Functional Programming
and Theorem Proving
for Undergraduates

A Progress Report

Carl Eastlund and Matthias Felleisen
Northeastern University

Rex Page
University of Oklahoma

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

History
= Before 2003

* Traditional SE at OU (2-course sequence, 41" yr)

* Process Design Testing/Validation
= 60% 20% 20%

= 2003-2005
= SE course using ACL2 (FDPE 2005 report)
* Process Design Testing/Validation
= 30% 35% 35%

= Successful despite crude programming env

= 2006 - present
= SE course with Dracula/ACL2 environment
= 1styear course at NU using Dracula/ACL2

Functional Programming and Theorem Proving for Undergraduates 2
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Mantra

= Before 2003 ot s
= Traditional SE at O!' "')9\'\03“
= Process .'sx_\\e

s AC\ e \\
. pv\“ c de?’??.g ACL2 (FDPE 2005 report)

= XO Zss Design Testing/Validation
= 30% 35% 35%

= Successful despite crude programming env

= 2006 - present
= SE course with Dracula/ACL2 environment
= {styear course at NU using Dracula/ACL2

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

ACL2

. sqr - Int -> Int
(defun sgr (x)
* x X))

;> All squares are nonnegative.
(defthm sqgr>=0
(implies (integerp X)
(>= (sar x) 0)))

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

ACL2

® 06 Emacs@aeryn.qarl.org -
1
-1:-- prooftree All (1,8 (Prooftree)----6:25AM--

-

ACLZ Version 3.3. Level 1. C(bd "/Users/cce/Desktop/" @
- .
Distributed books directory "/Users/cce/Local/ACLZ/3.3@
& /openmcl32/books/" .

Type :help for help.

Type (good-bye) to quit completely out of ACLZ.

ACLZ !> m
"

~1%% *shell® Bot (25,7) (Shell:run}-—-uE:EEAH-{

o

Functional Programming & Theorem Proving for Undergrads - FDPE 2008
Rex Page / Carl Eastlund / Matthias Felleisen

ACL2

SHGNG) | Emacs{@aeryn.qarl.org)

[

-1:-- prooftree All (1.8) (Prooftree)----6:25AM-4

;3 sqr @ Int => Int
(defun sgr (x)
(* x x))

;3 All squares are nonnegative.
(defthm sqr>=8
(implies (integerp x)
(>= (sqr x) @)))

——:-- sgr.lisp All (11,8) (Lisp)----6:25AM-~--- g

Functional Programming & Theorem Proving for Undergrads - FDPE 2008
Rex Page / Carl Eastlund / Matthias Felleisen

ACL2

® OO0 Emacs@aeryn.qarl.org)
[] DEFTHM SQR>=B ...)
Q.E.D.

-1:** prooftree All (1,8) {(Prooftree)----6:26AM--

(:DEFINITION SOR)
(: FAKE-RUNE-FOR-TYPE-SET NIL)
(:TYPE-PRESCRIPTION NONNEGATIVE-PRODUCTY)

W
S
SOQR=>=0
ACLZ !'»>>Bye. m
: EOF 1
AcLz 15 1
~]1:%* #chall* Bot (144,7) (Shell:run)----6:26AM--

A
T

Functional Programming & Theorem Proving for Undergrads - FDPE 2008
Rex Page / Carl Eastlund / Matthias Felleisen

Dracula

Lrsche

- A5 A METE
ey e e TS LT

k Syntax Q, Run & Stop @ (Start ACL2

sqr.lisp > (defun ..)™ Debug o Check Syn

j7 ear @ Ing=> Int
(defun sgr (x)
(* =))

;; All squares are nonnegative.
(defthm sgr>=0

(implies (integerp x)
(>= (sqr x) 0)))

Welcome to DrScheme, version 4.1 [3m].
Language: Dracula v4.2.

