
Optimizing Fixed-Size Stochastic Controllers for POMDPs
and Decentralized POMDPs

Christopher Amato camato@cs.umass.edu

Daniel S. Bernstein bern@cs.umass.edu

Shlomo Zilberstein shlomo@cs.umass.edu

Department of Computer Science, University of Massachusetts,
Amherst, MA 01003 USA

Abstract

POMDPs and their decentralized multiagent counterparts, DEC-POMDPs, offer a rich
framework for sequential decision making under uncertainty. Their computational com-
plexity, however, presents an important research challenge. One approach that effectively
addresses the intractable memory requirements of current algorithms is based on represent-
ing agent policies as finite-state controllers. In this paper, we propose a new approach that
uses this representation and formulates the problem as a nonlinear program (NLP). The
NLP defines an optimal policy of a desired size for each agent. This new representation
allows a wide range of powerful nonlinear programming algorithms to be used to solve
POMDPs and DEC-POMDPs. Although solving the NLP optimally is often intractable,
the results we obtain using an off-the-shelf optimization method are competitive with state-
of-the-art POMDP algorithms and outperform state-of-the-art DEC-POMDP algorithms.
Our approach is easy to implement and it opens up promising research directions for solving
POMDPs and DEC-POMDPs using nonlinear programming methods.

1. Introduction

Developing effective frameworks for reasoning under uncertainty is a thriving research area
in artificial intelligence. Rapid progress in recent years has contributed to the development
of several new solution techniques. Nevertheless, improving the scalability of existing al-
gorithms is still an important challenge. When a single decision maker is considered, the
partially observable Markov decision process (POMDP) offers a powerful and widely used
framework. The POMDP model offers a rich language to describe single agent planning in
domains that involve stochastic actions, noisy observations, and a variety of possible ob-
jective functions. POMDP applications include robot control (Simmons & Koenig, 1995),
medical diagnosis (Hauskrecht & Fraser, 1998) and machine maintenance (Eckles, 1968).
In the area of robot control, partial observability is used to model sensors that provide
uncertain and incomplete information about the state of the environment. In a medical
setting, the internal state of the patient is often not known with certainty. The machine
maintenance problem – one of the earliest application areas of POMDPs – seeks to find a
cost-effective strategy for inspection and replacement of parts in a domain where partial
information about the internal state is obtained by inspecting the manufactured products.
Numerous other POMDP applications are surveyed in (Cassandra, 1998b).

Developing effective algorithms for POMDPs is an active research area that has seen
significant progress (Cassandra, 1998a; Hansen, 1998; Ji, Parr, Li, Liao, & Carin, 2007;

1

Littman, Cassandra, & Kaelbling, 1995; Meuleau, Kim, Kaelbling, & Cassandra, 1999;
Pineau, Gordon, & Thrun, 2003; Poupart, 2005; Poupart & Boutilier, 2003; Smith & Sim-
mons, 2004, 2005; Spaan & Vlassis, 2005). Despite this progress, it is generally accepted that
exact solution techniques are limited to toy problems due to high memory requirements.
Consequently, approximation algorithms are often necessary in practice. Approximation
methods perform well in many problem domains, but have some known disadvantages. For
instance, point-based methods (Ji et al., 2007; Pineau et al., 2003; Spaan & Vlassis, 2005;
Smith & Simmons, 2004, 2005) perform better with a small reachable belief space. Other
algorithms rely on local search methods based on gradient ascent (Meuleau et al., 1999)
and linear programming (Poupart & Boutilier, 2003) or require fine tuning of heuristic
parameters to produce high-valued solutions (Poupart, 2005).

Solving problems in which a group of agents must operate collaboratively in some envi-
ronment based solely on local information is also an important challenge. When the agents
must rely on uncertain partial knowledge about the environment, this is particularly diffi-
cult. This problem can be modeled as a decentralized partially observable Markov decision
process (DEC-POMDP), which is a multiagent extension of the POMDP framework. In
a DEC-POMDP each agent must cope with uncertainty about the other agents as well as
imperfect information of the system state. The agents seek to optimize a shared objective
function using solely local information in order to act.

Many real world applications in cooperative multiagent systems can be modeled as DEC-
POMDPs. Some examples include distributed robot control (Becker, Zilberstein, Lesser, &
Goldman, 2004; Emery-Montemerlo, Gordon, Schneider, & Thrun, 2004) and networking
problems (Bernstein, Hansen, & Zilberstein, 2005; Hansen, Bernstein, & Zilberstein, 2004).
In multiagent domains, robot sensors not only provide uncertain and incomplete informa-
tion about their own state, but also about the location of the other robots. This lack of
information leads to different perspectives on the state of the environment and complicates
the planning process. Similarly, in a decentralized network, each node must make deci-
sions about when and where to send packets without full awareness of the knowledge and
actions of nodes in the rest of the network. Other applications of DEC-POMDPs include
e-commerce and coordination of space exploration systems.

Although there has been some recent work on exact and approximate algorithms for
DEC-POMDPs (Bernstein et al., 2005; Hansen et al., 2004; Nair, Pynadath, Yokoo, Tambe,
& Marsella, 2003; Petrik & Zilberstein, 2007; Seuken & Zilberstein, 2007b; Szer, Charpillet,
& Zilberstein, 2005; Szer & Charpillet, 2005), only two algorithms (Bernstein et al., 2005;
Szer & Charpillet, 2005) are able to find solutions for the infinite-horizon discounted case.
Another algorithm can solve a restricted subclass of infinite-horizon DEC-POMDPs, using
an average reward formulation rather than the standard discounted objective (Petrik &
Zilberstein, 2007). The infinite-horizon problem is particularly suitable for such domains as
networking and some robot control problems, where the agents operate continuously. The
two general algorithms for infinite-horizon problems seek to optimize fixed-size finite-state
controllers. These approaches perform well in some problems, but Szer and Charpillet’s
algorithm (2005) is limited to very small solutions because of high memory and running
time requirements. Bernstein et al.’s method (2005) is more scalable, but it often produces
low-quality results. It is worth noting that many POMDP algorithms cannot be easily
extended to apply to DEC-POMDPs. One reason for this is that the decentralized nature of

2

the DEC-POMDP framework results in a lack of a shared belief state, making it impossible
to properly estimate the state of the system. Thus, a DEC-POMDP cannot be formulated
as a continuous state MDP and algorithms that use this formulation do not generalize.

In this paper, we explore a new solution technique for POMDPs and DEC-POMDPs
that optimizes fixed-size controllers. Our approach formulates the optimal memory-bounded
solution as a nonlinear program (NLP), and exploits existing nonlinear optimization tech-
niques to solve the problem. Nonlinear programming is an active field of research that has
produced a wide range of techniques that can efficiently solve a variety of large problems
(Bertsekas, 2004). In the POMDP case, parameters are optimized for a fixed-size controller
which produces the policy for that problem. In the DEC-POMDP case, a set of fixed-
size independent controllers is optimized, which when combined, produce the policy for
the DEC-POMDP. The formulation provides a new framework for which future algorithms
can be developed. We present an overview of how to solve these problems optimally, but
as this would often be intractable in practice, we also evaluate an effective approximation
technique using standard NLP solvers. Our approach facilitates scalability as it offers a
tradeoff between solution quality and the available resources. That is, for a given amount
of memory, we can search for a controller that is optimal for that size. Large controllers
may be needed to provide a near optimal solution in some problems, but our experiments
suggest that smaller controllers produce high quality solutions in a wide array of problems.

In order to increase the solution quality of our memory-bounded technique for DEC-
POMDPs, we examine the benefits of introducing a correlation device, which is a shared
source of randomness. This allows a set of independent controllers to be correlated in order
to produce higher values, without sharing any additional local information. Correlation
adds another mechanism in an effort to gain the most possible value with a fixed amount of
space. This has been shown to be useful in order to increase value of fixed-size controllers
(Bernstein et al., 2005) and we show that is also useful when combined with our NLP
approach.

