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History
Before 2003

Traditional SE at OU (2-course sequence, 4th yr)
Process Design Testing/Validation

60% 20% 20%

2003-2005
SE course using ACL2 (FDPE 2005 report)
Process Design Testing/Validation

30% 35% 35%
Successful despite crude programming env

2006 - present
SE course with Dracula/ACL2 environment
1st year course at NU using Dracula/ACL2
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Mantra
Before 2003

Traditional SE at OU (2-course sequence, 4th yr)
Process Design Testing/Validation

60% 20% 20%

2003-2005
SE course using ACL2 (FDPE 2005 report)
Process Design Testing/Validation

30% 35% 35%
Successful despite crude programming env

2006 - present
SE course with Dracula/ACL2 environment
1st year course at NU using Dracula/ACL2

Engineering is the application of 

principles of science and mathematics

to the design of useful things



ACL2

;; sqr : Int -> Int
(defun sqr (x)

(* x x))

;; All squares are nonnegative.
(defthm sqr>=0

(implies (integerp x)
(>= (sqr x) 0)))
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ACL2
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ACL2
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ACL2
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Dracula
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Dracula
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Dracula
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Dracula
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Dracula
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Dracula
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Dracula
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Dracula
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Dracula
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Dracula
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Dracula

;; sqr : Int -> Int
(defun sqr (x)

(* x x))

;; All squares are nonnegative.
(defthm sqr>=0

(implies (integerp x)
(>= (sqr x) 0)))

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

18



Dracula

;; sqr : Int -> Int
(defun sqr (x)

x)

;; All squares are nonnegative.
(defthm sqr>=0

(implies (integerp x)
(>= (sqr x) 0)))
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Dracula

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

20



Program Design

How to Design Programs code:

;; sqr : Int -> Int
(define (sqr x)

(* x x))

;; Unit tests:
(check-expect (sqr 0) 0)
(check-expect (sqr 2) 4)
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Program Design

Dracula code:

;; sqr : Int -> Int
(defun sqr (x)

(* x x))

;; Unit tests:
(check-expect (sqr 0) 0)
(check-expect (sqr 2) 4)
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Unit Tests

Dracula code:

;; sqr : Int -> Int
(defun sqr (x)

(* x x))

;; Unit tests:    (==> assert-event)
(check-expect (sqr 0) 0)
(check-expect (sqr 2) 4)
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Unit Tests
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Unit Tests
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Beyond Unit Tests

;; sqr : Int -> Int
(defun sqr (x)

(+ x x))

;; Unit tests:
(check-expect (sqr 0) 0)
(check-expect (sqr 2) 4)
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Beyond Unit Tests
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DoubleCheck

;; ACL2 theorem:
(defthm name

(implies (and precondition ...)
postcondition)))

;; DoubleCheck property:
(defproperty name

(x [:where precondition]
[:value distribution] ...)

postcondition)
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DoubleCheck

;; ACL2 theorem:
(defthm sqr>=0

(implies (integerp x)
(>= (sqr x) 0)))

;; DoubleCheck property:
(defproperty sqr>=0

(x)
(implies (integerp x)

(>= (sqr x) 0)))
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DoubleCheck

;; ACL2 theorem:
(defthm sqr>=0

(implies (integerp x)
(>= (sqr x) 0)))

;; DoubleCheck property:
(defproperty sqr>=0

(x :where (integerp x))
(>= (sqr x) 0))
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DoubleCheck

;; ACL2 theorem:
(defthm sqr>=0

(implies (integerp x)
(>= (sqr x) 0)))

;; DoubleCheck property:
(defproperty sqr>=0

(x :where (integerp x)
:value (random-integer))

(>= (sqr x) 0))
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DoubleCheck

;; Simple distributions:
(random-string)
(random-integer)

;; Parameterized distributions:
(random-between low high)
(random-list-of dist [:size size])

;; Write new distributions:
(defrandom name (arg ...) expr)
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DoubleCheck

;; ACL2 theorem:
(defthm sqr>=0

(implies (integerp x)
(>= (sqr x) 0)))

;; DoubleCheck property:(==> defthm)
(defproperty sqr>=0

(x :where (integerp x)
:value (random-integer))

(>= (sqr x) 0))
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DoubleCheck

;; ACL2 theorem:
(defthm sqr>=0

(implies (integerp x)
(>= (sqr x) 0)))