> (sqr 2)

4

>

Dracula v4.2 = 5:2 |:| ﬁ 4

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Dracula

worm.lisp - DrScheme

-
|

L

worm.lisp ¥ (defun ..} ¥ Debug @ Check Syntax Q, Run &% Stop @ | Start ACL2 |
short-worm : Integer Integer Direction -> Worm
Produces a worm without a tail. 8,00

(defun short-worm (x y d)
(make-worm d (make-point x y) nil))

;; worm-turn : Worm Direction -> Worm
;7 Changes the direction a worm faces.
(defun worm-turn (w d)

(make-worm d (worm-head w) (worm-tail w)))

;; worm-move : Worm -> Worm
;+ Moves the worm in the direction it faces.
(defun worm-move (w)
(make-worm
(worm-dir w)
(point+ (worm-head w)
(dir-delta
(worm-dir w)))
(drop-last-point
(cons (worm-head w)
(worm-tail w)))))

Dracula v4.2 ¥

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Dracula

wo

D

worm.lisp ¥ (defun ..) ¥

=

abug @ Check Syntax @, Run V.o Stop @

;; short-worm : Integer Integer Direction -> Worm
;; Produces a worm without a tail.

(defun short-worm (x y d)

(make-worm d (make-point x y) nil))

;7 worm-turn Worm Direction -> Worm
;+ Changes the direction a worm faces.

(defun worm-turn (w d)

(make-worm d (worm-head w) (worm-tail w)))

;; wWorm-move Worm -> Worm

Moves the worm in the direction it faces.
(defun worm-move (w)

(make-worm

(worm-dir w)

ror

(point+ (worm-head w)
(dir-delta

(worm-dir w)))
(drop-last-point

(cons (worm-head w)

(worm-tail w)))))

Dracula v4.2 *

v
314:0 [187,
T

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Dracula

Start ACL2

worm.lisp ¥ (defun .} ¥ Debug @ Check Syntax Q. Run & Stop @

;; short-worm : Integer Integer Direction -> Worm
;; Produces a worm without a tail.
(defun short-worm (x y d)

(make-worm d (make-point x y) nil))

;; worm-turn : Worm Direction -> Worm
;; Changes the direction a worm faces.
(defun worm-turn (w d)

(make-worm d (worm-head w) (worm-tail w)))

;; Moves the worm in the direction it faces.
(defun worm-move (w)
(make-worm
(worm-dir w)
(point+ (worm-head w)
(dir-delta
(worm-dir w)))
(drop-last-point

(cor Jump to Definition
View documentation for cons a

binding cons imported from (planet "language/dracula.sem” ("cce" "dracula.plt” 4))
Draculav4.2 v

435:0 (1%

;; worm-move : Worm -> Worm @.

Functional Programming and Theorem Proving for Undergraduates

FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

11

2 Hals)

Dracula

worm.lisp - DrScheme (@D]

worm.lisp ¥ (defun .} ¥

Debug @ Check Syntax Q Run & Stop @ | Start ACL2)

;; short-worm

;; Produces a worm without a tail.
(defun short-worm (x y d)
(make-worm d (make-point x y) nil))

;7 worm-turn

;; Changes the

(defun worm-tuxr
(make-worm d

;; worm-move :
;; Mowves the wo
(defun worm-mow

(make-worm

(worm-dir w)
{point+ (wox]
(diz
(wo
(drop-last-p|
(cons (wor
(worz

binding cons imported from

Dracula v4.2 ¥

Worm Direction

-~

Integer Integer Direction -> Worm

-> Worm

Jele}

E] @ @ || file:/{/Users/cce/Library/PLT Scheme/planet/300/4.1/cachejcs ¥ - "Cnc;c_:le

» Dracula:ACL2 in Dr
Scheme

search manuals..

top

» 2 Applicative Commaon 248 Lists
Lisp

¥ 2.4 Functions and Macros
24.1 Booleans
242 Symbols
243 Strings
244 Characters
2.4.5 Rational and

Complex Arithmetic

24.6 Bitwise Operations
247 Ordinal Arithmetic

List functions can also be found in the sections on Association Lists, Sets, and
Sequences.

(cons x ¥}

Creates a new pair containing x and y.