The rest of the paper is organized as follows. We first give an overview of the POMDP
and DEC-POMDP models and explain how infinite-horizon solutions can be represented as
stochastic controllers. We discuss some previous work on each model and then show how to
define optimal controllers using a nonlinear program. We then provide experimental results
using a generic off-the-shelf NLP solver in various POMDP and DEC-POMDP benchmark
domains. For POMDP problems, our approach is competitive with other state-of-the-art
solution methods in terms of solution quality and running time, but it generally produces
higher quality when given less memory. When applied to DEC-POMDPs, our approach
proves to be more valuable. In general, optimizing our NLP formulation produces controllers
that outperform other DEC-POMDP approaches in a range of domains. In both cases, very
concise representations are found. Our results show that by using the NLP formulation,
small, high-valued controllers can be efficiently found for a large assortment of POMDPs
and DEC-POMDPs. Furthermore, performance is likely to improve as more specialized
and scalable NLP solvers are developed that can take advantage of the structure of the
controller optimization problem.

3

2. Background

As the DEC-POMDP model is an extension of the POMDP model, we begin with a overview
of POMDPs and then show how this framework can be extended to cooperative multiagent
environments modeled as DEC-POMDPs.

2.1 The POMDP model

A POMDP can be defined with the following tuple: M = 〈S,A, P,R,Ω, O〉, with

• S, a finite set of states with designated initial state distribution b0

• A, a finite set of actions

• P , the state transition model: P (s′|s, a) is the probability of transitioning to state s′

if action a is taken in state s

• R, the reward model: R(s, a) is the immediate reward for taking action a in state s

• Ω, a finite set of observations

• O, the observation model: O(o|s′, a) is the probability of observing o if action a is
taken and the resulting state is s′

We consider the case in which the decision making process unfolds over an infinite
sequence of stages. At each stage the agent selects an action, which yields an immediate
reward and an observation. The agent must choose an action based on the history of
observations seen. Note that because the state is not directly observed, it may be beneficial
for the agent to remember the observation history. This will help the agent to identify the
set of possible states at any step. The objective of the agent is to maximize the expected
discounted sum of rewards received. Because we consider the infinite sequence problem, we
use a discount factor, 0 ≤ γ < 1, to maintain finite sums.

Finite-state controllers can be used as an elegant way of representing POMDP policies
using a finite amount of memory (Hansen, 1998). The state of the controller is based on
the observation sequence seen, and in turn the agent’s actions are based on the state of its
controller. To help distinguish states of the finite-state controller from states of the POMDP,
we will refer to controller states as nodes. These controllers address one of the main causes
of intractability in POMDP exact algorithms by not storing whole observation histories.
Thus states of the controller can encapsulate key information about the observation history
in a fixed number of nodes. We also allow for stochastic transitions and action selection,
as this can help to make up for limited memory (Singh, Jaakkola, & Jordan, 1994). We
provide an example showing this phenomenon in a previous paper (Amato, Bernstein, &
Zilberstein, 2007). The finite-state controller can formally be defined by the tuple 〈Q,ψ, η〉,
where Q is the finite set of controller nodes, ψ : Q → ∆A is the action selection model for
each node, mapping nodes to distributions over actions, and η : Q×A×O → ∆Q represents
the node transition model, mapping nodes, actions and observations to distributions over
the resulting nodes. The value of a node q at state s, given action selection and node
transition probabilities P (a|q) and P (q′|q, a, o), is given by the following Bellman equation:

V (q, s) =
∑

a

P (a|q)
[
R(s, a) + γ

∑
s′

P (s′|s, a)
∑

o

O(o|s′, a)
∑
q′

P (q′|q, a, o)V (q′, s′)
]

4

2.2 The DEC-POMDP model

A DEC-POMDP involves multiple agents that operate under uncertainty based on different
streams of observations. Like a POMDP, the infinite-horizon DEC-POMDP unfolds over
an infinite sequence of stages. At each stage, every agent chooses an action based purely
on its local observations, resulting in an immediate reward for the set of agents and an
observation for each individual agent. Again, because the state is not directly observed, it
may be beneficial for each agent to remember its observation history. A local policy for an
agent is a mapping from local observation histories to actions while a joint policy is a set of
policies, one for each agent in the problem. Like the POMDP case, the goal is to maximize
the infinite-horizon total cumulative reward, beginning at some initial distribution over
states b0. Again, a discount factor, γ, is used to maintain finite sums.

More formally, a DEC-POMDP can be defined by the tuple: 〈I, S, {Ai}, P,R, {Ωi}, O〉
where I is the finite set of agents, S is again the finite set of states, Ai and Ωi are the finite
sets of actions and observations for each agent and P , R and O are now defined over the set
of agents. That is, P is the set of state transition probabilities: P (s′|s,~a), the probability of
transitioning from state s to s′ when actions ~a are taken by the set of agents, R is the reward
function: R(s,~a), the immediate reward for being in state s and agents taking actions ~a,
and O is the set of observation probabilities: O(~o|s′,~a), the probability of agents seeing the
set of observations ~o given the set of actions ~a has been taken which results in state s′.

Finite state controllers also provide an appealing way to model DEC-POMDP policies
with finite memory. Each agent’s local policy can be represented as a local controller and
the resulting set of controllers supply the joint policy, called the joint controller. These local
controllers are defined in the same way as the single agent controllers discussed above. The
joint controller has a defined initial node for each local controller and transitions occur in the
local controllers based on the action taken and the observation seen by the corresponding
agent. The value for starting in nodes ~q and at state s with action selection and node
transition probabilities for each agent, i, is given by the following Bellman equation:

V (~q, s) =
∑
~a

∏
i

P (ai|qi)
[
R(s,~a)+γ

∑
s′

P (s′|~a, s)
∑

~o

O(~o|s′,~a)
∑
~q′

∏
i

P (qi|qi, ai, oi)V (~q′, s′)
]

Note that the values can be calculated offline in order to determine a controller for each
agent that can then be executed online in a decentralized manner.

3. Previous work

A range of solution techniques for infintite-horizon POMDPs and DEC-POMDPs already
exist. We first review POMDP controller-based approaches, as that is the focus of our work.
These techniques seek to determine the best action selection and node transition parameters
for a fixed-size controller. We also mention some other POMDP approximation methods
that are based on improving the value function for a set of belief points (distributions over
the state space). We then review the current infinite-horizon DEC-POMDP approximate
algorithms and discuss the shortcomings of the current single and multiagent approximate
methods.

5

For a given node q and variables xa and xq′,a,o

Maximize ε, subject to
Improvement constraints:

∀s V (q, s) + ε ≤
∑

a

[
xaR(s, a) + γ

∑
s′ P (s′|s, a)

∑
oO(o|s′, a)

∑
q′ xq′,a,oV (q′, s′)

]
Probability constraints:∑

a xa = 1, ∀a
∑

q′ xq′,a,o = xa, ∀a xa ≥ 0, ∀q′, a, o xq′,a,o ≥ 0

Table 1: The linear program used by BPI. Variables xa and xq′,a,o represent P (a|q) and
P (q′, a|q, o) for a given node, q.

3.1 POMDP approaches

Policy Iteration (PI) (Hansen, 1998) is a technique to find epsilon-optimal POMDP con-
trollers that alternates between policy improvement and evaluation. Although PI was orig-
inally developed for deterministic controllers, it can be extended to stochastic ones as well.
In the improvement phase, dynamic programming is used to enlarge the controller. Also re-
ferred to as full backup, this entails creating a node for each possible combination of action
and transition for each observation to any of the nodes in the current controller. Thus a
controller with |Q| nodes before the backup has |A||Q||Ω| nodes afterwards. The controller is
then evaluated and nodes that have lesser or equal value for all states are replaced by nodes
that (pointwise) dominate them. The incoming edges of these nodes are redirected to the
dominating nodes, guaranteeing at least equal value. The new controller is then evaluated
to determine the updated value for each node and state. This process continues until the
controller is no longer changed by the improvement phase. While this method guarantees
that a controller arbitrarily close to optimal will be found an intractable amount of memory
is often required. Even when a high quality controller is found, it may be very large with
many unnecessary nodes generated along the way. This is exacerbated by the fact that
the algorithm cannot take advantage of an initial state distribution and must attempt to
improve the controller for any initial state.