;; Ideal syntax (future work):
(defproperty sqr>=0

(implies (integerp x)
(>= (sqr x) 0)))
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DoubleCheck
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DoubleCheck
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DoubleCheck
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DoubleCheck

;; sqr : Int -> Int
(defun sqr (x)

(+ x x))

;; Unit tests:
(check-expect (sqr 0) 0)
(check-expect (sqr 2) 4)
(check-expect (sqr -30) 900)
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DoubleCheck

;; sqr : Int -> Int
(defun sqr (x)

(* x x))

;; Unit tests:
(check-expect (sqr 0) 0)
(check-expect (sqr 2) 4)
(check-expect (sqr -30) 900)
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DoubleCheck
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Software Engineering Courses at OU
SE-i

Process (30%) - Humphrey PSP
Design (35%) - FP in ACL2
Testing/Validation (35%)

Predicate-based, automated testing (DblChk)
Mechanized logic for full verification (ACL2)

Software development projects
6 individual projects: Design/Code/PSP rpt

Early projects: small components
Later projects: applications using components

2 team projects
Building on components and applications
Seven deliverables in all
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Software Engineering Courses at OU
SE-i

Process (30%) - Humphrey PSP
Design (35%) - FP in ACL2
Testing/Validation (35%)

Predicate-based, automated testing (DblChk)
Mechanized logic for full verification (ACL2)

Software development projects
6 individual projects: Design/Code/PSP rpt

Early projects: small components
Later projects: applications using components

2 team projects
Building on components and applications
Seven deliverables in all

30%

10% other

60%



Software Engineering Courses at OU
SE-ii

Organized around one sfw devp project
Team project (4 - 6 students per team)
Project size

3,000 - 5,000 lines of code, before ACL2 
2,000 - 3,000 lines of code, since intro of ACL2

12 separate (team) deliverables
Engineering std, design/schedule, code, 
installation/usage doc, defect history, 
tests/theorems, meeting log, …
3 presentations - last to Advisory Board

Individual journals — expanded PSP rpt
Functional Programming and Theorem Proving for Undergraduates

FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen
43



Background of SE Students

Standard CS curriculum
ABET, math heavy

No significant FP experience
Minor exposure in PL course

Serious logic course (70% of students)
Reasoning about hdw/sfw properties

So, SE is first serious exposure to FP
Almost all succeed in

Learning FP
Predicate-based testing

Success with ACL2 mechanized logic
Most acquire a reasonable level of comfort
10% to 20% gain proficiency with ACL2 logic
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Example SE-i Project
Linear encode/decode

Message: x0 x1 … xn-2 xn-1 , 0 ≤ xk < m
Encoding: … (xk + xk+1) mod m …, where xn=m-1

Define encode, decode, and predicates
encode, decode, code-list?

Define correctness properties
kth element of encoded list is (xk + xk+1) mod m
decode inverts encode
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Example SE-i Project
Linear encode/decode

Message: x0 x1 … xn-2 xn-1 , 0 ≤ xk < m
Encoding: … (xk + xk+1) mod m …, where xn=m-1

Define correctness properties
decode inverts encode

Inversion property
(defproperty decode-inverts-encode
(m  :value (random-between 2 100)
(xs :value (random-list-of

(random-between 0 (- m 1))))
(equal (decode m (encode m xs)) xs)))
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Example SE-i Project
Linear encode/decode

Message: x0 x1 … xn-2 xn-1 , 0 ≤ xk < m
Encoding: … (xk + xk+1) mod m …, where xn=m-1

Define correctness properties
decode inverts encode

Inversion property as (untrue) theorem
(defthm decode-inverts-encode-thm

(equal (decode m (encode m xs)) xs)))
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Example SE-i Project
Linear encode/decode

Message: x0 x1 … xn-2 xn-1 , 0 ≤ xk < m
Encoding: … (xk + xk+1) mod m …, where xn=m-1

Define correctness properties
decode inverts encode

Inversion property with preconditions
(defproperty decode-inverts-encode
(m  :where (and (integerp m) (>= m 2))

:value (random-between 2 100)
xs :where (code-list? m xs)

:value (random-list-of
(random-between 0 (- m 1))))

(equal (decode m (encode m xs)) xs)))
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Example SE-i Project
Linear encode/decode

Message: x0 x1 … xn-2 xn-1 , 0 ≤ xk < m
Encoding: … (xk + xk+1) mod m …, where xn=m-1