24.8 Lists Examples:
249 Association Lists > (cons 1 nil)
2.4.10 Sets (1)
2411 Trees .
-
2.4.12 Sequences Ztl;ons B (eonating)
241310 b2 89
> (cons £ 5)
O this page: (4 . 5)
cons
consp (consp x|

: X

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

£ PIEV up next —

Dracula

worm.lisp ¥ (defun ..) ¥ Rename w to:

Ith a-waorm

1

:; short-worm (Cancel) 0K)

;; Produces a worm without a tail.
(defun short-worm (x y d)
(make-worm d (make-point x y) nil))

;; worm-turn : Worm Direction -> Worm
;: Changes the direction a worm faces.
(defun worm-turn (w d)

;; worm-move : Worm -> Worm

(defun worm-move
(make-worm
(worm-dir
(point+ (worm-he
(dir-del

(worm-di
(drop-last-point
(cons (worm-head
(worm-tail

)

-> Worm

{make-worm d (worm-head w) (worm-tail w)))

;; Moves the worm in the direction it faces.

Iy

Dracula v4.2 *

314:0 1%

P

Functional Programming and Theorem Proving for Undergraduates

FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

13

Dracula

wo

worm.lisp ¥ (defun ..)> Save [ol D

=

ebug @ Check Syntax @ Run & Stop @

;; short-worm : Integer Integer Direction -> Worm
;; Produces a worm without a tail.

(defun short-worm (x y d)

(make-worm d (make-point x y) nil))

;7 worm-turn Worm Direction -> Worm
;+ Changes the direction a worm faces.

(defun worm-turn (w d)

(make-worm d (worm-head w) (worm-tail w)))

;; wWorm-move Worm -> Worm
Moves the worm in the direction it faces.
(defun worm-move (the-worm)

(make-worm

ror

(worm-dir the-worm)

(point+ (worm-head the-worm)
(dir-delta

(worm-dir the-worm)))
(drop-last-point

(cons (worm-head the-worm)

(worm-tail the-worm)))))

Dracula v4.2 *

v
314:0 [187,
T

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Dracula

18.0.0, e lishaDichens

worm lisp ¥ (defun ..) ¥ Debug @ Check Syntax Q_ Run & Stop@ [Start ACL2)

;; short-worm : Integer Integer Direction -> Worm
;» Produces a worm without a tail.
(defun short-worm (x y d)

(make-worm d (make-point x y) nil))

;; worm-turn : Worm Direction -> Worm
;; Changes the direction a worm faces.
(defun worm-turn (w d)

(make-worm d (worm-head w) (worm-tail w)))

;; worm-move : Worm -> Worm
;; Moves the worm in the direction it faces.
(defun worm-move (w)
(make-worm
(worm-dir w)
(point+ (worm-head w)
(dir-delta
(worm-dir w)))
(drop-last-point
(cons (worm-head w)
(worm-tail w)))))

Dracula vd.2 =

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

15

Dracula

am6 sqr.lisp - DrScheme =
sqrlisp ¥ (defun..)¥ Debug @ Check Syntax Q, Run 2 Stop@® [StartACL2 |
 Admit Next) (AdmitAll) { Undolast) (UndoAll) (Save/ Certify) { interrupt Proof)| { Shutdown ACLZ

;7 8gr : Int -> Int

(defun sqgr (x) (< Previous Checkpoint | C MNext Checkpoint >)
(* x x)) (This is the proof-tree window.)
;; All squares are nonnegative. |Welcome to Clozure Common Lisp 2 (@}
(defthm sgr>=0 Version 1.2-r10446M-RC1 2
(implies (integerp x) (DarwinPPC64) !

(>= (sqr x) 0)))
ACL2 Version 3.4 built August 2
12, 2008 09:24:34.

Dracula v4.2 = Copyrlght {C} 2008 2 l
ﬁﬂniversit}? of Texas at Austin :E
L1,
. _Ja

?

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

A NEE S

Dracula

sqr.lisp - DrScheme

=

sgr.lisp > (defun ..)™

i '

(AdmitNext) [AdmitAll) [Undolast |} (UndoAll } (Save/ Certify) [Interrupt Proof) [Shutdown ACL2)
;7 SQr Int -> Int : :
(defun sgr (x) (" < Previous Checkpoint) { Next Checkpoint >
{* x'=x)) { DEFTHM SOQR>=0 ...}
Q.E.D.
;+ All squares are nonnegative. :
(defthm sqr>=0
(implies (integerp x) Q.E.D.
(>= (sgqr x) 0)))
Summary
Form: (DEFTHM SQR>=0 ...)
Rules: ((:DEFINITION NOT)
% (:DEFINITION SQR) i
v

Functional Programming and Theorem Proving for Undergraduates 17
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Dracula