Poupart and Boutilier (Poupart & Boutilier, 2003) developed a method called bounded
policy iteration (BPI) that uses a one step dynamic programming lookahead to attempt
to improve a POMDP controller without increasing its size. Like PI, this approach also
alternates between policy improvement and evaluation. It iterates through the nodes in the
controller and uses a linear program, shown in Table 1, to examine the value of probabilisti-
cally taking an action and then transitioning into the current controller. If an improvement
can be found for all states, the action selection and node transition probabilities are up-
dated accordingly. The controller is then evaluated and the cycle continues until no further
improvement can be found. BPI guarantees to at least maintain the value of a provided
controller, but it also does not use start state information resulting in larger than necessary
controllers that are not likely to be optimal.

To increase the performance of BPI, two improvements were added by Poupart and
Boutilier. First, they allowed the controller to grow by adding nodes when improvements

6

can no longer be made. This may permit a higher value to be achieved than what BPI can
produce with a fixed-size controller. Second, they used a heuristic for incorporating start
state knowledge and increasing the performance of BPI in practice (Poupart, 2005). In this
extension, termed biased BPI, improvement is concentrated in certain node and state pairs
by weighing each pair by the (unnormalized) occupancy distribution, which can be found
by solving the following set of linear equations:

o(q′, s′) = bp0(q′, s′) + γ
∑

q,s,a,o

o(q, s)P (s′|s, a)P (a|q)O(o|s′, a)P (q′|q, a, o)

for all states and nodes. The value bp0 is the probability of beginning in a node state pair.
A factor, δ, can also be included, which allows the value to decrease by that amount in each
node and state pair. This makes changes to the parameters more likely, as a small amount
of value can now be lost. As a result, value may be higher for the start state and node, but
as value can be lost for any pair, it could wind up being lower instead.

Meuleau et al. (1999) have proposed another approach to improve a fixed-size controller.
They used gradient ascent (GA) to change the action selection and node transition prob-
abilities and increase value. A cross-product MDP is created from the controller and the
POMDP by considering the states of the MDP to be all combinations of the states of the
POMDP and the nodes of the controller while actions of the MDP are based on actions of
the POMDP and deterministic transitions in the controller after an observation is seen. The
value of the resulting MDP can be determined and matrix operations allow the gradient to
be calculated. The gradient can then be followed in an attempt to improve the controller.

Other approximation approaches that have recently gained a high level of popularity
are point-based methods such as point-based value iteration (PBVI) (Pineau et al., 2003),
PERSEUS (Spaan & Vlassis, 2005), heuristic search value iteration (HSVI) (Smith & Sim-
mons, 2004) and point-based policy iteration (PBPI) (Ji et al., 2007). These techniques are
approximations of value iteration for finite-horizon POMDPs, but they can find solutions
for sufficiently large horizons that they can effectively produce infinite-horizon policies.

Value iteration is an optimal dynamic programming algorithm for finding solutions to
POMDPs (Sondik, 1971). This is done by transforming the POMDP into a continuous
state |S|-dimensional “belief state” MDP and building up the value function from the last
step until the first. Policies, starting with just the action set on the last step, are backed
up exhaustively by considering for each action and any observation that is seen taking any
current policy from the next step on. A policy can then be pruned if for any belief state,
there is some other policy with higher value. This procedure of backing up policies and
pruning them continues until a desired finite-horizon is reached or for the infinite-horizon
case, value does not change more than a given epsilon. The value of a policy can be
represented as a vector in |S|-dimensional space. The optimal value function for any given
horizon is then the max over these vectors resulting in a piecewise linear and convex value
function. The infinite-horizon value function can be approximated within any ε using a
finite set of vectors.

PBVI, PERSEUS, HSVI and PBPI fix the number of belief points considered at each
step of value iteration. That is, at each step, the value vector of each belief point under
consideration is backed up and the vector that has the highest value at that point is retained.
This permits the number of vectors to remain constant and the value function is still defined

7

over the entire belief space. If the right points are chosen, it may help concentrate the value
iteration on certain regions in the belief space. PBVI selects the set of belief points by
sampling from the action and observation sets of the problem while PERSEUS backs up only
a randomly selected subset of these points. Thus, PERSEUS is often faster and produces a
more concise solution than PBVI. PBVI has been shown to be optimal for sufficiently large
and well constructed belief point sets, but this is intractable for reasonably sized problems.
HSVI chooses points based on an additional upper bound that is incorporated into the
algorithm. This algorithm will also converge to the optimal solution, but again this often
requires an intractable amount of resources. PBPI uses Hansen’s PI, but with PBVI rather
than exact improvement over the whole belief space in the improvement phase. This allows
faster performance and sometimes higher values than the original PBVI.

3.2 DEC-POMDP approaches

As mentioned above, the two algorithms that can solve infinite-horizon discounted DEC-
POMDPs are those of Bernstein et al. (2005) and Szer and Charpillet (2005). Bernstein
et al.’s approach, called bounded policy iteration for decentralized POMDPs (DEC-BPI),
is a multiagent extension of Poupart and Boutilier’s BPI algorithm. Like BPI, it is an
approximate algorithm that seeks to improve stochastic finite-state controllers. Szer and
Charpillet describe an approach that searches for optimal fixed-size deterministic controllers.

DEC-BPI, like BPI, improves a set of fixed-size controllers by using linear programming.
This is done by iterating through the nodes of each agent’s controller and attempting to find
an improvement. The algorithm and linear program are very similar to those of BPI except
the optimization is done over not just the states of the problem, but also the nodes of the
other agents’ controllers. That is, the linear program searches for a probability distribution
over actions and transitions into the agent’s current controller that increases the value of
the controller for any initial state and any initial node of the other agents’ controllers. If
an improvement is discovered, the node is updated based on the probability distributions
found. Each node for each agent is examined in turn and the algorithm terminates when
no agent can make any further improvements.

Szer and Charpillet have developed a best-first search algorithm that finds deterministic
finite-state controllers of a fixed size. This is done by calculating an approximate value for
the controller given the current known deterministic parameters and filling in the remaining
parameters one at a time in a best-first fashion. The authors prove that this technique will
find the optimal deterministic finite-state controller of a given size.

3.3 Disadvantages of previous approximate algorithms

Because the optimal algorithms are not very practical, we focus on approximate methods.
Our new approach addresses several deficiencies of existing techniques. We discuss these
limitations, first considering POMDP methods and then DEC-POMDP approaches.

The linear program used by BPI may allow for controller improvement, but local maxima
are likely to be found since it performs only a one step lookahead while keeping the controller
values fixed. Also, because the improvement must be over all states it can be difficult to find
parameters that meet this requirement. Adding the heuristics used in biased BPI reduce
this necessity by optimizing over weighted states as well as allowing value to be lost. The

8

disadvantage of biased BPI is that the heuristics are not useful in all problems and for cases
when they are, domain knowledge or a large amount of experimentation may be necessary
to properly set them.

Gradient ascent has similar problems with local maxima as well other concerns. Meuleau
et al. must construct a cross-product MDP from the controller and the underlying POMDP
in a complex procedure to calculate the gradient. Also, the authors’ representation does not
take into account the probability constraints and thus does not calculate the true gradient
of the problem. Due to this complex and incomplete gradient calculation, GA can be time
consuming and error prone. Techniques more advanced than gradient ascent may be used
to traverse the gradient, but these shortcomings remain.

Point-based methods perform very well on many problems, but rely on choosing points
that are highly representative of the belief space. If there is a large amount of reachable
belief space and the values of different areas of that space are diverse, many points would
be needed to reasonably approximate the value. As more points are used, the algorithms
become more similar to value iteration and thus become less tractable.

DEC-POMDP algorithms also have significant drawbacks. As DEC-BPI is an extension
of BPI, its disadvantages are similar to those stated above. In general, it allows memory to
remain fixed, but provides only a locally optimal solution. This is due to the linear program
considering the old controller values from the second step on and the fact that improvement
must be over all possible states and initial nodes for the controllers of the other agents. As
the number of agents or size of controllers grows, this later drawback is likely to severely
hinder improvement. Also, start state knowledge is not used in DEC-BPI. While a heuristic
like that used in biased BPI could be added, its applicability often depends on the domain
and a more principled solution is desireable.

