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Abstract— In many real-world multi-robot tasks, high-quality
solutions often require a team of robots to perform asyn-
chronous actions under decentralized control. Decentralized
multi-agent reinforcement learning methods have difficulty
learning decentralized policies because of the environment
appearing to be non-stationary due to other agents also learning
at the same time. In this paper, we address this challenge by
proposing a macro-action-based decentralized multi-agent dou-
ble deep recurrent Q-net (MacDec-MADDRQN) which trains
each decentralized Q-net using a centralized Q-net for action
selection. A generalized version of MacDec-MADDRQN with
two separate training environments, called Parallel-MacDec-
MADDRQN, is also presented to leverage either centralized
or decentralized exploration. The advantages and the practical
nature of our methods are demonstrated by achieving near-
centralized results in simulation and having real robots accom-
plish a warehouse tool delivery task in an efficient way.

I. INTRODUCTION

Multi-robot systems have become ubiquitous in our daily
lives, such as drones for applications such as agricultural in-
spection, warehouse robots, and self-driving cars [1]–[3]. For
example, consider a warehouse environment (Fig. 1a), where
a Fetch robot [4] and two Turtlebots [5] are autonomously
delivering tools in order to assist two humans with their
assembly tasks. To be more efficient, the robots should be
able to predict which tool the human workers will potentially
need rather than always waiting for a human’s request, while
collaborating with the other robots to find the tool in advance
and passing it to one of the Turtlebots (Fig. 1b) for de-
livery (Fig. 1c). Performing these high-quality coordination
behaviors in large, stochastic and uncertain environments is
challenging for the robots, because it requires the robots to
operate asynchronously according to local information while
reasoning about cooperation between teammates.

Although, several multi-agent deep reinforcement learning
approaches have been proposed and have achieved high-
quality performance [6]–[10], these methods assume syn-
chronized primitive actions. Our very recent work [11]
bridged this gap by proposing the first asynchronous macro-
action-based multi-agent deep reinforcement learning frame-
works. Macro-actions naturally represent temporally ex-
tended robot controllers that can be executed in an asyn-
chronous manner [12], [13]. In that paper, we proposed ap-
proaches for both learning decentralized macro-action-value
functions and centralized joint-macro-action-value functions.
However, the decentralized method, using Decentralized
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(a) (b) (c)
Fig. 1: Warehouse tool delivery task: (a) Three robots deliver
tools to two humans; (b) Collaborative tool passing; (c)
Correct tool delivered.

Hysteretic DRQN with Double DQN (Dec-HDDRQN), per-
formed poorly in large and complex domains. Nevertheless,
decentralized execution is necessary for cases when there is
limited or no communication between robots.

In this paper, we improve the learning of decentralized
policies via two contributions: (a) A new macro-action-
based decentralized multi-agent deep double-Q learning ap-
proach, called MacDec-MADDRQN, which adopts central-
ized training with decentralized execution by allowing each
individual decentralized Q-net update to use a centralized
Q-net; (b) MacDec-MADDRQN introduces a choice of ε-
greedy exploration, either based on the centralized Q-net
or the decentralized Q-nets. The best choice is often not
clear without knowledge of domain properties. Therefore, a
more general version, called Parallel-MacDec-MADDRQN,
is proposed, in which, the centralized Q-net is trained purely
based on the experiences generated by using centralized
ε-greedy exploration in one environment, simultaneously,
agents perform decentralized exploration in a separate en-
vironment, and each decentralized Q-net is then optimized
using the decentralized data and the centralized Q-net.

We evaluate our methods in both simulation and in hard-
ware. In simulation, our methods outperform the previous
decentralized method by either converging to a much higher
value or learning faster in both a benchmark domain and
a Warehouse Tool Delivery domain with a single human
involved. We also deploy the decentralized policies learned
in simulation on real robots which shows high-quality co-
operation to deliver the correct tools in an efficient way. To
our knowledge, this is the first instance of running a set of
decentralized macro-action-based policies that were trained
via deep reinforcement learning on a team of real robots.

II. BACKGROUND

We first discuss macro-action-based Dec-POMDPs [12],
[13] and deep Q-learning, and then provide an overview of
our previous related approach [11].