. sqr - Int -> Int
(defun sgr (x)
* x X))

;> All squares are nonnegative.
(defthm sqgr>=0
(implies (integerp X)
(>= (sar x) 0)))

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

18

Dracula

. sqr - Int -> Int
(defun sgr (x)
X)

;> All squares are nonnegative.
(defthm sgr>=0
(implies (integerp X)
(>= (sar x) 0)))

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

19

Dracula

aNaNe)] sgr.lisp - DrScheme =
sqr.lisp ¥ (defun..)¥ Debug @ Check Syntax Q, Run 2 Stop @ [StartACLZ
(Admit Next) { Admit Al) Undo Last) (UndoAll) (Save / Certify) (Interrupt Proof) (Shutdown ACL2)
P BgE Int -> Int " < Previous Checkpoint [Mext Checkpoint > }

(defun sqgr (x)
x)

;; All squares are nonnegative.
(defthm sgr>=0
(implies (integerp x)

(>= (sqr x) 0)))

y

[DEFTHM SQF>=0 ...)
*rkkrkrs FRTLED *#*F#¥%F

Dracula v4.2 »

(IMPLIES (INTEGERP X) (<= 0 X)).

Name the formula above *1.

No induction schemes are
suggested by *1. Consequently,
the proof

attempt has failed.

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

s
s
By
20

Program Design

= How to Design Programs code:

;. sgr - Int -> Int
(define (sqr x)
* X X))

- Unit tests:
(check-expect (sqr 0) 0)
(check-expect (sqr 2) 4)

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

21

Program Design

= Dracula code:

;. sgr - Int -> Int
(defun sgr (x)
(* X X))

- Unit tests:
(check-expect (sqr 0) 0)
(check-expect (sqr 2) 4)

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

22

Unit Tests

= Dracula code:

. sqr - Int -> Int
(defun sgr (x)
* x X))

;5> Unit tests: (==> assert-event)
(check-expect (sqr 0) 0)
(check-expect (sqr 2) 4)

Functional Programming and Theorem Proving for Undergraduates 23
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Unit Tests

P =

sqr.lisp - DrScheme =

sqr.lisp ¥ (defun..)™ Debug & Check Syntax @, Run A Stop @ Start ACL2
7 Bge t Int -> Ink -
(defun sgr (x)

x) [

Unit tests:
(check-expect (sqgr 0) 0)
(check-expect (sqr 2) 4) .

L@&OLO
Ran 2 checks.
1l of the 2 checks failed.

Welcome to DrS
Language: Dracu
>

Actual wvalue [] differs from [], the expected wvalue.
In /Users/cce/Desktop/sgr.lisp at line 10 column 0

| Dracula v4.2 v

(Close) I:: Dock]

#%)

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Unit Tests

sqrlisp ¥ (defun ..)¥ Debug & Check Syntax @ Run A Stop @
:: Bgr : Int => Int r
(defun sgr (x)

(+ = x))

;+; Unit tests:
(check-expect (sgr 0) 0)
(check-expect (sgr 2) 4)

e

Welcome to DrScheme, version 4.1 [3m].
Language: Dracula v4.2.

All tests passed!

>

. Dracula v4.2 ¥ 4:2 Di -
v

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

25

Beyond Unit Tests

;. sgr - Int -> Int
(defun sgr (x)
(+ X X))

- Unit tests:
(check-expect (sqr 0) 0)
(check-expect (sqr 2) 4)

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

26

Beyond Unit Tests

(e NaNa sgr.lisp - DrScheme (

)

sqrlisp ¥ (defun..)¥ Debug @ Check Syntax @, Run & Stop @

(" Start ACL2

" Admit Next (AdmitAll) (Undolast) [UndoAll) (Save / Certify) (Interrupt Proof) (Shutdown ACL2
;s 8Qr Int -> Int (& Xt heme
(defun sqgr (x) l < Previous Checkpoint) {* Next Checkpoint >)
TR G VT ES X
(+ x x)) { DEFTHM 5QR>=0 ...] m
TEEETEEY FAILED TEEETTTY
v
;; Unit tests:

(check-expect (sgr 0) 0)
(check-expect (sgqr 2) 4)

(IMPLIES (INTEGERP X) (<= 0 (+ X X))).

