output. The conjecture is implicitly universally quantified
over its free variable x. ACL2 validates double⇒evenp as a theorem, using the
definition of double and axioms about implies, integerp, and evenp.

From Common Lisp, ACL2 inherits macros, which provide a mechanism for
extending the language via functions that operate on syntax trees. According to
Kaufmann and Moore [2], “one can make specifications more succinct and easy
to grasp . . . by introducing well-designed application-specific notation.” Indeed,
macros are used ubiquitously in ACL2 libraries: there are macros for pattern
matching; for establishing new homogenous list types and heterogenous structure
types, including a comprehensive theory of each; for defining quantified claims
using skolemization in an otherwise (explicit) quantifier-free logic; and so on.

In the first-order language of ACL2, macros are also used to eliminate re-
peated syntactic patterns due to the lack of higher-order functions:

2 Carl Eastlund and Matthias Felleisen

(defmacro defun-map (map-fun fun)
‘(defun ,map-fun (xs)

(if (endp xs)
nil
(cons (,fun (car xs)) (,map-fun (cdr xs))))))

This macro definition captures the essence of defining one function that applies
another pointwise to a list. It consumes two inputs, map-fun and fun, representing
function names; the body constructs a suitable defun form. ACL2 expands uses
of defun-map, supplying the syntax of its arguments as map-fun and fun, and
continues with the resulting function definition. Consider the following term:

(defun-map map-double double)

Its expansion fills the names map-double and double into defun-map’s template:

(defun map-double (xs)
(if (endp xs)

nil
(cons (double (car xs)) (map-double (cdr xs)))))

Unfortunately, ACL2 macros are unhygienic [3], meaning they do not pre-
serve the meaning of variable bindings and references during code expansion.
The end result is accidental capture that not only violates a programmer’s intu-
ition of lexical scope but also interferes with logical reasoning about the program
source. In short, macros do not properly abstract over syntax.

To make this concrete, consider the or macro, which encodes both boolean
disjunction and recovery from exceptional conditions, returning the second value
if the first is nil:

(defthm excluded-middle (or (not x) x))

(defun find (n xs) (or (nth n xs) 0))

The first definition states the law of the excluded middle. Since ACL2 is based
on classical logic, either (not x) or x must be true for any x. The second defines
selection from a list of numbers: produce the element of xs at index n, or return
0 if nth returns nil, indicating that the index is out of range.

A natural definition for or duplicates its first operand:

(defmacro or (a b) ‘(if ,a ,a ,b)) (1)

This works well for excluded-middle, but the expanded version of find now tra-
verses its input twice, doubling its running time:

(defun find (n xs) (if (nth n xs) (nth n xs) 0))

Macro users should not have to give up reasoning about their function’s running
time. Consequently, macros should avoid this kind of code duplication.

The next logical step in the development of or saves the result of its first
operand in a temporary variable:

(defmacro or (a b) ‘(let ((x ,a)) (if x x ,b))) (2)

Hygienic Macros for ACL2 3

This macro now produces efficient and correct code for find. Sadly though, the
expanded form of excluded-middle is no longer the expected logical statement:

(defthm excluded-middle (let ((x (not x))) (if x x x)))

The or macro’s variable x has captured excluded-middle’s second reference to x.
As a result, the conjecture is now equivalent to the statement (not x).

ACL2 resolves this issue by dealing with the or macro as a special case.
For symbolic verification, or expands using code duplication. For execution, it
expands by introducing a fresh variable. The regular macro language of ACL2
does not come with the same expressive power, however. Allowing the creation of
fresh variables would introduce uninterned symbols that violate ACL2’s axioms
and thus corrupt its carefully crafted logical foundation; allowing a separation of
executable behavior from the logical semantics would also invite unsoundness.

The case-match macro, also provided with ACL2, does not have any such
special cases. This macro is used for pattern matching and case dispatch. Its
implementation is designed to work around ACL2’s lack of hygiene: the macro’s
expansion never binds any temporary variables. Here is an example use of case-
match to destructure a 3-element list:

(let ((x (quote (1 2 3))))
(case-match x ((a b c) (list a b c))))

The macro expands into the following code:

(let ((x (quote (1 2 3))))
(if (if (consp x)

(if (consp (cdr x))
(if (consp (cdr (cdr x)))

(eq (cdr (cdr (cdr x))) nil)
nil)

nil)
nil)

(let ((a (car x)) (b (car (cdr x))) (c (car (cdr (cdr x)))))
(list a b c))

nil))

Note that the input to case-match is a variable. The macro requires that the user
bind the input to a variable, because the input is duplicated many times in the
macro’s output and the macro cannot safely bind a variable itself. Applications
of car and cdr to walk down the input list are duplicated for the same reason;
as a result, the size of the output increases quadratically.

In a hygienic system, case-match would be able to safely bind temporary
variables in its expanded form. Thus, the user would not need to explicitly bind
the input to case-match to a variable:

(case-match (quote (1 2 3)) ((a b c) (list a b c)))

This also makes case-match available for use by other macros. In ACL2’s unhy-
gienic macro system, other macros cannot safely bind a variable to store case-
match’s input without risking unintended capture.