A. MacDec-POMDPs

Decentralized fully cooperative multi-agent decision-
making under uncertainty can be modeled as a decentral-
ized POMDP (Dec-POMDP) [14]. Due to the assumption
of synchronous actions that require the same amount of
time for each agent, Dec-POMDPs are not applicable to
multi-robot planning and learning scenarios in real-world.
MacDec-POMDPs, formalized by introducing macro-actions
into Dec-POMDPs, inherently allow asynchronous execution
among robots with temporally extended macro-actions that
can begin and end at different times for each agent.

Formally, a MacDec-POMDP is defined as a tuple
〈I, S,A,Ω,M, ζ,O, T, Z,R〉, where I is a finite set of
agents; S is a finite set of environment states; A ≡ ×iAi
and Ω ≡ ×iΩi are the spaces of joint-primitive-action
and joint-primitive-observation respectively; M ≡ ×iMi is
the joint set of each agent’s finite macro-action space Mi;
ζ ≡ ×iζi is the set of joint macro-observations over agents’
finite macro-observation space ζi. Given a macro-action-
based policy, each agent i is allowed to asynchronously
choose a macro-action mi = 〈βm, Im, πm〉i that depends
on individual macro-action-observation histories, where βm :
HA
i → [0, 1] is the stochastic termination condition and

Im ⊂ HM
i is the initiation set of the corresponding macro-

action mi, respectively depending on the primitive-action-
observation history space HA

i and macro-action-observation
history space HM

i of agent i; πm : HA
i → Ai denotes the

low-level policy to achieve the macro-action m, and during
the execution, each agent’s primitive-observation oi ∈ Ωi
is generated according to probability observation function
Oi(oi, ai, s) = Pr(oi | ai, s), and a shared immediate reward
r(s,~a), where ~a ∈ A ≡ ×iAi, is issued according to the
reward function R : S×A→ R. Importantly, considering the
stochastic terminations and the asynchronous executions of
macro-actions over agents, the transition function is defined
as T (s′, ~τ , s, ~m) = Pr(s′, ~τ | s, ~m), where ~τ is the time-
step at which any agent i completes its macro-action mi,
and also indicates the termination of the joint-macro-action
~m; Successively, a new joint-macro-observation ~z ∈ ζ ≡
×iζi is generated based on the macro-observation function
Z(~z, ~m, s′) = Pr(~z | ~m, s′); Note that, each agent keeps
updating its primitive observation every time-step, but only
updates macro-observation when its current macro-action
has terminated. The objective is to optimize the joint high-
level policy Ψ = ×iΨi such that the following expected
discounted return from an initial state s0 is maximized:

Ψ∗ = arg max
Ψ

E

[
h−1∑
t=0

γtr(s(t),~a(t)) | s(0), π,Ψ

]
(1)

B. Deep Recurrent Q-Network and Double DQN

Deep Q-learning is a state-of-the-art approach using a
deep Q-network (DQN) parameterized by θ as an action-
value approximator which is iteratively updated to minimize
the loss: L(θ) = E<s,a,r,s′>∼D

[(
y − Qθ(s, a)

)2]
, where

y = r + γ arg maxa′ Qθ−(s′, a′). Experience replay and a

less frequently updated target Q-network, parameterized by
θ−, are employed for improving performance and stabilizing
learning [15]. DQN with a recurrent layer (DRQN) has been
widely adopted in partial observable domains to allow agent’s
actions to depend on abstractions of action-observation histo-
ries rather than states (or a single observation) [16]. Double
DQN incorporates double Q-learning [17] into DQN to
provide an unbiased target action-value estimation, y =
r+γQθ−(s′, arg maxa′ Qθ(s

′, a′)) [18], which leverages the
above two Q-networks. In this paper, we mainly compare
our decentralized learning approaches with Decentralized
Hysteretic DRQN (which uses two learning rates for more
robust updating against negative TD error) with Double DQN
(Dec-HDDRQN) [6], and centralized learning via Double
DRQN (Cen-DDRQN).

C. Learning Macro-Action-Based Deep Q-Nets

Although there has been several popular multi-agent deep
reinforcement learning methods achieving impressive perfor-
mance in cooperative as well as competitive domains [6]–
[10], they all require primitive actions and synchronous
action execution. There was no principled way to utilize these
methods to learn macro-action-based policies, in which the
challenges were how to properly update macro-action values
and correctly maintain macro-action-observation trajectories.