Szer and Charpillet’s approach is limited due to the fact that it searches for optimal
deterministic controllers. Since it focuses on deterministic controllers, larger controller
sizes may often be required in order to produce values comparable to those generated by
a stochastic counterpart. Since the approach relies on search to find an optimal set of
controllers of a fixed size, it has a very high space and time requirements. These drawbacks
indicate that a new approach is needed to improve the scalability and solution quality of
POMDP and DEC-POMDP approximate methods.

4. Optimizing fixed-size controllers

Unlike other controller based approaches for POMDPs and DEC-POMDPs, our formulation
defines an optimal controller for a given size. This is done by creating a set of new variables
that represent the values of each node (or set of nodes in the DEC-POMDP case) and
state pair. Intuitively, this allows changes in the controller probabilities to be reflected
in the values of the nodes of the controller. This is in contrast to backups used by other
methods which iteratively improve the probabilities and easily get stuck in local optima.
Our approach allows both the values and probabilities in the controller to be optimized in
one step, thus representing the optimal fixed-size controller. To ensure that these values are
correct given the action selection and node transition probabilities, nonlinear constraints
(based on the Bellman equation) must be added. The resulting NLP is generally harder to
solve, but many robust and efficient algorithms can be applied.

9

One premise of our work is that an optimal formulation of the problem facilitates the
design of solution techniques that can overcome the limitations of previous controller-based
algorithms and produce better stochastic controllers. The general nature of our formulation
allows a wide range of solution methods to be used. This results in a search that is more
sophisticated than previously used in controller-based methods. While no existing technique
guarantees global optimality in a finite amount of time, experimental results show that our
new formulation is advantageous. For instance, our results suggest that many POMDPs
and DEC-POMDPs have small optimal controllers or can be approximated concisely with
finite state-controllers. Thus, it is often unnecessary to use a large amount of memory in
order to represent a good approximation. Our NLP is also able to take advantage of the
start distribution of the problem, thus making better use of limited controller size. Lastly,
because our method searches for stochastic controllers, it is able to find higher-valued, more
concise controllers than search in the space of deterministic controllers.

Compared to point-based approaches, our formulation does not need to choose a set
of points and may be able to cover the belief space better in some problems. That is,
while point-based methods work well when there is a small reachable belief space or when
the chosen points are very representative of the whole space, the NLP approach seeks to
optimize the value of a controller for a specific initial point. For domains in which point-
based methods cannot find representative belief points, our approach may still be able to
construct high quality controllers. Also, since point-based methods rely on finite-horizon
dynamic programming, it may be difficult for these methods to complete the number of
backups necessary to approximate the value function well. As our approach uses finite-
state controllers, it is more suitable for finding infinite-horizon policies.

In the rest of this section, we give a formal description of the NLP and prove that its
optimal solution defines an optimal controller of a fixed size. We begin with the POMDP
formulation and then show the extension to the DEC-POMDP case.

4.1 NLP formulation for POMDPs

Unlike BPI, which alternates between policy improvement and evaluation, our nonlinear
program improves and evaluates the controller in one phase. The value of an initial node
is maximized at an initial state distribution using parameters for the action selection prob-
abilities at each node P (a|q), the node transition probabilities P (q′|q, a, o), and the values
of each node in each state V (q, s). To ensure that the value variables are correct given the
action and node transition probabilities, nonlinear constraints must be added to the opti-
mization. These constraints are the Bellman equations given the policy determined by the
action selection and node transition probabilities. Linear constraints are used to maintain
proper probabilities.

To reduce the representation complexity, the action selection and node transition prob-
abilities are merged into one, with

P (q′, a|q, o) = P (a|q)P (q′|q, a, o) and
∑
q′

P(q′, a|q, o) = P(a|q)

This results in a quadratically constrained linear program. QCLPs may contain quadratic
terms in the constraints, but have a linear objective function. They are a subclass of gen-
eral nonlinear programs that has structure which algorithms can exploit. This produces

10

For variables: x(q′, a, q, o) and z(q, s)

Maximize
∑

s

b0(s)z(q0, s), subject to

The Bellman constraints:

∀q, s z(q, s) =

∑
a

∑
q′

x(q′, a, q, o)

R(s, a) + γ
∑
s′

P (s′|s, a)
∑

o

O(o|s′, a)
∑
q′

x(q′, a, q, o)z(q′, s′)


Probability constraints:

∀q, o
∑
q′,a

x(q′, a, q, o) = 1, ∀q′, a, q, o x(q′, a, q, o) ≥ 0,

∀q, o, a
∑
q′

x(q′, a, q, o) =
∑
q′

x(q′, a, q, ok)

Table 2: The NLP defining an optimal fixed-size POMDP controller. Variable x(q′, a, q, o)
represents P (q′, a|q, o), variable z(q, s) represents V (q, s), q0 is the initial controller
node and ok is an arbitrary fixed observation.

a problem that is often more difficult than a linear program, but simpler than a general
nonlinear program. The QCLP formulation permits a large number of algorithms to be ap-
plied. Because the QCLP is a subclass of the general NLP and to use the same terminology
as the DEC-POMDP case, we will refer to the QCLP formulation as an NLP.

Table 2 describes the NLP which defines an optimal fixed-size controller for the POMDP
case. The value of a designated initial node is maximized given the initial state distribution
and the necessary constraints. The first constraint represents the Bellman equation for each
node and state which maintains correct values as probability parameters change. The second
and third constraints ensure that the x variables represent proper probabilities and the last
constraint guarantees that action selection does not depend on the resulting observation
which has not yet been seen.

Theorem 1 An optimal solution of the NLP in Table 2 results in an optimal stochastic
controller for the given size and initial state distribution.

Proof The optimality of the controller follows from the one-to-one correspondence between
the objective function of the NLP and the value of the POMDP at the initial state distribu-
tion. The Bellman equation constraints restrict the value variables to be consistent with the
chosen action selection and transition probabilities. The remaining constraints guarantee
that the action selection and transition probabilities are selected from valid distributions.
Hence, the optimal solution of this NLP represents the value of a fixed-size controller that
is optimal for the given POMDP. 2

11

For variables of each agent i: x(qi, ai), y(qi, ai, oi, q
′
i) and z(~q, s)

Maximize
∑

s

b0(s)z(~q0, s), subject to

The Bellman constraints:

∀~q, s z(~q, s) =∑
~a

∏
i

x(qi, ai)
[
R(s,~a) + γ

∑
s′

P (s′|s,~a)
∑

~o

O(~o|s′,~a)
∑
~q′

∏
i

y(qi, ai, oi, q
′
i)z(~q′, s

′)
]

And probability constraints for each agent i:

∀qi
∑
ai

x(qi, ai) = 1, ∀qi, oi, ai

∑
q′
i

y(qi, ai, oi, q
′
i) = 1

∀qi, ai x(qi, ai) ≥ 0, ∀qi, oi, ai y(qi, ai, oi, q
′
i) ≥ 0

Table 3: The NLP defining a set of optimal fixed-size DEC-POMDP controllers. For each
agent i, variable x(qi, ai) represents P (ai|qi), variable y(qi, ai, oi, q

′
i) represents

P (q′i|qi, ai, oi) and variable z(~q, s) represents V (~q, s) where ~q0 represents the initial
controller node for each agent.

4.2 NLP formulation for DEC-POMDPs

The nonlinear program for DEC-POMDPs is an extension of the one defined above which
incorporates multiple controllers. That is, the NLP seeks to optimize the value of a set of
fixed-size controllers given an initial state distribution and the DEC-POMDP model. The
variables for this problem are the action selection and node transition probabilities for each
node of each agent’s controller as well as the joint value of a set of controller nodes. Hence,
these variables are for each agent i, P (ai|qi) and P (q′i|qi, ai, oi) and for the set of agents
and any state, V (~q, s). Similar to the way our POMDP approach differs from BPI, this
approach differs from DEC-BPI in that it explicitly represents the node values as variables,
thus allowing improvement and evaluation to take place simultaneously. To ensure that the
values are correct given the action and node transition probabilities, nonlinear constraints
must be added to the optimization. These constraints are the DEC-POMDP Bellman
equations given the policy determined by the action and transition probabilities. We must
also ensure that the necessary variables are valid probabilities. This representation is shown
formally for an arbitrary number of agents in Table 3.