4 Carl Eastlund and Matthias Felleisen

Furthermore, the intermediate results of car and cdr could be bound to tem-
porary variables, yielding fewer function calls in the expanded code. Here is the
expansion of the above use of case-match produced by one possible implemen-
tation in a hygienic macro system:

(let ((x0 (quote (1 2 3))))
(flet ((fail0 () nil))

(if (consp x0)
(let ((x1 (car x0)) (y1 (cdr x0)))

(if (consp y1)
(let ((x2 (car y1)) (y2 (cdr y2)))

(if (consp y2)
(let ((x3 (car y2)) (y3 (cdr y2)))

(if (eq y3 nil)
(let ((a x1) (b x2) (c x3)) (list a b c))
(fail0))))

(fail0)))
(fail0))

(fail0))))

This version of case-match uses temporary variables to perform each car and
cdr only once, producing output with a linear measure.

In general, macro writers tread a fine line. Many macros duplicate code to
avoid introducing a variable that might capture bindings in the source code.
Others introduce esoteric temporary names to avoid accidental capture. None
of these solutions is universal, though. Finding itself in the same place, the
Scheme community introduced the notion of hygienic macros [3–5]. This paper
presents an adaptation of hygienic macros to ACL2. It motivates the design and
the ACL2-specific challenges, sketches an implementation, and finally presents
a comprehensive evaluation of the system vis-a-vis the ACL2 code base.

2 The Meaning of Hygiene for ACL2

Hygienic macro systems ensure that variables in macro-generated code respect
the intended lexical scope of the program. Hence, our first step is to analyze the
notion of lexical scope in ACL2 and to formulate appropriate goals and policies
for the adaptation of hygienic expansion. This section presents the design goals
and interprets them in the context of ACL2.

2.1 Design Goals

Our hygienic macro expander is designed to observe four key principles.
Referential transparency means that variables derive their meaning from

where they occur and retain that meaning throughout the macro expansion
process. Specifically, variable references inserted by a macro refer to bindings in-
serted by the macro or to bindings apparent at its definition site. Symmetrically,

Hygienic Macros for ACL2 5

variable references in macro arguments refer to bindings apparent at the macro
call site. Following tradition, a hygienic macro system comes with a disciplined
method for violating the hygiene condition on individual variables as needed.

Next, separate compilation demands that libraries can be expanded, verified,
and compiled once and loaded many times. There is no need to re-expand, re-
verify, or re-compile a library each time it is used in a new context.

Thirdly, we preserve logical soundness. We do not change the logical axioms
of ACL2, nor its verification system or compiler. Our few changes to its runtime
system are made carefully to observe ACL2’s existing axioms. Existing reasoning
in the logic of ACL2 remains valid in our system, and execution remains in sync
with symbolic reasoning.

Finally, source compatibility means that most well-behaved macros continue
to function as before. When the revised expansion process affects the behavior
of an existing program, the changes are due to a potentially flawed macro.

Unfortunately, we are not able to provide a formal statement of correctness
of our macro system with respect to these principles. The correctness of hygienic
macros is an open research problem; early proof attempts have since been shown
to be flawed. The only known proof of correctness of a hygienic macro system [6]
does not support such features as recursive macros, case dispatch during macro
expansion, or decomposing lists of arbitrary length during expansion.

2.2 Reinterpreting ACL2

Our hygienic macro system redefines the existing defmacro form in ACL2. We
do not introduce hygienic macros as a separate mechanism alongside unhygienic
macros because hygiene is a property of an entire macro system, rather than a
property of individual macro definitions. The implementation of hygiene requires
the collaboration of all macros to track the scope of variables; expanding a single
macro unhygienically can ruin the benefits of hygiene for all other macros.

Figure 1 specifies the essential core of ACL2. A program is a sequence of
definitions. In source code, any definition or expression may be replaced by
a macro application; individual functions may be defined outside of mutual-
recursion; and string or number literals do not require an explicit quote. The
grammar is written in terms of symbols (sym), strings (str), and numbers (num).
A sequence of elements of the form a is denoted −→a , or −→a n when its length is
significant. We use this core language to explain ACL2-specific challenges to
hygienic macro expansion.
Lexical Bindings: ACL2 inherits Common Lisp’s namespaces: function and
variable bindings are separate and cannot shadow each other. The position of
a variable reference determines its role. In an expression position, a variable
refers to a value, in application position to a function or macro. For example,
the following code uses both kinds of bindings for car:

(let ((car (car x))) (car car))

6 Carl Eastlund and Matthias Felleisen

def = (mutual-recursion
−−−−−−−−−−−−−−−−−→
(defun sym (−−→sym) exp)) mutually recursive functions

| (defmacro sym (−−→sym) exp) macro definition

| (defthm sym exp
−−−−−−−−−−−−→
(sym

−−−−−−−→
(sym exp))) conjecture with proof hints

| (include-book str) library import

| (encapsulate (
−−−−−−−−→
(sym num))

−→
def) definition block

| (local def) local definition

exp = sym variable reference
| (sym −→exp) function call

| (let (
−−−−−−−→
(sym exp)) exp) lexical value bindings

| (flet (
−−−−−−−−−−−−→
(sym (−−→sym) exp)) exp) lexical function bindings

| (quote sexp) literal value

sexp = num | str | sym | (−−→sexp) s-expression

Fig. 1. Abridged syntax of fully-expanded ACL2 programs.

Hygienic expansion must track both function and variable bindings for each
possible reference. After all, during expansion, the role of a symbol is unknown
until its final position in the expanded code is determined.