To cope with the above challenges, in our previous
work [11], we first proposed a decentralized macro-action-
based learning method that is based on Dec-HDDRQN
with a new buffer called Macro-Action Concurrent Expe-
rience Reply Trajectories (Mac-CERTs). This buffer con-
tains the macro-action-observation experience represented
as a tuple 〈zi,mi, z

′
i, r

c
i 〉 for each agent i, where rci =∑τ

t=tmi
rt is an accumulated reward for the macro-

action mi from its beginning time-step tmi to the ter-
mination step τ . In the training phase, each agent in-
dividually updates its own macro-action-value function
Qθi(hi,mi), using a concurrent mini-batch of sequential
experiences sampled from Mac-CERTs, by minimizing the
loss: L(θi) = E<zi,mi,z′i,r

c
i>∼D

[(
yi − Qθi(hi,mi)

)2]
,

where yi = rci + γQθ−i

(
h′i, arg maxm′i Qθi(h

′
i,m

′
i)
)

and
hi denotes the macro-action-observation history of agent
i. For cases when a centralized macro-action-based pol-
icy is possible, we also proposed a novel centralized re-
play buffer called Macro-Action Joint Experience Replay
Trajectories (Mac-JERTs) [11]. At each execution step,
this buffer collects a joint macro-action-observation expe-
rience represented as a tuple 〈~z, ~m, ~z ′, ~r c〉, where ~r c =∑~τ
t=t~m

rt is a shared joint accumulated reward for the
agents’ joint macro-action ~m from its beginning time-step
t~m to the ending time-step ~τ when any agent terminates
its macro-action. The centralized macro-action-value func-
tion Qφ(~h, ~m) is then optimized by minimizing the loss:
L(φ) = E<~z,~m,~z ′,~r c>∼D

[(
y − Qφ(~h, ~m)

)2]
, where y =

~r c + γQφ−
(
~h ′, arg max~m ′ Qφ(~h ′, ~m ′ | ~mundone)

)
. Here,

~mundone is the joint-macro-action over the agents who have
not completed their macro-actions in the sampled experience.



Note that, this conditional operation considers the agents’
asynchronous macro-action execution status which is acces-
sible from Mac-JERTs during training.

Building on our previous work, in this paper, we extend
Double DQN to decentralized multi-agent macro-action-
based policy learning under partial observability in the man-
ner of centralized training with decentralized execution. In
this new method, each agent is able to update its own Q-net
by taking into account the effects of other agents’ behaviors
in the environment, naturally surmounting the non-stationary
environment issue from each agent’s perspective.

III. APPROACH
In multi-agent environments, decentralized learning causes

non-stationarity from each agent’s perspective as other agents
policies change during learning. Learning a centralized joint-
action-value function to guide each agent’s decentralized pol-
icy updating has been being a very popular training manner
to conquer the non-stationarity [7], [8]. VDN and QMIX also
use centralized training by first training a centralized, but
factored, Q-net that is decomposed into a decentralized Q-net
for each agent for use in execution [9], [10]. In this section,
we propose a new multi-agent Double DQN-based approach,
called MacDec-MADDRQN, to learn decentralized macro-
action-value functions that are trained with a centralized joint
macro-action-value function.

A. Macro-Action-Based Decentralized Multi-Agent Double
Deep Recurrent Q-Net (MacDec-MADDRQN)

Double DQN has been implemented in multi-agent do-
mains for learning either centralized or decentralized poli-
cies [11], [19], [20]. However, in the decentralized learning
case, each agent independently adopts double Q-learning
purely based on its own local information. Learning only
from local information often impedes agents from achieving
high-quality cooperation.

In order to take advantage of centralized information for
learning decentralized Q-networks, we train the centralized
joint macro-action-value function Qφ and each agent’s de-
centralized macro-action-value function Qθi simultaneously,
and the target value for updating decentralized macro-action-
value function Qθi is then calculated by using the centralized
Qφ for macro-action selection and the decentralized target-
net Qθ−i for value estimation.