Theorem 2 An optimal solution of the NLP in Table 3 results in optimal stochastic con-
trollers for the given size and initial state distribution.

Proof Like the POMDP case, the optimality of the controllers follows from the NLP
constraints and maximization of given initial nodes at the initial state distribution. The
Bellman equation constraints restrict the value variables to valid amounts based on the

12

chosen probabilities and because the probability variables are independent, decentralized
controller is ensured. The maximum value is found given these restrictions for the initial
nodes and state distribution. Hence, optimal solution of this NLP represents optimal fixed-
size controllers. 2

5. Incorporating correlation in the decentralized model

As an improvement to DEC-BPI, Bernstein et al. also allow the agents’ controllers to be
correlated by using a shared source of randomness in the form of a correlation device. They
show that higher-valued controllers can sometimes be achieved when incorporating this
approach. As an example of a correlation device, imagine that before each action is taken,
a coin is flipped and both agents have access to the outcome. Each agent can then use
the new information to affect their choice of action. Along with stochasticity, correlation
is another means of increasing value when memory is limited. For instance, assume the
agents’ actions are randomized so that each chooses action A 50% of the time and action
B 50% of the time. This results in the joint actions of (A,A), (A,B), (B,A) and (B,B)
each 25% of the time. When a coin is added, the agents can correlate their actions based
on what is seen, such as allowing each agent to perform action A when “heads” is seen and
and action B when “tails” is seen. As each signal occurs 50% of the time, this permits
joint actions (A,A) and (B,B) to also take place 50% of the time. This type of policy is
impossible without the correlation device showing that the policies can be randomized and
correlated to allow higher value to be attained.

It is worth noting that there are many ways a correlation device can be implemented
in practice. These implementations include each agent using a random number generator
with a common seed, or agreeing before execution starts on a list of random numbers. In
each of these examples, each agent has access to the random signal at each step, but no
local information is shared and thus the execution remains decentralized.

More formally, a correlation device provides extra signals to the agents and operates
independently of the DEC-POMDP. That is, the correlation device is a tuple 〈C,ψ〉, where
C is a set of states and ψ : C → ∆C is a stochastic transition function that we will represent
as P (c′|c). At each step of the problem, the device transitions and each agent can observe
its state.

The independent local controllers defined above (in Table 3) can be modified to make
use of a correlation device. This is done by making the parameters dependent on the signal
from the correlation device. For agent i, action selection is then P (ai|qi, c) and node transi-
tion is P (q′i|qi, ai, oi, c). For n agents, the value of the correlated joint controller beginning
in nodes ~q, state s and correlation device state c is defined as

V (~q, s, c) =
∑
~a

∏
i

P (ai|qi, c)·
264R(s,~a) + γ

∑
s′

P (s′|~a, s)
∑

~o

O(~o|s′,~a)
∑
~q′

∏
i

P (qi|qi, ai, oi, c)
∑
c′

P (c′|c)V (~q′, s′, c′)
375

Our NLP formulation can be extended to include a correlation device. The optimization
problem, shown in Table 4 without the probability constraints, is very similar to the previous

13

For variables of each agent i: x(qi, ai, c), y(qi, ai, oi, q
′
i, c), z(~q, s, c) and w(c,c’)

Maximize
∑

s

b0(s)z(~q0, s, c), subject to

The Bellman constraints:

∀~q, s z(~q, s, c) =
∑
~a

∏
i

x(qi, ai, c)·

[
R(s,~a) + γ

∑
s′

P (s′|s,~a)
∑

~o

O(~o|s′,~a)
∑
~q′

∏
i

y(qi, ai, oi, q
′
i, c)

∑
c′

w(c, c′)z(~q′, s′, c)
]

Table 4: The nonlinear program for including a correlation device in our DEC-POMDP
NLP formulation. For each agent i, variable x(qi, ai, c) represents P (ai|qi, c),
variable y(qi, ai, oi, q

′
i, c) represents P (q′i|qi, ai, oi, c), variable z(~q, s, c) represents

V (~q, s, c), ~q0 represents the initial controller node for each agent and w(c, c′) rep-
resents P (c′|c). The other constraints are similar to those above with the addition
of a sum to one constraint for the correlation device.

NLP. A new variable is added for the transition function of the correlation device and the
other variables now include the signal from the device. The Bellman equation incorporates
the new correlation device signal at each step, but the other constraints remain the same.
A new probability constraint is added to ensure that the transition probabilities for each
state of the correlation device sum to one.

6. Methods for solving the NLP

Many efficient constrained optimization algorithms can be used to solve large NLPs. Con-
strained optimization seeks to minimize or maximize an objective function based on equality
and inequality constraints. When the objective and all constraints are linear, this is called
a linear program (LP). As our POMDP formulation has a linear objective function, but
contains some quadratic constraints, it is a quadratically constrained linear program. The
DEC-POMDP representation also has a linear objective, but has some nonlinear constraints
whose degree depends on the number of agents in the problem. Unfortunately, both of these
problems are nonconvex. Essentially, this means that there may be multiple local maxima
as well as global maxima, thus finding globally optimal solution is often very difficult. In
the next two subsections, we discuss a method to find these globally optimal solutions as
well as a more practical method for finding locally optimal solutions.

6.1 Finding a globally optimal solution for our NLP

One method that could be used to find optimal solutions for our NLP is difference of
convex functions (DC) programming (Horst & Tuy, 1996). DC programming uses a general
formulation that allows nonlinear and nonconvex constraints and is studied within the field

14

of global optimization. This formulation requires an objective function and constraints that
are a difference of two convex functions. Under mild conditions, it is possible to devise DC
programming algorithms that converge to the globally optimal solution.

More formally, a function f is called DC if it is real-valued and defined over a convex
set C ⊂ Rn and ∀ x ∈ C, f can be decomposed such that f(x) = p(x)− q(x) where p and
q are convex functions on C. A DC programming problem then has the form

min f(x) such that x ∈ C and gi(x) ≤ 0

where C ⊂ Rn is convex and objective function f and each constraint gi are DC on C.

Proposition 1 The POMDP and DEC-POMDP NLP formulations can be defined as DC
programming problems.

Proof First, the maximization in our formulations can be changed to a minimization
by multiplying by a factor of -1, and our probability and value bounds create a convex
region over which the variables are defined. Also, we can add slack variables to the equality
constraints in order to match the inequality constraints of the DC programming formulation.
Our linear objective function and linear constraints in both the POMDP and DEC-POMDP
case are trivially DC, but we must check the nonlinear constraints. Horst and Tuy show
that any function whose second partial derivatives are continuous is also DC (corollary I.1).
It is simple (but lengthy) to show that the nonlinear constraints in both our POMDP and
DEC-POMDP formulations are twice differentiable and these partial derivatives are contin-
uous. Thus, the variables are defined over a convex set and the objective and constraints
are DC in both formulations. This allows our NLP representations to be written as DC
programming problems. 2

Therefore, POMDPs and DEC-POMDPs can be formulated as DC programming prob-
lems. This has mostly theoretical significance; we doubt that this formulation could be
effective in practice. In principle, global optimization algorithms such as branch and bound
can be used, but because of the large size of the resulting DC programing problem, it is
unlikely that current optimal solvers can handle even small POMDPs or DEC-POMDPs.
Nevertheless, it would be interesting to identify classes of these problems for which DC
optimization is practical.