Hygienic expansion must also be able to distinguish macro-inserted lexical
bindings from those in source code or in other macros. With hygienic expansion,
version (2) of the or macro in section 1 should work. For example, the excluded-
middle conjecture should expand as follows:

(defthm excluded-middle (let ((x2 (not x1))) (if x2 x2 x1)))

The macro expander differentiates between the source program’s x1 and the
macro’s x2, as noted by the subscripts; the conjecture’s meaning is preserved.
Function Bindings: Functions bound by flet are substituted into their ap-
plications prior to verification. To prevent unintended capture of free variables
during unhygienic expansion, flet-bound functions may not refer to enclosing
bindings. Consider the following expression that violates this rule:

(let ((five 5))
(flet ((add5 (x) (+ five x))) ;; illegal reference to five, bound to 5

(let ((five "five"))
(add5 0))))

Under unhygienic expansion, the reference to five in add5 would be captured:

(let ((five 5))
(let ((five "five"))

(let ((x 0)) (+ five x)))) ;; five is now bound to "five"

Hygienic macro expansion allows us to relax this restriction, as lexical bindings
can be resolved before substitution of flet-bound functions. The same expression
expands as follows:

Hygienic Macros for ACL2 7

(let ((five1 5))
(let ((five2 "five"))

(let ((x 0)) (+ five1 x))))

Quantification: ACL2 conjectures are implicitly universally quantified:

;; claim: ∀x(x > 0 ⇒ x ≥ 0)
(defthm non-negative (implies (> x 0) (≥ x 0)))

Here the variable x is never explicitly bound, but its scope is the body of the
defthm form. ACL2 discovers free variables during the expansion of conjectures
and treats them as if they were bound.

This raises a question of how to treat free variables inserted by macros into
conjectures. Consider the following definitions:

(defmacro imply (var) ‘(implies x ,var))

(defthm x⇒x (imply x))

The body of x⇒x expands into (implies x2 x1), with x1 from x⇒x and x2 from im-
ply. In x⇒x, x is clearly quantified by defthm. In the template of imply, however,
there is no apparent binding for x. Therefore, the corresponding variable x2 in
the expanded code must be considered unbound. Enforcing this behavior yields
a new design rule: macros must not insert new free variables into conjectures.

We must not overuse this rule, however, as illustrated by the macro below:

(defmacro disprove (name body) ‘(defthm name (not ,body)))

(disprove x=x+1 (= x (+ x 1)))

Here we must decide what the apparent binding of x is in the body of x=x+1.
In the source syntax, there is nothing explicit to suggest that x is a bound or
quantified variable, but during expansion, the macro disprove inserts a defthm
form that captures x and quantifies over it. On one hand, allowing this kind
of capture violates referential transparency. On the other hand, disallowing it
prevents abstraction over defthm, because of the lack of explicit quantification.

To resolve this dilemma, we allow defthm to quantify over variables from just
a single source—surface syntax or a macro. This permits the common macros
that expand into defthm, but rejects many cases of accidental quantification, a
source of bugs in the ACL2 code base. A more disruptive yet sounder alternative
would be to introduce explicit quantification into ACL2.
Definition Scope: ACL2 performs macro expansion, verification, and com-
pilation on one definition at a time. Forward references are disallowed, and no
definition may overwrite an existing binding.

Nevertheless, just as hygiene prevents lexical bindings from different sources
from shadowing each other, it also prevents definitions from different sources
from overwriting each other.

Consider the following macro for defining a semigroup based on a predicate
recognizing a set and a closed, associative operation over the set:

8 Carl Eastlund and Matthias Felleisen

(defmacro semigroup (pred op)
‘(encapsulate ()

(defthm closed
(implies (and (,pred a) (,pred b)) (,pred (,op a b))))

(defthm associative
(implies (and (,pred a) (,pred b) (,pred c))

(equal (,op a (,op b c)) (,op (,op a b) c))))))

The semigroup macro takes two function names as arguments and proves that
they form a semigroup. The name, number, and form of definition used in the
proof is not part of the macro’s interface. In order to leave these names free for
reuse, such as in subsequent reuses of the semigroup macro, they must not be
visible outside the individual macro application.

(semigroup integerp +)
(semigroup stringp string-append)

Macros must be able to use defined names that originate outside them, how-
ever. For instance, the monoid macro uses the previously defined semigroup
macro to establish a closed, associative operation with an identity element.

(defmacro monoid (pred fun zero)
‘(encapsulate ()

(semigroup ,pred ,fun)
(defthm identity

(implies (,pred a)
(and (equal (,fun ,zero a) a) (equal (,fun a ,zero) a))))))

(monoid rationalp ∗ 1)

Macros frequently rely on prior definitions; therefore these definitions must re-
main visible to the expanded form of macros.

Because prior definitions are visible inside macros, macros must not redefine
any name that is visible at their definition. Such a redefinition would allow a
logical inconsistency, as the macro would be able to refer to both the old and new
meanings for the defined name. The following example shows how redefinition
could be used to prove (f) equal to both t and nil.

(defun f () t)

(defmacro bad ()
‘(encapsulate ()

(defthm f=t (equal (f) t))
(defun f () nil)
(defthm f=nil (equal (f) nil))))

Our policy for the scope of definitions during hygienic expansion is therefore
three-fold. First, defined names from inside macros are not externally visible.
Second, macros may refer to any name that is visible at their definition. Third,
macros may not redefine any name that is visible at their definition.