More concretely, consider a domain with N agents,
and both the centralized Q-network Qφ and decentral-
ized Q-networks Qθi for each agent i are represented as
DRQNs [16]. The experience replay buffer D, a merged
version of Mac-CERTs and Mac-JERTs, contains the tu-
ples 〈z,m, z′, rc, ~r c〉, where z = {z0, ..., zN}, m =
{m0, ...,mN} and rc = {rc0, ..., rcN}. In each training itera-
tion, agents sample a mini-batch of sequential experiences
to first optimize the centralized joint macro-action-value
function Qφ in the way mentioned in Section II-C, and
then update each decentralized macro-action-value function
by minimizing the squared TD error:

L(θi) = E<z,m,z′,rc,~r c>∼D

[(
yi −Qθi(hi,mi)

)2]
(2)

where,

yi = rci + γQθ−i

[
h′i,
[

arg max
m′

Qφ(h′,m′)
]
i

]
(3)

In Eq. 3,
[

arg maxm′ Qφ(h′,m′)
]
i

implies selecting the
joint macro-action with the highest value and then selecting
the individual macro-action for agent i. In this updating
rule, not only are double estimators Qθ−i and Qφ applied
to counteract overestimation on target Q-values, but also
a centralized heuristic on action selection is embedded.
Now, from each agent’s perspective, the target Q-value is
calculated by assuming all agents will behave based on the
centralized Q-net next step (Eq. 3), in which the provided
global information by the centralized Q-net will help each
agent to avoid getting trapped in local optima and also
facilitates them to learn cooperation behaviors.

Additionally, similar to the idea of the conditional op-
eration for training a centralized joint macro-action-value
function discussed in Section II-C, in order to obtain a
more accurate prediction by taking each agent’s macro-action
executing status into account, Eq. 3 can be rewritten as:

yi = rci + γQθ−i

[
h′i,
[

arg max
m′

Qφ(h′,m′ |mundone)
]
i

]
(4)

B. ε-greedy Exploration Policy Selection

Exploration is also a difficult problem in multi-agent
reinforcement learning. ε-greedy exploration has been widely
used in many methods such as Q-learning to generate training
data [21]. In DQN-based methods, as a hyper-parameter, ε
often acts with a linear decay along with the training steps
from 1.0 to a lower value to achieve the trade-off between
exploration and exploitation. And, exploration can be done
based on either the centralized or decentralized policies.
Centralized exploration may help to choose cooperative
actions more often that would have a low probability of
being selected from decentralized policies, and decentralized
exploration may provide more realistic data that is actually
achievable by decentralized policies.

Therefore, in our approach, besides tuning ε, we introduce
a hyper-selection for performing a ε-greedy behavior policy
that can perform either centralized exploration based on Qφ
or decentralized exploration using each agent’s Qθi .

However, without having enough knowledge about the
properties of a given domain in the very beginning, it is
not clear which exploration choice is the best. To cope with
this, we propose a more generalized version of MacDec-
DDRQN, called Parallel-MacDec-MADDRQN, summarized
in Algorithm 1. The core idea is to have two parallel
environments with agents respectively performing central-
ized exploration (cen-ε-greedy) and decentralized exploration
(dec-ε-greedy) in each. The centralized Qφ is first trained
purely using the centralized experiences, while each agent’s
decentralized Qθi is then optimized using Eq. 4 with only
decentralized experiences. The performance of this algorithm
in the Warehouse domain is presented in Section IV-B



Algorithm 1 Parallel-MacDec-MADDRQN

Initialize centralized Q-Networks: Qφ, Q−φ
Initialize decentralized Q-Networks for each agent i: Qθi , Q−θi
Initialize two parallel environments cen-env, dec-env
Initialize two step counters tcen-env, tdec-env
Initialize centralized buffer Dcen ← Mac-JERTs
Initialize decentralized buffer Ddec ← Mac-CERTs
Get initial joint-macro-observation ~z for agents in cen-env
Get initial macro-observation zi for each agent i in dec-env
for dec-env-episode = 1 to M do

Agents take joint-macro-action with cen-ε-greedy using Qφ
Store 〈~z, ~m, ~z ′, ~r c〉 in Dcen
tcen-env ← tcen-env + 1
Each agent i takes macro-action with dec-ε-greedy using Qθi
Store 〈zi,mi, z′i, rci 〉 in Ddec
tdec-env ← tdec-env + 1
if tdec-env mod Itrain == 0 then

Sample a mini-batch Bcen of sequential experiences
〈~z, ~m, ~z ′, ~r c〉 from Dcen

Perform a gradient decent step on
(
y −Qφ(~h, ~m)

)2
Bcen

, where

y = ~r c + γQφ−
(
~h ′, argmax~m ′ Qφ(

~h ′, ~m ′ | ~mundone)
)
.