Name the formula above *1.
;; All squares are nonneg;s

(defthm sgr>=0
(implies (integerp x)
(>= (sqr x) 0)

No induction schemes are suggested by am
*1. Consequently, the proof
attempt has failed.

4kl

Dracula v4.2 ¥

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

27

DoubleCheck

> - ACL2 theorem:
(defthm name
(implies (and precondition ..
postcondition)))

;> DoubleCheck property:
(defproperty name
(x [:where precondition]
[-value distribution] ...)
postcondition)

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

-)

28

;5 AC
(deft
(im

DoubleCheck

| 2 theorem:
nm sgr>=0

olies (Integerp X)

(>= (sqar x) 0)))

;> DoubleCheck property:
(defproperty sqr>=0

(x)

(implies (integerp X)

(>= (sqar x) 0)))

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

29

;> AC
(deft
(im

DoubleCheck

| 2 theorem:
nm sgr>=0

olies (Integerp X)

(>= (sqar x) 0)))

;> DoubleCheck property:
(defproperty sqr>=0

(X
(>=

-where (i1ntegerp X))
(sar x) 0))

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

30

;> AC
(deft
(im

DoubleCheck

| 2 theorem:
nm sgr>=0

olies (Integerp X)

(>= (sqar x) 0)))

;> DoubleCheck property:
(defproperty sqr>=0

(X

(=

-where (iIntegerp X)
-value (random-integer))

(sar x) 0))

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

31

DoubleCheck

. Simple distributions:
(random-string)
(random-i1nteger)

.. Parameterized distributions:
(random-between low high)
(random-list-of dist [:size size])

;> Write new distributions:
(defrandom name (arg ...) expr)

Functional Programming and Theorem Proving for Undergraduates 32
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

DoubleCheck

;> ACL2 theorem:
(defthm sqr>=0
(implies (integerp X)

(>= (sqar x) 0)))

;; DoubleCheck property:(==> defthm)
(defproperty sqr>=0
(x :-where (Integerp X)
-value (random-integer))

(>= (sar x) 0))

Functional Programming and Theorem Proving for Undergraduates 33
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

;5 AC
(deft
(im

DoubleCheck

| 2 theorem:
nm sgr>=0

olies (Integerp X)

(>= (sqar x) 0)))

;> ldeal syntax (future work):
(defproperty sqr>=0
(implies (integerp X)

(>= (sar x) 0)))

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

34

DoubleCheck

o Bal

sqr.lisp - DrScheme

sgr.lisp * {defun..)™

Debug @ Check syntax Q. Run 2 Stop @

(Start ACL2

s gy ¢ It =2 1Ink
(defun sgr (x)
i+ = x))

;+ Unit tests:
(check-expect (sgr 0) 0)
(check-expect (sgr 2) 4)

;+ All squares are nonnegatiwv{
(defproperty sqr>=0
(x :where (integerp x)
:value (random-integer))

(>= (sqr x) 0))

L 3
Dracula vd.2 = | Ilf,;?f

Additional
information:
key x:

-30

(check-expect
(let ((x '-300
(>= (sqr x) 0))
)

Timing:
cpu: O; real: 0;
gc: 0

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

key check-expect:

< v E

R

DoubleCheck

o=

sqr.lisp - DrScheme =

| sqrlisp v (defun..)¥ Debug @ Check Syntax @, Run & Stop @ Start ACL2 |

sqr : Int -> Int r
(defun sgr (x)
(+ x x))

;7 Unit tests:
(check-expect (sqr 0) 0)

(check-expect (sqr 2) 4)

(check-expect (let ((x '-30)) (>= (sgr x) 0)) t)
Language: Dracula D09, Test Results

> (sqr -30) Ran 3 checks.
-60 1 of the 3 checks failed.
>

FREW

Actual value |nil| differs from , the expected wvalue.
In /Users/cce/Desktop/sgr.lisp at line 12 column 0

| Dracula v4.2

[(Close) l: Dock) y

Functional Programming and Theorem Proving for Undergraduates 36
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

DoubleCheck

£ A

sgr.lisp - DrScheme =

Debug @ Check Syntax @ Run 2 Stop @ | Start ACL2
{: 'sgE ¢ Int => Int 2
(defun sgr (x) y

(+ x x)) {I

| sgr.lisp > (defun..)™

;:; Unit tests:

(check-expect (sqr 0) 0)
(check-expect (sgr 2) 4)
(check-expect (sgqr -30) 900)

Language: Drd rRan 3 checks.