Hygienic Macros for ACL2 9

Encapsulated Abstractions: The encapsulate form in ACL2 delimits a block
of definitions. Definitions are exported by default; these definitions represent the
block’s constraint, describing its logical guarantees to the outside. Definitions
marked local represent a witness that can be used to verify the constraint, but
they are not exported.

For example, the following block exports a constraint stating that 1 ≤ 1:

(encapsulate ()
(local (defthm x≤x (≤ x x)))
(defthm 1≤1

(≤ 1 1) ;; use the following hint:
(x≤x (x 1))))

The local conjecture states that (≤ x x) holds for all values of x. The conjecture
1≤1 states that (≤ 1 1) holds; the subsequent hint tells ACL2 that the previously
verified theorem x≤x is helpful, with 1 substituted for x.

Once the definitions in the body of an encapsulate block have been verified,
ACL2 discards hints and local definitions (the witness) and re-verifies the re-
maining definitions (the constraint) in a second pass. The end result is a set of
exported logical rules with no reference to the witness. Local theorems may not
be used in subsequent hints, local functions and local macros may no longer be
applied, and local names are available for redefinition.

An encapsulate block may have a third component, which is a set of con-
strained functions. The header of the encapsulate form lists names and arities
of functions defined locally within the block. The function names are exported
as part of the block’s constraint; their definitions are not exported and remain
part of the witness.

The following block exports a function of two arguments whose witness per-
forms addition, but whose constraint guarantees only commutativity:

(encapsulate ((f 2))
(local (defun f (x y) (+ x y)))
(defthm commutativity (equal (f x y) (f y x))))

Definitions following this block can refer to f and reason about it as a commu-
tative function. Attempts to prove it equivalent to addition fail, however, and
attempts to call it result in a run-time error.

Our hygienic macro system preserves the scoping rules of encapsulate blocks.
Furthermore, it enforces that names defined in the witness are not visible in the
constraint, ensuring that a syntactically valid encapsulate block has a syntac-
tically valid constraint prior to verification. Our guarantee of referential trans-
parency also means that local names in exported macros cannot be captured.
For instance, the following macro m constructs a reference to w:

(encapsulate ()
(local (defun w (x) x))
(defmacro m (y) ‘(w ,y)))

(defun w (z) (m z)) ;; body expands to: (w z)

10 Carl Eastlund and Matthias Felleisen

When a new w is defined outside the block and m is applied, the new binding
does not capture the w from m. Instead, the macro expander signals a syntax
error, because the inserted reference is no longer in scope.
Books: A book is the unit of ACL2 libraries: a set of definitions that is verified
and compiled once and then reused. Each book acts as an encapsulate block
without constrained functions; it is verified twice—once with witness, and once
for the constraint—and the constraint is saved to disk in compiled form. When a
program includes a book, ACL2 incorporates its definitions, after ensuring that
they do not clash with any existing bindings.

ACL2 allows an exception to the rule against redefinition that facilitates
compatibility between books. Specifically, a definition is considered redundant
and skipped, rather than rejected, if it is precisely the same as an existing one.
If two books contain the same definition for a function f, for instance, the books
are still compatible. Similarly, if one book is included twice in the same program,
the second inclusion is considered redundant.

This notion of redundancy is complicated by hygienic macro expansion. Be-
cause hygienic expanders generally rename variables in their output, there is no
guarantee that identical source syntax expands to an identical compiled form.
As a result, redundancy becomes a question of α-equivalence instead of simple
syntactic equality. Coalescing redundant definitions in compiled books would
thus require renaming all references to the second definition. This code rewrit-
ing defeats the principle of separate compilation.

Rather than address redundancy in its full generality, we restrict it to the
case of loading the same book twice. If a book is loaded twice, the new definitions
will be syntactically equal to the old ones because books are only compiled once.
That is, this important case of redundancy does not rely on α-equivalence, and
thus allows us to load compiled books unchanged.
Macros: Macros use a representation of syntax as their input and output. In the
existing ACL2 system, syntax is represented using primitive data types: strings
and numbers for literals, symbols for variables, and lists for sequences of terms.

Hygienic macro systems must annotate syntax with details of scope and
macro expansion. Kohlbecker et al. [3] incorporate these annotations into the
existing symbol datatype; in contrast, Dybvig et al. [5] introduce a separate
class of syntax objects. To preserve existing ACL2 macros, we cannot introduce
an entirely new data type; instead, we adopt the former method.

In adapting the symbol datatype, we must be sure to preserve the axioms of
ACL2. On one hand, it is an axiom that any symbol is uniquely distinguished
by the combination of its name and its package—an additional string used for
manual namespace management. On the other hand, the hygienic macro ex-
pander must distinguish between symbols sharing a name and a package when
one originates in the source program and another is inserted by a macro. We re-
solve this issue by leaving hygienic expansion metadata transparent to the logic:
only macros and unverified, program mode functions can distinguish between
two symbols with the same name and package. Conjectures and verified, logic
mode functions cannot make this distinction, i.e., ACL2’s axioms remain valid.