Define correctness properties
decode inverts encode

Inversion property as theorem
(defthm decode-inverts-encode-thm
(implies (and (integerp m)

(>= m 2)
(code-list? m xs))

(equal (decode m (encode m xs))
xs)))

Functional Programming and Theorem Proving for Undergraduates
FDPE 2008 - Rex Page / Carl Eastlund / Matthias Felleisen

49



Example SE-i Project
Linear encode/decode

Message: x0 x1 … xn-2 xn-1 , 0 ≤ xk < m
Encoding: … (xk + xk+1) mod m …, where xn=m-1

Define correctness properties
kth element of encoded list is (xk + xk+1) mod m

Right-stuff property as (untrue) theorem
(defthm encoded-elements-are-correct-thm
(implies (and (integerp m) (>= m 2)

(code-list? m xs)
(integerp k))

(= (nth k (encode m xs))
(mod (+ (nth k xs)

(nth (+ k 1) xs))
m))))
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Example SE-i Project
Linear encode/decode

Message: x0 x1 … xn-2 xn-1 , 0 ≤ xk < m
Encoding: … (xk + xk+1) mod m …, where xn=m-1

Define correctness properties
kth element of encoded list is (xk + xk+1) mod m

Right-stuff property as theorem
(defthm encoded-elements-are-correct-thm
(implies (and (integerp m) (>= m 2)

(code-list? m xs)
(natp k)(< k (- (len xs) 1))

(= (nth k (encode m xs))
(mod (+ (nth k xs)

(nth (+ k 1) xs))
m))))
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Example SE-i Project
Linear encode/decode

Message: x0 x1 … xn-2 xn-1 , 0 ≤ xk < m
Encoding: … (xk + xk+1) mod m …, where xn=m-1

Define correctness properties
kth element of encoded list is (xk + xk+1) mod m

Right-stuff property as vacuous theorem
(defthm encoded-elements-are-correct-thm
(implies (and (integerp m) (>= m 2)

(code-list? m xs)
(<= k 0)(> k (len xs)))

(= (nth k (encode m xs))
(mod (+ (nth k xs)

(nth (+ k 1) xs))
m))))
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Team Project Example from SE-ii
Conway game of life (cellular automaton)

Multiple topologies - sphere, cylinder, torus, Klein
Six solutions, 1200 - 7000 lines of code, avg: 3000
7000-line implementation included

Three-dimensional rendering
Over 100 properties verified by ACL2 mechanized logic
Ten properties on 3D-rending (eg, no bit-plane errors)

Gosper glider gun
Functional Programming and Theorem Proving for Undergraduates
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Reactions to SE Courses
Students

PSP unpopular (time & defect logs, plans…)
Functional programming

Almost all get it, eventually
10% complain
10% - 20% really like it
The rest take it as an interesting challenge

Property-based testing
Just started this semester
Students seem to like it
Smoothes the way towards theorems

Theorems
Top quarter like it, bottom quarter gets lost

Advisory board (from computing industry)
Positive comments nearly universal
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Outreach
Three-day workshop, May 2008

Participants: 13 CS instructors from 6 states
Lectures (35%) plus hands-on projects (65%)
Two leaders, plus two aids with ACL2 expertise

Lessons learned
Theorems are easier than automated testing

Appropriate random distributions add complication

Specifying properties requires careful thought
Incorrect or vacuous theorems— common first attempts
Payoff— better understanding of software

Projects must be carefully constructed
Ensure reasonable solutions (solve them in advance)

MEPLS semiannual meeting
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Outreach
Three-day workshop, May 2008

Participants: 13 CS instructors from 6 states
Lectures (35%) plus hands-on projects (65%)
Two leaders, plus two aids with ACL2 expertise

Lessons learned
Theorems are easier than automated testing

Appropriate random distributions add complication

Specifying properties requires careful thought
Incorrect or vacuous theorems— common first attempts
Payoff— better understanding of software

Projects must be carefully constructed
Ensure reasonable solutions (solve them in advance)

MEPLS semiannual meeting
Google Dracula DrScheme, Rex SEcollab, MEPLS
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Plans for Future

Integrated testing / verification
Dracula module facility
Coordinated projects (on website)

Building from components to applications
Four tracks, 4 - 6 projects in each track

Outreach workshops
SIGCSE tutorial
Three-day workshops
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The End
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