6.2 Finding a locally optimal solution for our NLP

Since it may not be possible or feasible to solve the NLP optimally, locally optimal methods
are often more useful in practice. A wide range of nonlinear programming algorithms have
been developed that are able to efficiently solve nonconvex problems with many variables
and constraints. Locally optimal solutions can be guaranteed, but at times, globally optimal
solutions can also be found. For example, merit functions, which evaluate a current solution
based on fitness criteria, can be used to improve convergence and the problem space can
be made convex by approximation or domain information. These methods are much more
robust than simpler methods such as gradient ascent, while retaining modest efficiency in
many cases.

15

For this paper, we used a freely available nonlinearly constrained optimization solver
called snopt (Gill, Murray, & Saunders, 2005) on the NEOS server (www-neos.mcs.anl.gov).
The algorithm finds solutions by a method of successive approximations called sequential
quadratic programming (SQP). SQP uses quadratic approximations which are then solved
with quadratic programming (QP) until a solution to the more general problem is found.
A QP is typically easier to solve, but must have a quadratic objective function and linear
constraints. In snopt, the objective and constraints are combined and approximated to
produce the QP. A merit function is also used to guarantee convergence from any initial
point.

We are also exploring other techniques that take advantage of the structure of POMDPs
and DEC-POMDPs in order to increase the scalability of certain solution methods. One
promising idea is to use constraint partitioning (Wah & Chen, 2005) to break up a problem
and solve the resulting pieces in such a way that allows a feasible solution to be found. For
this approach, we are exploring different methods for breaking up our representations and
more efficient ways of solving the subproblems. We are also examining ways to simplify
our nonlinear program formulations and determine solution techniques that match these
representations well, thereby increasing performance.

7. Experiments

For experimental comparison, we present an evaluation of the performance of our formula-
tion using an off-the-shelf nonlinear program solver, snopt, as well as leading POMDP and
DEC-POMDP approximation techniques. In these experiments we seek to determine how
well our formulation performs when used in conjunction with a generic solver such as snopt.
The formulation is very general and many other solvers may be applied. As mentioned
above, we are currently developing a customized solver that would take further advantage
of the inherent structure of the NLPs and increase scalability. While the POMDP results
are intended to show that a simple solution of the NLP is competitive with current solution
methods, the DEC-POMDP results show consistent improvement in solution quality over
previous approaches.

7.1 POMDP results

In this section, we compare the results obtained using our new formulation with those of
biased BPI, PBVI, PERSEUS, HSVI and PBPI. GA was also implemented, but produced
significantly worse results and required substantially more time than the other techniques.
Thus we omit the details of GA and focus on the more competitive techniques.

To improve scalability, we also use a version of our NLP formulation in which the action
at each node is fixed. As the transitions between the nodes remain stochastic, this only
reduces the expressiveness of the controller by a small amount due to the first action being
chosen deterministically. While we could have allowed this first action to be stochastic,
it was found that choosing this action greedily based on immediate reward at the initial
belief often performed reasonably well. To set the other actions of the controller, we cycled
through the available actions and assigned the next available action to the next node.
That is, if a problem has 4 actions and 9 nodes then each action is represented twice in
the controller except for the greedy first action which is represented 3 times. Given a fixed

16

controller size, fixing the action selection will usually perform worse than allowing stochastic
actions, but the problem is simpler and thus larger controller sizes can be solved. When
there were multiple highest-valued actions, one of these actions is randomly assigned to the
first node. The hope is that although fixing actions will result in less concise controllers,
higher-valued, larger controllers may be found. Throughout this section, we will refer to
the optimization of our NLP using snopt as NLO for the fully stochastic case and as NLO
fixed for the optimization with fixed actions.

Each of our NLP methods was initialized with ten random deterministic controllers and
we report mean values and times after convergence. To slightly increase the performance
of the solver upper and lower bounds were added. These represent the value of taking the
highest and lowest valued actions respectively for an infinite number of steps. All results
were found by using the NEOS server which provides a set of machines with varying CPU
speeds and memory limitations.

Benchmark problems

We first provide a comparison of our NLP formulations with leading POMDP approximation
methods on common benchmark problems. The first three domains, which were introduced
by Littman, Cassandra and Kaelbling (Littman et al., 1995), are grid problems in which
an agent must navigate to a goal square. The set of actions consists of turning left, right
or around, moving forward and staying in place. The observations consist of the different
views of the walls in the each domain based on each agent’s ability to observe walls in
four directions and a unique observation for the goal state. There are also three additional
observable landmarks in the Hallway problem. Both the observations and transitions are
extremely noisy and the start state is a random non-goal state. Only the goal has a reward
of 1 and the discount factor used was 0.95. Following the convention of previously published
results, we consider the versions of these problems that stop after the goal has been reached.

The other benchmark problem is a larger grid problem in which the goal is for the agent
to catch and tag an opponent which attempts to move away (Pineau et al., 2003). The
tagging agent has perfect knowledge of its state, but it cannot observe the oppenent unless
it is located in the same square. The agent can deterministically move in each of four
directions and can use the “tag” action. The oppenent attempts to move away from the
agent in a fixed way, but may stay in the same location with probability 0.2. If the agent
succeeds in tagging the oppenent, a reward of 10 is given, but if the oppenent is not in the
same square when the tag action is taken a reward of -10 is given. All other actions result
in a -1 reward and like the other benchmarks, the problem stops once the goal is reached
and a discount factor of 0.95 was used.

Table 5 shows the results from previously published algorithms and our NLP formula-
tions. We provide the mean values and times for the largest controller size that is solvable
with less than (approximately) 400MB of memory and under eight hours on the NEOS
server. The values of PBPI in the table are the highest values reported for each problem,
but the authors did not provide results for the Hallway problem. Because the experiments
were conducted on different computers, solution times give a general idea of the speed of
the algorithms. It is also worth noting that while most of the other approaches are highly
optimized, a generic solver is used with our approach in these experiments.

17

Tiger-grid |S| = 36, |A| = 5, |Ω| = 17
value size time

HSVI 2.35 4860 10341
PERSEUS 2.34 134 104

HSVI2 2.30 1003 52
PBVI 2.25 470 3448
PBPI 2.24 3101 51

biased BPI 2.22 120 1000
NLO fixed 2.20 32 1823

BPI 1.81 1500 163420
NLO 1.79 14 1174
QMDP 0.23 n.a. 2.76

Hallway |S| = 60, |A| = 5, |Ω| = 21
value size time

PBVI 0.53 86 288
HSVI2 0.52 147 2.4
HSVI 0.52 1341 10836

biased BPI 0.51 43 185
PERSEUS 0.51 55 35

BPI 0.51 1500 249730
NLO fixed 0.49 24 330

NLO 0.47 12 362
QMDP 0.27 n.a. 1.34

Hallway2 |S| = 93, |A| = 5, |Ω| = 17
value size time

PERSEUS 0.35 56 10
HSVI2 0.35 114 1.5
PBPI 0.35 320 3.1
HSVI 0.35 1571 10010
PBVI 0.34 95 360

biased BPI 0.32 60 790
NLO fixed 0.29 18 240

NLO 0.28 13 420
BPI 0.28 1500 274280
QMDP 0.09 n.a. 2.23

Tag |S| = 870, |A| = 5, |Ω| = 30
value size time

PBPI -5.87 818 1133
PERSEUS -6.17 280 1670

HSVI2 -6.36 415 24
HSVI -6.37 1657 10113

biased BPI -6.65 17 250
BPI -9.18 940 59772

PBVI -9.18 1334 180880
NLO fixed -10.48 5 2117

NLO -13.94 2 5596
QMDP -16.9 n.a. 16.1

Table 5: Values, representation sizes and running times (in seconds) for the set of bench-
mark problems. Results for other algorithms were taken from the following sources:
BPI (Poupart & Boutilier, 2003), biased BPI (Poupart, 2005), HSVI (Smith & Simmons,
2004), HSVI2 (Smith & Simmons, 2005), PERSEUS (Spaan & Vlassis, 2005), PBPI (Ji
et al., 2007), PBVI (Pineau et al., 2003), QMDP (Spaan & Vlassis, 2005)

In general, we see that the nonlinear optimization approach is competitive both in
running time and value produced, but does not outperform the other techniques. Our
method achieves 94%, 92%, 83% of max value in the first three problems, but does so with
much smaller representation size. A key aspect of the NLP approach is that high quality
solutions can be found with very concise controllers. This allows limited representation size
to be utilized very well, likely better than the other approaches in most problems.