Hygienic Macros for ACL2 11

The symbols inserted by macros must derive their lexical bindings from the
context in which they appear. To understand the complexity of this statement,
consider the following example:

(defun parse-compose (funs arg)
(if (endp funs) arg ‘(,(car funs) (compose ,(cdr funs) ,arg))))

(defmacro compose (funs arg) (parse-compose funs arg))

(compose (string-downcase symbol-name) (quote SYM))
;; ⇒ (string-downcase (compose (symbol-name) (quote SYM)))

The auxiliary function parse-compose creates recursive references to compose,
but compose is not in scope in parse-compose. To support this common macro
idiom, we give the code inserted by macros the context of the macro’s definition
site. In the above example, the symbol compose in parse-compose’s template does
not carry any context until it is returned from the compose macro, at which point
it inherits a binding for the name. This behavior allows recursive macros with
helper functions, at some cost to referential transparency: the reference inserted
by parse-compose might be given a different meaning if used by another macro.

This quirk of our design could be alleviated if these macros were rewritten
in a different style. If the helper function parse-compose accepted the recursive
reference to compose as an argument, then the quoted symbol compose could be
passed in from the definition of compose itself, where it has meaning:

(defun parse-compose (compose funs arg)
(if (endp funs) arg ‘(,(car funs) (,compose ,(cdr funs) ,arg))))

(defmacro compose (funs arg) (parse-compose (quote compose) funs arg))

Symbols in macro templates could then take their context from their original
position, observing referential transparency. However, to satisfy our fourth design
goal of source compatibility and accommodate common ACL2 macro practice,
our design does not mandate it.
Breaking Hygiene: There are some cases where a macro must insert variables
that do not inherit the context of the macro definition, but instead intentionally
capture—or are captured by—variables in the source program. For instance, the
defun-map example can be rewritten to automatically construct the name of the
map function from the name of the pointwise function:

(defmacro defun-map (fun)
(let ((map-fun-string (string-append "map-" (symbol-name fun))))

(let ((map-fun (in-package-of map-fun-string fun)))
‘(defun ,map-fun (xs)

(if (endp xs)
nil
(cons (,fun (car xs)) (,map-fun (cdr xs))))))))

(defun-map double) ;; expands to: (defun map-double (xs) . . .)

12 Carl Eastlund and Matthias Felleisen

state = 〈str , bool , bool , ren, table, {−−→sym}, {
−→
key}〉 expansion state

table = [−−−−−−−→sym 7→ rec] def. table
rec = 〈sig , fun, thm〉 def. record
sig = fun(bool ,num) | macro(id ,num) | thm({−−→sym}) | special def. signature

funn = · | −−→sexpn → sexp n-ary function
thm = · | · · · theorem formula

sexp = num | str | id | cons(sexp, sexp) s-expression

id = sym | id(sym, {
−−−→
mark }, ren, ren) identifier

sym = sym(str , str , {
−−−→
mark }) symbol

bool = t | nil boolean

ren = [
−−−−−−−→
key 7→ sym] renaming

key = 〈sym, {
−−−→
mark }〉 identifier key

mark = 〈str ,num〉 mark

Fig. 2. Representation of expansion state and s-expressions.

In this macro, the name double comes from the macro caller’s context, but map-
double is inserted by the macro itself. The macro’s intention is to bind map-double
in the caller’s context, and the caller expects this name to be bound.

This implementation pattern derives from the Common Lisp package system.
Specifically, the in-package-of function builds a new symbol with the given string
as its name, and the package of the given symbol. In our example, map-double
is defined in the same package as double.

We co-opt the same pattern to transfer lexical context. Thus the name map-
double shares double’s context and is visible to the macro’s caller. Macro writers
can use in-package-of to break the default policy of hygiene.

3 Hygienic Macro Expansion

The ACL2 theorem prover certifies saved books and verifies interactive programs
using a process of iteratively expanding, verifying, and compiling each term in
turn. The expansion process takes each term and produces a corresponding, fully-
expanded definition; it also maintains and updates an expansion state recording
the scope and meaning of existing definitions so far. Our hygienic macro system
requires these changes: an augmented representation of unexpanded terms and
expansion state; an adaptation of Dybvig et al.’s expansion algorithm [5]; and
new versions of ACL2’s primitives that manipulate the new forms of data while
satisfying existing axioms.

Figure 2 shows the definition of expansion states. An expansion state contains
seven fields. The first names the source file being expanded. The second and
third determine expansion modes: global versus local definition scope and logic
mode versus program mode. Fields four and five provide mappings on the set of
compiled definitions; the fourth is added for hygienic expansion to map bindings

Hygienic Macros for ACL2 13

in source code to unique compiled names, and the fifth is ACL2’s mapping from
compiled names to the meaning of definitions. The sixth field is the subset of
compiled definition names that are exported from the enclosing scope, and the
seventh is the set of constrained function names that have been declared but not
yet defined; we update this final field with hygienic metadata to properly track
macro-inserted bindings.

A definition table maps each definition to a record describing its signature,
executable behavior, and logical meaning. We use ACL2’s existing definition
signatures; we augment macro signatures to carry an identifier representing the
lexical context of the macro’s definition. An executable function implements a
function or macro, and a logical formula describes a function or theorem equa-
tionally; we do not change either representation.