> 1 of the 3 checks failed.

| Dracula v4.2 =

| Actual value |-60

differs from [900|, the expected wvalue.
In /Users/cce/Desktop/sqgr.lis

at line 12 column 0

{ Close) (Dock | /:
e

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

. Sgr :
(defun sgr (x)
(+ X X))

DoubleCheck

Int -> Int

- Unit tests:

(chec
(chec
(chec

K—-eX
K—-eX

K—-eX

pect (so
pect (so

pect (so

r 0) 0)
r 2) 4)
r -30) 900)

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

38

. Sgr :
(defun sgr (x)
X X))

DoubleCheck

Int -> Int

- Unit tests:

(chec
(chec
(chec

K—-eX
K—-eX

K—-eX

pect (so
pect (so

pect (so

r 0) 0)
r 2) 4)
r -30) 900)

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

39

DoubleCheck

606 sgr.lisp - Drscheme —
sgr.lisp ¥ (defun..)¥ Debug & Check Syntax Q Run & Stop @ ~ Start ACL2

Admit Next Admit All " Undo Last Undo All Save / 0606 gchemelials

FECBEER siedbbabisiie 2 DoubleCheck T
;¢ S8Sgr Int -> Int bsqr>=0
(defun sqr (x)] Total: 50 successes

(* x x)) Successes (1/1)

sqr>=0
;+ Unit tests:
(check-expect (sgr 0) 0) ® O O acl2.1221749229.txt - DrScher
(chECknexPECt (sq:r: 2) 4) " < Previous Checkpoint Next Checkpoint =
(check-expect (sgr -30) 900) =
{ DEFTHM S0R>=0 ...}
Q0.E.D.

;; All squares are nonnegative.
(defproperty sqr>=0

(x :where (integerp x) Q.E.D.

:value (random-integer))
(>= (sgr x) 0)) Summary
i Form: { DEFTHM SQR>=0 ...)

Language: Dracula v4.2. Rules: ((:DEFINITION NOT)
All tests passed!
5 (:DEFINITION SQR)
Dracula v4.2 I:‘ r

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Software Engineering Courses at OU
= SE-i
* Process (30%) - Humphrey PSP
= Design (35%) - FP in ACL2

» Testing/Validation (35%)
* Predicate-based, automated testing (DbIChk)
* Mechanized logic for full verification (ACL2)

= Software development projects
* 6 individual projects: Design/Code/PSP rpt

= Early projects: small components
= Later projects: applications using components
» 2 team projects

* Building on components and applications
= Seven deliverables in all

Functional Programming and Theorem Proving for Undergraduates 41
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Software Engineering Courses at OU
= SE-i
* Process (30%) - Humphrey PSP
= Design (35%) - FP in ACL2

» Testing/Validation (35%)
* Predicate-based, automated testing (DbIChk)
* Mechanized logic for full verification (ACL2)

= Software development projects
» 6 individual projects: Design/Code/PSP rpt

600 ° = Early projects: small components
= Later projects: applications using components
= 2 team projects

* Building on components and applications
= Seven deliverables in all

30%°

otne’

Functional Programming and Theorem Proving for Undergraduates 42
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

A Q%o

Software Engineering Courses at OU
= SE-ii
* Organized around one sfw devp project
= Team project (4 - 6 students per team)

* Project size
= 3,000 - 5,000 lines of code, before ACL2
= 2.000 - 3,000 lines of code, since intro of ACL2

» 12 separate (team) deliverables
* Engineering std, design/schedule, code,
installation/usage doc, defect history,
tests/theorems, meeting log, ...
» 3 presentations - last to Advisory Board

* Individual journals — expanded PSP rpt

Functional Programming and Theorem Proving for Undergraduates 43
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Background of SE Students

Standard CS curriculum
= ABET, math heavy

No significant FP experience
= Minor exposure in PL course

Serious logic course (70% of students)
= Reasoning about hdw/sfw properties

So, SE is first serious exposure to FP

= Almost all succeed in
» Learning FP
* Predicate-based testing
= Success with ACL2 mechanized logic
* Most acquire a reasonable level of comfort
= 10% to 20% gain proficiency with ACL2 logic

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

44

Example SE-i Project
= Linear encode/decode
= Message: Xy X4 ... X, 2X,4, 0<%, <m
= Encoding: ... (X, + X,,4) mod m ..., where x_.=m-1
= Define encode, decode, and predicates
= encode, decode, code-list?