The values in the table as well as those in Figure 1 show that our approach is currently
unable to find solutions for large controller sizes. For example, in the Tag problem, a so-
lution could only be found for a two node controller in the general case and a five node
controller when the actions were fixed. As seen in the figures, there is a near monotonic
increase of value in the Hallway problem when compared with either controller size or time.

18

As expected, fixing the actions at each node results in faster performance and increased
scalability. This allows higher valued controllers to be produced, but scalability remains
limited. As improved solvers are found higher values and larger controllers will be solvable
by both approaches. The other benchmark problems display similar trends of near mono-
tonic improvement and the need for increased scalability to outperform other methods on
these problems.

0

0.1

0.2

0.3

0.4

0.5

0 5 10 15 20 25

controller size

v
a
lu

e

NLO

NLO fixed

0

0.1

0.2

0.3

0.4

0.5

0 50 100 150 200 250 300 350 400

time in seconds

v
a
lu

e

NLO

NLO Fixed

Figure 1: Hallway problem values for various controllers sizes (left) and running times
(right) using the NLP formulation with and without fixed actions at each node.
Bars are used in the left figure to represent the minimum and maximum values
for each size.

Other domains

We also examined the performance of our NLP approach and selected approximation ap-
proaches in two other domains, the machine maintenance and aloha problems (Cassandra,
1998a). For HSVI2 and PERSEUS, software was used from web sites of Trey Smith and
Matthijs Spaan respectively. For biased BPI results, we used our own implementation and
like our NLP results, the mean values and times of optimizing ten fixed-size deterministic
controllers are reported. The heuristic parameters were found experimentally by choosing a
wide range of values and reporting the best results. Similarly, for PERSEUS, several meth-
ods for choosing a set of belief points of size 10000 were used and again, the best results
are reported.

The machine maintenance domain has 256 states, 4 actions and 16 observations. There
are four independent components in a machine used to manufacture a part. Each component
may be in good, fair or bad condition as well as broken and in need of replacement. At
each step, four actions are possible. The machine can be used to manufacture parts or we
can inspect, repair, or replace the machine. The manufacture action produces good parts
based on the condition of the components. Good components always produce good parts,

19

and broken components always produce bad parts. Components in fair or bad condition
raise the probability of producing bad parts. The condition of the resulting part is fully
observed. Inspecting the machine causes a noisy observation of whether each component
is good or bad. Components in good or fair condition are more likely to be seen as good,
and those in fair or broken are more likely to be seen as bad. Repairing the machine causes
parts that are not broken to improve by one condition with high probability. The replace
action transitions all components to good condition and components may degrade each step
unless repaired or replaced. Rewards for each action are: 1 for manufacturing good parts
for the day, -1 for inspecting, -3 for repairing and -15 for producing bad parts. A discount
factor of 0.99 was used.

The aloha problem is a simplified networking problem using the slotted Aloha protocol
with 90 states, 30 actions and 3 observations. In this problem, time is divided into slots
where the agent may receive a message and must decide what the probability that it will
send one. If two transmitters send at the same time a collision takes place and the messages
are backlogged. The number of messages that arrive at any given slot is determined by a
Poisson distribution, but limited to at most 10. The probability of sending a message is
discretized to 1/m with m being a positive integer less than M , the maximum number of
backlogged messages. For this problem M was set to be 30. The agent cannot observe the
number of messages in its queue only that the channel was idle, a message was transmitted or
a collision took place. These observations are deterministic and the state of the system is a
combination of the number of backlogged messages and the previous observation. Message
sending success probabilities are defined for each action and rewards are given for each
message under the maximum limit that the queue is currently at. A discount factor of
0.999 was used.

On these problems, which we provide results for in Table 6, our NLP formulation pro-
vides results that are nearly identical (over 99% of the value) on the machine problem (NLO
fixed) and the aloha problem (NLO). Both of our methods also outperform our versions of
biased BPI and PERSEUS in almost all evaluation criteria in both problems. While these
two algorithms may be able to increase their performance by adjusting heuristics, we believe
that our approach will continue to produce results that will match this performance without
the need to adjust heuristics. One reason for this is that these problems are difficult for
point-based approaches to solve optimally. This is due to the high discount factor causing
many backups to be required and the need for many vectors to closely approximate the
optimal value function. For instance, in the aloha domain, after 15 hours HSVI2 was able
to produce a value of 1212.92 which required over 15000 vectors to represent. In contrast,
while the mean value produced by our nonlinear optimization was 1211.67, a controller with
value 1217.11 was found with only six nodes in about 20 minutes. This shows the value
of our controller-based technique as a more efficient alternative to point-based methods in
problems such as these.

7.2 DEC-POMDP results

We also tested our nonlinear programming approach in four DEC-POMDP domains. In
each experiment, we compare our NLP solutions using snopt with Bernstein et al.’s DEC-
BPI and Szer and Charpillet’s BFS for a range of controller sizes. We also implemented

20

Machine |S| = 256, |A| = 4, |Ω| = 16
value size time

HSVI2 63.17 575 317
NLO fixed 62.65 20 3963

NLO 61.74 10 7350
biased BPI 59.75 20 30831
PERSEUS 39.28 86 2508

Aloha 30 |S| = 90, |A| = 29, |Ω| = 3
value size time

HSVI2 1212.15 2909 1841
NLO 1211.67 6 1134

NLO fixed 1076.49 26 2014
biased BPI 993.22 22 5473
PERSEUS 853.24 114 2512

Table 6: Values, representation sizes and running times (in seconds) for the machine main-
tenance and aloha problems.

the NLP and DEC-BPI techniques with a correlation device of size two. Like the POMDP
version, to improve scalability we also solved the NLP with fixed actions at each node. The
assignments were made as described above with each action in turn fixed to each node and
the set of actions which returns the highest immediate reward given the start state provides
the first action of each controller. Also like the POMDP case, if an agent had multiple
actions with equally high immediate values, a random one was chosen.

Each NLP and DEC-BPI algorithm was run until convergence was achieved with ten
different random deterministic initial controllers, and the mean values and running times
are reported. Unlike the figure in the POMDP section, the figures in this section do not
include maximum and minimum value bars. While these could have been provided, they
are very similar for each of our NLP methods and are omitted to increase readability. Also,
we do not always show the results for the largest solvable controller once the values plateau.
The optimal deterministic controller returned by BFS is also reported if it could be found
in under eight hours. The times reported for each NLP method can only be considered
estimates due to running each algorithm on external machines with uncontrollable load
levels, but we expect that they vary by only a small constant factor. Throughout this
section we will refer to the optimization of our NLP with snopt as NLO, the optimization
with the correlation device with two states as NLO corr, and the these optimizations with
fixed actions as NLO fixed and NLO fixed corr.

Recycling robots

As a first comparison, we have extended the Recycling Robot problem (Sutton & Barto,
1998) to the multiagent case. The robots have the task of picking up cans in an office
building. They have sensors to find a can and motors to move around the office in order
to look for cans. The robots are able to control a gripper arm to grasp each can and then
place it in an on-board receptacle. Each robot has three high level actions: (1) search for a
small can, (2) search for a large can or (3) recharge the battery. In our two agent version,
the larger can is only retrievable if both robots pick it up at the same time. Each agent can
decide to independently search for a small can or to attempt to cooperate in order to receive
a larger reward. If only one agent chooses to retreive the large can, no reward is given. For
each agent that picks up a small can, a reward of 2 is given and if both agents cooperate

21

10

15

20

25

30

35

1 3 5 7 9 11 13 15 17

controller size

v
a
lu

e

NLO
NLO corr
NLO fixed
NLO fixed corr
DEC-BPI
DEC-BPI corr
BFS

10

15

20

25

30

35

0 100 200 300 400 500 600 700 800 900 1000

time in seconds

v
a
lu

e

NLO

NLO corr

NLO fixed

NLO fixed corr

DEC-BPI

DEC-BPI corr

BFS

Figure 2: Recycling robots values for various controller sizes (left) and running times (right)
using NLP methods and DEC-BPI with and without a 2 node correlation device
and BFS

to pick the large can, a reward of 5 is given. The robots have the same battery states of
high and low, with an increased likelihood of transitioning to a low state or exhausting the
battery after attempting to pick up the large can. Each robot’s battery power depends only
on its own actions and each agent can fully observe its own level, but not that of the other
agent. If the robot exhausts the battery, it is picked up and plugged into the charger then
continues to act on the next step with a high battery level. The two robot version used
in this paper has 4 states, 3 actions and 2 observations. Also, a discount factor of 0.9 was
used for all problems.