Sample a mini-batch Bdec of sequential experiences
〈zi,mi, z′i, r ci 〉 from Ddec for each agent i
Perform a gradient decent step on

(
yi−Qθi (hi,mi)

)2
Bdec

, where

yi = rci +γQθ−i

[
h′i,

[
argmaxm′ Qφ(h

′,m′ |mundone)
]
i

]
end if
if tdec-env mod ITargetUpdate = 0 then

Update centralized target network φ− ← φ
Update each agent’s decentralized target network θ−i ← θi

end if
if tcen-env =max-episode-length or terminal state then

Reset cen-env
Get initial joint-macro-observation ~z for agents in cen-env

end if
if tdec-env =max-episode-length or terminal state then

Reset dec-env
Get initial macro-observation zi for each agent i in dec-env

end if
end for

IV. SIMULATION EXPERIMENTS

In this section, we describe two macro-action-based multi-
robot domains designed in our previous work [11], the Box
Pushing (BP) domain and the Warehouse Tool Delivery
(WTD) domain. We evaluate our approaches in these two
domains while comparing with macro-action-based Dec-
HDDRQN, fully centralized training via DDRQN (Cen-
DDRQN), and some ablations we consider.

A. Domain Setup

(a) Box Pushing (b) Warehouse Tool Delivery

Fig. 2: Experimental environments in simulation

1) Box Pushing: (Fig. 2a). This domain has two mobile
robots with the goal of cooperatively pushing a big box
(middle brown square), which is only movable when two

robots push it together, to the goal area (yellow bar at the
top). The difficulties come from partial observability (each
robot is only allowed to observe one cell in front) and two
small boxes which attract the robots to learn the sub-optimal
policy that is pushing one small box on its own. We provide
two categories of macro-actions for each robot: (a) One step
macro-actions, Turn-left, Turn-right and Stay; (b) Long-
term macro-actions, Move-to-small-box(i) and Move-to-big-
box(i), navigate the robot to one of the red waypoints below
the corresponding box and ends with the robot facing it;
Push commands the robot to keep moving forward until
arriving at the boundary of the grid world, touching the big
box, or pushing a small box to the goal area. The macro-
observation space for each robot consists of four different
possible values associated with the cell in front of the robot:
empty, teammate, boundary, small box and big box. Robots
obtain +100 or +10 rewards respectively for pushing the
big box or a small box to the goal area, and a −5 penalty
is assigned to the team when any robot pushes the big box
alone or hits the boundaries. Robots also get −0.1 reward
per time-step. Note that each episode terminates either by
reaching the horizon limitation or when any box pushed to
the goal area.

2) Warehouse Tool Delivery: (Fig. 2b). In order to test if
our approach is applicable to address real-world industrial
problems, we developed a tool delivery task for a warehouse
environment (5× 7 continuous space), in which, one human
works on an assembly task (4 steps in total and each step
takes 18 units time) in the workshop. The human always
starts from step one and needs a particular tool for each
future step to continue. The objective of the three robots is
to assist the human to finish the assembly task as soon as
possible by collaboratively searching for the right tools in the
proper order on the brown table and then passing them to one
of the mobile robots (the green or blue) to accomplish the
delivery in time. To make this problem more challenging, the
info about the correct tool that the human needs for future
step is not known to the robots, so it has to be learned during
training. Also, the human is only allowed to possess one tool
at a time from the mobile robots.

Each mobile robot has three macro-actions: Go-to-WS
navigates the robot to the red waypoint at the workshop; Go-
to-TR drives the robot to the upper right waypoint in the tool
room; the duration of these two macro-actions depends on the
robot’s moving speed (0.6 in our case); Get-Tool navigates
the robot to the pre-assigned waypoint beside the table and
waits there until either obtaining one tool from the gray robot
or 10 time-steps have passed. Also, there are four applicable
macro-actions for the gray robot: Wait-M lasts 1 time-step;
Search-Tool(i) takes 6 time-steps to find the tool i and place
it in the staging area (lower left on the table where can hold
at most two tools). Running this action when the staging area
is fully occupied leads the robot to pause for 6 time-steps.
Pass-to-M(i) lasts 4 time-steps to pass one of the tools from
the staging area, in first-in-first-out order, to mobile robot i.