Figure 2 also shows the low-level representation of s-expressions. Symbols
and sequences as shown in figure 1 are represented using the sym and cons con-
structors, respectively. An s-expression is either a number, a string, an identifier,
or a pair of s-expressions. Numbers and strings are unchanged. The most im-
portant difference to a conventional representation concerns identifiers, which
extend symbols to include information about expansion. An identifier is either a
symbol or an annotated symbol. A symbol has three components: its name, its
package, and a set of inherent marks used to support unique symbol generation.
Annotated symbols contain a symbol, a set of latent marks used to record macro
expansion steps, and two renamings; unlike standard identifier representations,
we must differentiate function and value bindings. We represent booleans with
symbols, abbreviated t and nil.

Identifiers represent variable names in unexpanded programs; unique symbol
names are chosen for variables in fully expanded programs. The mapping between
the two is mediated by keys. Each function or value binding’s key combines
the unique symbol corresponding to the shadowed binding—or the unmodified
symbol if the name has no prior binding—and the (latent) marks of the identifier
used to name the binding. A renaming maps keys to their corresponding symbols.

A mark uniquely identifies an event during macro expansion: a variable bind-
ing or single macro application. Each one comprises its source file as a string—
to distinguish marks generated during the compilation of separate books, in
an adaptation of Flatt’s mechanism for differentiating bindings from separate
modules [7]—as well as a number chosen uniquely during a single session.

This representation of s-expressions is used both for syntax during macro
expansion and for values during ordinary runtime computation. Hence, ACL2
functions that deal with symbols must be updated to work with identifiers in a
way that observes the axioms of regular symbols. The basic symbol observations
name, package, eq, and symbolp are defined to ignore all identifier metadata. The
symbol constructor intern produces a symbol with empty lexical context, while
in-package-of copies the context of its second argument.

We also introduce four new identifier comparisons: =b
f , =r

f , =b
v, and =r

v. They
are separated according to the ACL2 function and value namespaces, as signified
by the subscripts, and to compare either binding occurrences or references, as

14 Carl Eastlund and Matthias Felleisen

signified by the superscripts. These procedures do not respect ACL2’s axioms.
They can distinguish between symbols with the same name and package, so we
provide them in program mode only. As such, they may be used in macros as
variable comparisons that respect apparent bindings.

4 Evaluating Hygiene

Our design goals for hygienic ACL2 macros mention four guiding principles:
referential transparency, separate compilation, logical soundness, and source
compatibility. As explained, the macro expansion process preserves referential
transparency by tracking the provenance of identifiers, with two key exceptions:
symbols inserted by macros take their context from the macro definition site
rather than their own occurrence, and conjecture quantification can “capture”
free variables in macro inputs. Furthermore, our representation for compiled
books guarantees separate compilation. We preserve logical soundness by obey-
ing ACL2’s axioms for symbols in operations on identifiers, and by reusing the
existing ACL2 compiler and theorem proving engine. Only the principle of source
compatibility remains to be evaluated.

Our prototype does not support many of the non-macro-related features
of ACL2 and we are thus unable to run hygienic expansion on most existing
books. To determine the degree of compatibility between our system and ex-
isting macros, we manually inspected all 2,954 defmacro forms in the books
provided with ACL2 version 3.6, including the separate package of books accu-
mulated from the ACL2 workshop series. Of these, some 488 nontrivial macros
might be affected by hygiene. The rest of the section explains the details.
Code Duplication: The behavior of macro-duplicated code does not change
with hygienic expansion; however, hygiene encourages the introduction of local
variables in macros and thus avoids duplication. With our system, all 130 code-
duplicating macros can be rewritten to benefit from hygiene.
Variable Comparison: Comparing variable names with eq does not take into
account their provenance in the macro expansion process and can mistakenly
identify two symbols with the same name but different lexical contexts. We found
26 macros in ACL2 that compare variable names for assorted purposes, none of
which are served if the comparison does not respect the variable’s binding. The
new functions =b

f , =r
f , =b

v, and =r
v provide comparisons for variables that respect

lexical context. Once again, the result of eq does not change in our system, so
these macros will function as they have; however, macro writers now have the
option of using improved tools. Each of the 26 macros can be rewritten with
these functions to compare variable names in a way that respects lexical bindings
during macro expansion.
Free Variables: Free variables in macros usually represent some protocol by
which macros take their meaning from their context; i.e., they must be used in a
context where the names in question have been bound. Much like mutable state
in imperative languages, free variables in macros represent an invisible channel
of communication. When used judiciously, they create succinct programs, but

Hygienic Macros for ACL2 15

they can also be a barrier to understanding. Of the 90 macros that insert free
variables, 83 employ such a protocol. Our hygienic macro expander rejects such
macros; they must be rewritten to communicate in an explicit manner.

Five further cases of free variables are forward references, in which a macro’s
body constructs a reference to a subsequent definition. To a macro writer, this
may not seem like a free reference, but it is, due to the scope of ACL2 defini-
tions. Therefore this use of forward references does not satisfy the principle of
referential transparency. These macros must also be rewritten or reordered to
mesh with hygienic macro expansion.