= Define correctness properties

= kth element of encoded list is (x, + X,,4) mod m
= decode inverts encode

Functional Programming and Theorem Proving for Undergraduates 45
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Example SE-i Project
* Linear encodel/decode
= Message: Xy X4 ... X, 0X,4, 0<%, <M
= Encoding: ... (x, + X,,4) mod m ..., where x_=m-1
= Define correctness properties
= decode inverts encode

* Inversion property
(defproperty decode-i1nverts-encode

(m :value (random-between 2 100)
(xs :value (random-list-of
(random-between O (- m 1))))

(equal (decode m (encode m xs)) xs)))

Functional Programming and Theorem Proving for Undergraduates 46
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Example SE-i Project
= Linear encode/decode
= Message: Xy X4 ... X, 0X,4,0<X, <M
= Encoding: ... (x, + X,,4) mod m ..., where x_=m-1
= Define correctness properties
= decode inverts encode

= Inversion property as (untrue) theorem
(defthm decode-inverts-encode-thm

(equal (decode m (encode m xs)) xs)))

Functional Programming and Theorem Proving for Undergraduates 47
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Example SE-i Project
= Linear encode/decode
= Message: Xy X4 ... X, 0X,4, 0<%, <M
= Encoding: ... (x, + X,,4) mod m ..., where x_=m-1

= Define correctness properties
= decode inverts encode

* Inversion property with preconditions
(defproperty decode-i1nverts-encode
(m :where (and (integerp m) (>=m 2))
-value (random-between 2 100)
Xs :-where (code-liIst? m XS)
-value (random-list-of
(random-between 0 (- m 1))))

(equal (decode m (encode m xs)) xs)))

Functional Programming and Theorem Proving for Undergraduates 48
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Example SE-i Project
* Linear encodel/decode
= Message: Xy X4 ... X, 0X,4,0<X, <M
= Encoding: ... (x, + X,,4) mod m ..., where x_=m-1
= Define correctness properties
= decode inverts encode

* Inversion property as theorem
(defthm decode-inverts-encode-thm

(implies (and (integerp m)
(G=m 2)
(code-li1st? m Xs))
(equal (decode m (encode m XS))

xs)))

Functional Programming and Theorem Proving for Undergraduates 49
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Example SE-i Project
* Linear encodel/decode
= Message: Xy X4 ... X, 0X,4, 0<%, <M
= Encoding: ... (x, + X,,4) mod m ..., where x_=m-1
= Define correctness properties
= kth element of encoded list is (x, + X,,4) mod m

= Right-stuff property as (untrue) theorem
(defthm encoded-elements-are-correct-thm

(implies (and (integerp m) (>G=m 2)
(code-li1st? m XS)
(integerp k))
(= (nth k (encode m xs))
(mod (+ (nth k xs)
(nth (+ k 1) xs))
m))))

Functional Programming and Theorem Proving for Undergraduates 50
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Example SE-i Project
* Linear encodel/decode
= Message: Xy X4 ... X, 0X,4, 0<%, <M
= Encoding: ... (x, + X,,4) mod m ..., where x_=m-1
= Define correctness properties
= kth element of encoded list is (x, + X,,4) mod m

= Right-stuff property as theorem
(defthm encoded-elements-are-correct-thm

(implies (and (integerp m) (>G=m 2)
(code-li1st? m XS)
(natp k)(< k (- (Ien xs) 1))
(= (nth k (encode m xs))
(mod (+ (nth k xs)
(nth (+ k 1) xs))
m))))

Functional Programming and Theorem Proving for Undergraduates 51
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Example SE-i Project
* Linear encodel/decode
= Message: Xy X4 ... X, 0X,4, 0<%, <M
= Encoding: ... (x, + X,,4) mod m ..., where x_=m-1
= Define correctness properties
= kth element of encoded list is (x, + X,,4) mod m