We allow each mobile robot to capture four different fea-
tures in a macro-observation, including location, the human’s
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(b) Grid world 30× 30

Fig. 3: Comparison of the average performance via three
different learning approaches in BP domain.

current step (only accessible when in the workshop), the
tools being carried by that robot, and the number of tools
in the staging area (only observable when in the tool room).
While, the gray robot can monitor which mobile robot is
beside the table and the number of tools in the staging area.

The global rewards provide −1 each time-step to encour-
age the robots to deliver the object(s) in a timely manner
without causing the human to pause; a penalty of −10 is
given when the gray robot executes Pass-to-M(i) but no
mobile robots are beside the table; a bonus of +100 is
awarded to the entire team when the robots successfully
deliver a correct tool to the human.

B. Results in the Box Pushing Domain

We first evaluate our method MacDec-MADDRQN (Our-
1) with centralized ε-greedy exploration in Box Pushing
domain, and compare its performance with Dec-HDDRQN
and Cen-DDRQN. In all three methods, the decentralized Q-
net consists of two MLP layers, one LSTM layer [22] and
another two MLP layers, in which there are 32 neurons on
each layer with Leaky-Relu as the activation function for
MLP layers. The centralized Q-net has the same architecture
but 64 neurons in the LSTM layer. The performance for two
sizes of the domain is shown in Fig. 3, which is the mean of
the episodic discounted returns (γ = 0.98) over 40 runs with
standard error and smoothed by 20 neighbors. The optimal
returns are shown as red dash-dot lines.

In both scenarios, the advantages of having the centralized
Qφ in the double-Q updating (Eq. 4) is seen by it achieving
similar performance to Cen-DDRQN and converging to the
optimal returns earlier than Dec-HDDRQN. Furthermore, in
the bigger world space (Fig. 3b), our method even leads to
slightly faster learning than the fully centralized approach.
This is because centralized Q-learning deals with the joint
macro-observation and joint macro-action space, which is
much bigger than the decentralized spaces from each agent’s
perspective. Our method has the key benefit of utilizing
centralized information, but learning over a smaller space.

C. Results in the Warehouse Tool Delivery Domain

We test our second proposed algorithm Parallel-MacDec-
MADDRQN (Our-2) in this warehouse domain using the
same evaluation procedure mentioned above. The results
shown in Fig. 4 are generated by using the same neural
network architecture as the one adopted in the BP domain
but with 32 neurons in each MLP layer and 64 neurons

in LSTM layer for both the centralized Q-net and each
decentralized Q-net because of the bigger macro-action and
macro-observation spaces.
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Fig. 4: Performance of three dif-
ferent learning methods in WTD.

The most challeng-
ing part in this domain
is that robots need to
reason about collabo-
rations among team-
mates and which tool
the human will need
next. However, the gray
robot, that plays the
key role of finding the
correct tool for deliv-
ery, does not have any
knowledge about the human’s need nor any direct observa-
tion of the human’s status. Also, the mobile robots cannot
observe each other. From the gray robot’s perspective, the
reward for its selection is very delayed, which depends on
the mobile robots’ choice and their moving speeds. For these
reasons, each robot individually learning from local signals
(in Dec-HDDRQN) leads to much lower performance but
the centralized learner can achieve near-optimal results. Our
approach achieves significant improvement while learning
decentralized policies, but due to the limitation of local
information, it inherently cannot perform as well as the cen-
tralized policy in such a complicated domain. Nevertheless,
the near-optimal behaviors are still learned by our Parallel-
MacDec-MADDRQN, which are presented in the real robot
experiments (Section V).
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Fig. 5: Results of ablation ex-
periments in WTD.

We also conducted
ablation experiments
in WTD in order
to investigate 1) the
necessity of separately
training the centralized Q-
net and decentralized Q-
nets in two environments
by comparing Parallel-
MacDec-MADDRQN
(Our-2) with MacDec-

MADDRQN with centralized exploration (Our-1); 2) the
significance of including centralized Qφ in double-Q
updating to optimize each decentralized Qθi (Eq. 4) by
performing Our-1 with regular deep double-Q learning
(referred to Our-1-R). The results shown in Fig. 5 reveal
that Our-2 outperforms other two ablations, which gives the
affirmative answers to the above questions.