The final two cases of free variables in a macro are, in fact, symptoms of a
single bug. The macro is used to generate the body of a conjecture. It splices
several expressions into a large implication. One of the inputs is named top,
and its first reference in the macro is accidentally quoted—instead of filling in
the contents of the input named top, the macro inserts a literal reference to a
variable named top. By serendipity, this macro is passed a variable named top,
and nothing goes wrong. Were this macro ever to be used with another name, it
would construct the wrong conjecture and either fail due to a mysterious extra
variable or succeed spuriously by proving the wrong proposition. Our hygienic
macro system would have flagged this bug immediately.
Variable Capture: We found 242 instances of variable (85) or definition (157)
names inserted by macros that introduce bindings to the macro’s input or sur-
rounding program. Of the macros that insert definition names, there were 95 that
used in-package-of to explicitly bind names in the package of their input, 44 that
used intern to bind names in their own package, 16 that used hard-coded names
not based on their input at all, and two that used the make-event facility [8] to
construct unique names.

The package-aware macros will continue to function as before due to our
interpretation of in-package-of. As written, the intern-based macros guarantee
neither that the constructed names bind in the context of the input, nor that
they don’t, due to potential package mismatches. Hygienic expansion provides a
consistent guarantee that they don’t, making their meaning predictable. Hard-
coded names in macros will no longer bind outside of the macro itself. These
are the other side of free variable protocols; they must be made explicit to
interoperate with hygiene. The make-event utility allows inspection of the current
bindings to construct a unique name, but nothing prevents that name from
clashing with any subsequent binding. Hygiene eliminates the need to manually
scan the current bindings and guarantees global uniqueness.

Lexical variables account for the other 85 introduced bindings. We discovered
nine whose call sites exploited these bindings as part of an intentional protocol.
These macros can be made hygienic by taking the variable name in question as an
argument, thus making the macro compatible with hygienic expansion, freeing
up a name the user might want for something else, and avoiding surprises if a
user does not know the macro’s protocol.

Of the other 76 macros that bind local variables in the scope of their ar-
guments, 59 attempt to avoid capture. There are 12 that choose long, obscure

16 Carl Eastlund and Matthias Felleisen

Improves
for free

Improves
with work Unchanged

Broken;
improves

Broken;
restores

Code Duplication – 130 – – –
Free variable 2 – – 83 5
Lexical capture 29 47 – 9 –
Definition capture – 2 95 44 16
Variable comparison – 26 – – –

Total 31 205 95 136 21

Fig. 3. Impact of hygienic expansion on nontrivial ACL2 macros.

names; for instance, gensym::metlist (meaning “metlist” in the “gensym” pack-
age), indicating a wish for the Lisp symbol-generating function gensym, which is
not available in ACL2. There is also a convention of adding -do-not-use-elsewhere
or some similar suffix to macro-bound variables; in one case, due to code copy-
ing, a variable named hyp--dont-use-this-name-elsewhere is in fact bound by two
macros in different files. Obscure names are a poor form of protection when they
are chosen following a simple formula, and a macro that binds a hard-coded long
name will never compose properly with itself, as it always binds the same name.

A further 40 macros generate non-capturing names based on a known set of
free variables, and seven more fail with a compile error if they capture a name as
detected by check-vars-not-free. These macros are guaranteed not to capture, but
the latter still force the user to learn the name bound by the macro and avoid
choosing it for another purpose. Some of these macros claim common names,
such as val and x, for themselves.

Finally, we have found 17 macros in the ACL2 books that bind variables and
take no steps to avoid capture. All of the accidentally variable-capturing macros
will automatically benefit from hygienic expansion.
Exceptions: The notable exceptions to hygiene we have not addressed are
make-event, a tool for selective code transformation, and state, a special variable
used to represent mutation and i/o. We have not yet inspected most uses of make-
event in the ACL2 code base, but do not anticipate any theoretical problems in
adapting the feature. For state and similar “single-threaded” objects, our design
must change so as to recognize the appropriate variables and not rename them.
Summary: Figure 3 summarizes our analysis. We categorize each macro by row
according to the type of transformation it applies: code duplication, free variable
insertion, capture of lexical or definition bindings, and variable comparison. We
omit the trivial case of simple alias macros from this table.

We split the macros by column according to the anticipated result of hygienic
expansion. In the leftmost column, we sum up the macros whose expansion is
automatically improved by hygienic expansion. Next to that, we include macros
that work as-is with hygiene, but permit a better definition. In the center, we
tally the macros whose expansion is unaffected. To the right, we list macros
that must be fixed to work with hygienic macro expansion, but whose expansion
becomes more predictable when fixed. In the rightmost column, we list those
macros that must be fixed, yet do not benefit from hygienic expansion.

Hygienic Macros for ACL2 17

Many libraries and built-in features of ACL2 rely on the unhygienic nature
of expansion and use implicit bindings; as a result, our system cannot cope with
every macro idiom in the code base. These macros must be rewritten in our
system. We anticipate that all of the macros distributed with ACL2 can be fixed
straightforwardly by either reordering definitions or adding extra arguments to
macros. However, this process cannot be automated and is a potential source of
new errors. Fortunately, the bulk of macros will continue to work, and we expect
most of them to benefit from hygiene. The frequent use of code duplication,
obscure variable names, and other capture prevention mechanisms shows that
ACL2 users recognize the need for a disciplined approach to avoiding uninten-
tional capture in ACL2 macros.

5 Related Work and Conclusions

ACL2 is not the only theorem prover equipped with a method of syntactic exten-
sions. PVS has macros [9]; however, they are restricted to definitions of constants
that are inlined during the type-checking phase. As a result, preserving the bind-
ing structure of the source program is simple.