* Right-stuff property as vacuous theorem
(defthm encoded-elements-are-correct-thm

(implies (and (integerp m) (>G=m 2)
(code-li1st? m XS)
(<= k 0O)(= k (Ien xs)))
(= (nth k (encode m xs))
(mod (+ (nth k xs)
(nth (+ k 1) xs))
m))))

Functional Programming and Theorem Proving for Undergraduates 52
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Team Project Example from SE-ii

= Conway game of life (cellular automaton)
= Multiple topologies - sphere, cylinder, torus, Klein
= Six solutions, 1200 - 7000 lines of code, avg: 3000

= 7000-line implementation included
* Three-dimensional rendering
= Over 100 properties verified by ACL2 mechanized logic
* Ten properties on 3D-rending (eg, no bit-plane errors)

. g

Gosper glider gu:r'i

Functional Programming and Theorem Proving for Undergraduates 53
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Reactions to SE Courses
= Students

= PSP unpopular (time & defect logs, plans...)

= Functional programming

= Almost all get it, eventually

* 10% complain

" 10% - 20% really like it

* The rest take it as an interesting challenge
* Property-based testing

» Just started this semester

» Students seem to like it

= Smoothes the way towards theorems

* Theorems
= Top quarter like it, bottom quarter gets lost

= Advisory board (from computing industry)
= Positive comments nearly universal

Functional Programming and Theorem Proving for Undergraduates 54
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Outreach
* Three-day workshop, May 2008

= Participants: 13 CS instructors from 6 states
» Lectures (35%) plus hands-on projects (65%)
= Two leaders, plus two aids with ACL2 expertise

= Lessons learned

= Theorems are easier than automated testing
= Appropriate random distributions add complication

= Specifying properties requires careful thought
* Incorrect or vacuous theorems— common first attempts
» Payoff— better understanding of software

* Projects must be carefully constructed
= Ensure reasonable solutions (solve them in advance)

= MEPLS semiannual meeting

Functional Programming and Theorem Proving for Undergraduates 55
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Outreach
Three-day workshop, May 2008

= Participants: 13 CS instructors from 6 states
» Lectures (35%) plus hands-on projects (65%)
= Two leaders, plus two aids with ACL2 expertise

Lessons learned

= Theorems are easier than automated testing
= Appropriate random distributions add complication

= Specifying properties requires careful thought
* Incorrect or vacuous theorems— common first attempts
» Payoff— better understanding of software

* Projects must be carefully constructed
= Ensure reasonable solutions (solve them in advance)

MEPLS semiannual meeting
Google Dracula DrScheme, Rex SEcollab, MEPLS

Functional Programming and Theorem Proving for Undergraduates 56
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

Plans for Future

* Integrated testing / verification
= Dracula module facility

= Coordinated projects (on website)
* Building from components to applications
* Four tracks, 4 - 6 projects in each track

= Qutreach workshops

= SIGCSE tutorial
* Three-day workshops

Functional Programming and Theorem Proving for Undergraduates 57
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

The End

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

	Functional Programming and Theorem Proving for UndergraduatesA Progress Report
	History
	Mantra
	ACL2
	ACL2
	ACL2
	ACL2
	Dracula
	Dracula
	Dracula
	Dracula
	Dracula
	Dracula
	Dracula
	Dracula
	Dracula
	Dracula
	Dracula
	Dracula
	Dracula
	Program Design
	Program Design
	Unit Tests
	Unit Tests
	Unit Tests
	Beyond Unit Tests
	Beyond Unit Tests
	DoubleCheck
	DoubleCheck
	DoubleCheck
	DoubleCheck
	DoubleCheck
	DoubleCheck
	DoubleCheck
	DoubleCheck
	DoubleCheck
	DoubleCheck
	DoubleCheck
	DoubleCheck
	DoubleCheck
	Software Engineering Courses at OU
	Software Engineering Courses at OU
	Software Engineering Courses at OU
	Background of SE Students
	Example SE-i Project
	Example SE-i Project
	Example SE-i Project
	Example SE-i Project
	Example SE-i Project
	Example SE-i Project
	Example SE-i Project
	Example SE-i Project
	Team Project Example from SE-ii
	Reactions to SE Courses
	Outreach
	Outreach
	Plans for Future
	The End