V. HARDWARE EXPERIMENTS

To verify that the learned decentralized policies in Parallel-
MacDec-MADDRQN can effectively control a team of
robots to achieve high-quality results in practice, we recre-
ated the warehouse domain using three real robots: one Fetch
robot [4] and two Turtlebots [5] (Fig. 6). A rectangle space
with dimension 5.0 m by 7.0 m was taped to resemble the
warehouse in the simulation (Section IV-A). All the pre-



defined waypoints and robots’ initial positions were placed
equal in ratio to the simulation. Also, the real-world human’s
task is to build a small table in the workshop, requiring three
particular tools in the following order: a tape measure, a
clamp and an electronic drill (from YCB object set [23]).

Fig. 6: Hardware experiment setup.

Each robot had its own decentralized macro-observation
space designed over ROS [24] services that kept broadcasting
the signals about Turtlebots’ locations, human’s state (only
accessible to the Turtlebot when it is located in workshop
area), the status of each Turtlebot’s basket, and the number
of objects in the staging area (only observable in the tool
room). Fetch’s manipulation macro-actions are achieved by
first projecting the point cloud data captured by Fetch’s
head camera into an OpenRAVE [25] environment and
performing motion planning using the OMPL [26] library.
The Turtlebot’s movement macro-actions are controlled via
the ROS navigation stack.

Fig. 7 shows the sequential cooperative behaviors per-
formed by the robots. Although there is no direct interaction
between the Fetch and the human, the trained policy learned
the correct tools that the human needed and commanded the
Fetch to find them in the proper order. Furthermore, the Fetch
behaved intelligently such that: (a) Fig. 7c-7e, after placing
the clamp into the staging area followed by observing no
Turtlebot beside the table, it continued to look for the third
object instead of waiting for Turtlebot-0 (bounded in red) to
come over; (b) Fig. 7e-7f, after finding the electronic drill,
it first passed the clamp (the correct second object that the
human needed) to Turtlebot-0 who arrived the table ahead
of Turtlebot-1(bounded in blue). Meanwhile, Turtlebots were
also clever in such a way that: (a) they delivered the three
tools in turn, instead of letting one of them deliver all the
tools or perform delivery only after having all the tools in
the basket which actually would make the human wait; (b)
they directly went to the human for delivery after obtaining
a tool from the Fetch without any redundant movement, e.g.
going to the tool room waypoint again.

VI. CONCLUSION

This paper introduces MacDec-MADDRQN and Parallel-
MacDec-MADDRQN: two new macro-action-based multi-
agent deep reinforcement learning methods with decentral-
ized execution. These methods enable each agent’s decentral-
ized Q-net to be trained while capturing the effects of other
agents’ actions by using a centralized Q-net for decentralized
policy updating. The results in the benchmark Box Pushing
domain demonstrate the advantage of our methods where

(a) Fetch searches and stages
the tape measure as T-1 ap-
proaches the table.

(b) Fetch sees T-1 arriving and
passes it the tape measure,
while T-0 reaches workshop
and observes human’s state.

(c) T-1 observes the tape mea-
sure in its basket and moves
to workshop, while T-0 goes
back tool room and Fetch
finds the clamp.

(d) T-1 deliveries the tape
measure and T-0 runs to the ta-
ble for the second tool, while
Fetch notices no teammate
around table yet.

(e) Fetch grabs the electronic
drill and stages it next to the
clamp, while T-0 waits besides
table and T-1 is coming back.

(f) Fetch observes T-0 has
been ready there and passes
clamp to it, in the mean time,
T-1 arrives at the table.

(g) T-0 immediately goes to
send the 2nd tool and Fetch
passes the last tool to T-1.

(h) Human gets the clamp
from T-0, and T-1 is going to
deliver the electronic drill.

(i) The last tool is passed to the human by T-1 and the entire
delivery task is completed.

Fig. 7: Behaviors of robots running the decentralized policies
(learned via Parallel-MacDec-MADDRQN) in the warehouse
domain, where Turtlebot-0 (T-0) is bounded in red and
Turtlebot-1 (T-1) is bounded in blue.

the decentralized training achieves equally good performance
as the centralized one. Furthermore, the warehouse domain
results confirm the benefits and the efficiency of our new
double-Q updating rule. Importantly, a team of real robots
running the decentralized policies learned via our method
performed efficient and reasonable behaviors in the ware-
house domain, which validates the usefulness of our macro-
action-based deep RL frameworks in practice.
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