The Agda, Coq, Isabelle, and Nuprl theorem provers all support extensible
notation. These include issues of parsing, precedence, and associativity that do
not arise in ACL2’s macros, which are embedded in the grammar of s-expressions.
The notation mechanisms of Agda and Isabelle are limited to “mixfix” operator
definitions [10, 11]. These definitions do not introduce new variable names in
their expansion, so the problem of variable capture does not arise.

Nuprl and Coq have notation systems that permit the introduction of new
binding forms. Nuprl requires each notational definition to carry explicit bind-
ing annotations. These annotations allow Nuprl to resolve variable references
without the inference inherent in hygienic macro systems [12]. The notation sys-
tem of Coq ensures that introduced variables do not capture source program
variables and vice versa [13], although the precise details of this process are
undocumented. Neither Nuprl nor Coq allow case dispatch or self-reference in
notational definitions. Our work combines the predictability of variable scope
present in Nuprl and Coq notation with the expressive power of ACL2 macros.

Hygienic macros have been a standardized part of the Scheme programming
language for over a decade [14]. They have been used to define entire new pro-
gramming languages [15, 16], including an implementation of the runtime com-
ponents of ACL2 in Scheme [17]. These results are feasible because of hygiene
and are facilitated by further advances in macro tools [7, 18].

With hygienic macros, ACL2 developers gain the power to write more trust-
worthy and maintainable proofs using macros. Furthermore, adding a scope-
respecting macro mechanism is a necessary step for any future attempt to make
ACL2 reason about its source programs directly instead of expanded terms. Our
techniques may also be useful in adapting hygienic macros to languages other
than Scheme and ACL2 that have different binding constructs, different scope
mechanisms, multiple namespaces, implicit bindings, and other such features.

18 Carl Eastlund and Matthias Felleisen

At the 2009 ACL2 Workshop’s panel on the future of theorem proving, pan-
elist David Hardin of Rockwell Collins stated a desire for domain-specific lan-
guages in automated theorem proving. This paper is the first of many steps
toward user-written, domain-specific languages in ACL2.

References

1. Kaufmann, M., Manolios, P., Moore, J.S.: Computer-Aided Reasoning: an Ap-
proach. Kluwer Academic Publishers (2000)

2. Kaufmann, M., Moore, J.S.: Design goals of ACL2. Technical report, Computa-
tional Logic, Inc. (1994)

3. Kohlbecker, E., Friedman, D.P., Felleisen, M., Duba, B.: Hygienic macro expansion.
In: Proc. 1986 ACM Conference on LISP and Functional Programming, ACM Press
(1986) 151–161

4. Clinger, W., Rees, J.: Macros that work. In: Proc. 18th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ACM Press (1991)
155–162

5. Dybvig, R.K., Hieb, R., Bruggeman, C.: Syntactic abstraction in Scheme. Lisp
and Symbolic Computation 5(4) (1992) 295–326

6. Herman, D., Wand, M.: A theory of hygienic macros. In: Proc. 17th European
Symposium on Programming, Springer (2008) 48–62

7. Flatt, M.: Composable and compilable macros: you want it when? In: Proc.
7th ACM SIGPLAN International Conference on Functional Programming, ACM
Press (2002) 72–83

8. Kaufmann, M., Moore, J.S.: ACL2 Documentation. (2009) http://userweb.cs.

utexas.edu/users/moore/acl2/current/acl2-doc.html.
9. Owre, S., Shankar, N., Rushby, J.M., Stringer-Calvert, D.W.J.: PVS Language

Reference. (2001) http://pvs.csl.sri.com/doc/pvs-language-reference.pdf.
10. Danielsson, N.A., Norell, U.: Parsing mixfix operators. In: Proc. 20th Interna-

tional Symposium on the Implementation and Application of Functional Lan-
guages, School of Computer Science of the University of Hertfordshire (2008)

11. Wenzel, M.: The Isabelle/Isar Reference Manual. (2010) http://isabelle.in.

tum.de/dist/Isabelle/doc/isar-ref.pdf.
12. Griffin, T.G.: Notational definition—a formal account. In: Proc. 3rd Annual Sym-

posium on Logic in Computer Science, IEEE Press (1988) 372–383
13. The Coq Development Team: The Coq Proof Assistant Reference Manual. (2009)

http://coq.inria.fr/coq/distrib/current/refman/.
14. Kelsey, R., Clinger, W., Rees, J., (Eds.): Revised5 report on the algorithmic lan-

guage Scheme. ACM SIGPLAN Notices 33(9) (1998) 26–76
15. Gray, K., Flatt, M.: Compiling Java to PLT Scheme. In: Proc. 5th Workshop on

Scheme and Functional Programming. (2004) 53–61
16. Tobin-Hochstadt, S., Felleisen, M.: The design and implementation of Typed

Scheme. In: Proc. 35th Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages, ACM Press (2008) 395–406

17. Vaillancourt, D., Page, R., Felleisen, M.: ACL2 in DrScheme. In: Proc. 6th In-
ternational Workshop on the ACL2 Theorem Prover and its Applications. (2006)
107–116

18. Culpepper, R.: Refining Syntactic Sugar: Tools for Supporting Macro Develop-
ment. PhD dissertation, Northeastern University (2010)