As seen in Figure 2, in this domain all the methods performed fairly well. While the
DEC-BPI techniques converge over time to a value around 27, the other approaches con-
verge to at least 30. BFS, our general formulation (NLO) and our formulation with fixed
actions and a correlation device (NLO fixed corr) perform particularly well on this problem,
converging to a value near 32 with very small controllers. We also see that these values were
found quickly, often taking less than a minute for most methods. BFS could solve at most
a controller of size three, but in this problem that is sufficient to produce a high-valued
solution. We also see that while correlation helps in the case of fixed actions (NLO fixed
corr), it does not improve solution quality in the general case (NLO corr). Fixing actions
in our NLP approach (NLO fixed) allows larger controllers to be solved, but an increase in
value is not found.

Multiagent tiger problem

Another domain with 2 states, 3 actions and 2 observations called the multiagent tiger
problem was introduced by Nair et al. (2003). In this problem, there are two doors. Behind
one door is a tiger and behind the other is a large treasure. Each agent may open one of the
doors or listen. If either agent opens the door with the tiger behind it, a large penalty is
given. If the door with the treasure behind it is opened and the tiger door is not, a reward
is given. If both agents choose the same action (i.e., both opening the same door) a larger

22

-20

-16

-12

-8

-4

0

1 5 9 13 17 21

controller size

v
a
lu

e

NLO

NLO corr

NLO fixed

NLO fixed corr

BFS

-25

-20

-15

-10

-5

0

0 500 1000 1500 2000 2500 3000

time in seconds

v
a
lu

e

NLO

NLO corr

NLO fixed

NLO fixed corr

BFS

Figure 3: Multiagent tiger problem values for various controller sizes (left) and running
times (right) using NLP methods with and without a 2 node correlation device
and BFS

positive reward or a smaller penalty is given to reward this cooperation. If an agent listens,
a small penalty is given and an observation is seen that is a noisy indication of which door
the tiger is behind. While listening does not change the location of the tiger, opening a
door causes the tiger to be placed behind one of the door with equal probability.

In this problem, DEC-BPI performed very poorly (never producing values higher than
-50) causing us to remove the values from Figure 3 for the sake of clarity. We can also see
in the figures the limitation of BFS. While it can do very well for three nodes, it cannot
find solutions for larger controllers. In contrast, the NLP approaches demonstrate a trend
of higher-valued solutions as controller size increases. This suggests that as more scalable
solution methods for our formulation are found, the increase in solution quality will persist.
The NLP approaches also make better use of time, quickly producing high solution quality
and then value increases more slowly. We also see that both correlation and fixing actions
are helpful. In fact, the highest value produced by any method is given by a 19 node
controller with fixed actions (NLO fixed) and the second highest value was produced by a
seven node controller with a correlation device (NLO corr). While displaying an upward
trend, the solutions for this problem, particularly with fixed actions, are somewhat irregular.
This is likely due to the fact that there is a large penalty for opening the wrong door which
can significantly lower the average presented in the figure. Thus, there is a large variance
in solution quality but the high performance of the NLP methods is clear.

Meeting in a grid

A larger domain with 16 states, 5 actions and 2 observations was also introduced by Bern-
stein et al. In this problem, two agents must meet in a 2x2 grid with no obstacles. The
agents start diagonally across from each other and available actions are move left, right,
up, or down and stay in place. Only walls to the left and right can be observed, resulting
in each agent knowing only if it is on the left or right half. The agents cannot observe each
other and do not interfere with other. Action transitions are noisy with the agent possibly

23

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10

controller size

v
a
lu

e

NLO

NLO corr

NLO fixed

NLO fixed corr

DEC-BPI

DEC-BPI corr

BFS

0

1

2

3

4

5

6

7

0 100 200 300 400 500 600 700 800 900 1000

time in seconds

v
a
lu

e

NLO

NLO corr

NLO fixed

NLO fixed corr

DEC-BPI

DEC-BPI corr

BFS

Figure 4: Meeting in a grid problem values for various controller sizes (left) and running
times (right) using NLP methods and DEC-BPI with and without a 2 node cor-
relation device and BFS

moving in another direction or staying in place and a reward of 1 is given for each step the
agents share the same square.

The results for this example can be seen in Figure 4. The figures show that, in general,
our NLP techniques and BFS outperform DEC-BPI. We also see that the standard NLO
methods (NLO and NLO corr) perform especially well, producing higher values than the
other methods for all solvable controller sizes. The fixed action NLP methods also perform
well, but even though they can solve larger controller sizes than the standard approaches,
the quality produced is not as high. It is likely that a greedy first action is not the best
choice for this problem. The figure on the right shows that for all methods, a near maximum
value was reached quickly by all methods (∼1 minute) and then, if larger controllers could
be solved, value increased very slightly thereafter. We also see that correlation increases
solution quality for the general formulation of this problem (NLO corr), but not for the
fixed action formulation (NLO fixed corr).

Box pushing

A much larger domain was introduced by Seuken and Zilberstein (2007a). This problem,
with 100 states, 4 actions and 5 observations consists of two agents that can gain reward by
pushing different boxes. The agents begin facing each other in the bottom corners of a 4x3
grid with the available actions of turning right, turning left, moving forward or staying in
place. There is a 0.9 probability that the agent will succeed in moving and otherwise will
stay in place, but the two agents can never occupy the same square. The middle row of the
grid contains two small boxes and one large box. This large box can only be moved by both
agents pushing at the same time. The upper row of the grid is considered the goal row.
The possible deterministic observations consist of seeing an empty space, a wall, the other
agent, a small box or the large box. A reward of 100 is given if both agents push the large
box to the goal row and 10 is given for each small box that is moved to the goal row. A

24

Value
size NLO NLO corr NLO fixed NLO fixed corr DEC-BPI DEC-BPI corr BFS

1 -1.580 6.267 -2 -2 -10.367 -10.012 -2
2 31.971 39.825 19.660 19.657 3.293 4.486 x
3 46.282 50.834 44.916 44.579 9.442 12.504 x
4 50.640 x 54.230 48.623 7.894 x x

Time
size NLO NLO corr NLO fixed NLO fixed corr DEC-BPI DEC-BPI corr BFS

1 20 21 7 11 26 87 1696
2 115 314 15 27 579 3138 x
3 683 1948 128 214 4094 15041 x
4 5176 x 1824 1995 11324 x x

Table 7: Box pushing problem values and running times (in seconds) using NLP methods
and DEC-BPI with and without a 2 node correlation device and BFS

penalty of -5 is given for each agent that cannot move and -0.1 is given for each time step.
Once a box is moved to the goal row, the environment resets to the original start state.

The results for this problem, which is an order of magnitude larger than previously
published infinite-horizon problems, are given in Table 7. Because this problem is so large
and given the time and memory limitations, BFS is only able to to provide a solution for a
one node controller and both DEC-BPI and our general approach with a correlation device
(NLO corr) could not solve the formulation for a four node controller. Nonetheless, our
techniques perform very well, never producing lower value than DEC-BPI or BFS and often
producing much higher value. Fixing actions allows solutions to be found very quickly
while still outperforming DEC-BPI for each controller size. The standard NLO approaches
generally perform better, with NLO and NLO corr generating controllers with higher values
than the other methods for all controller sizes except NLO fixed with four nodes. All NLP
methods required much less time than the DEC-BPI techniques when the problems were
solvable. Also, correlation provides a slight increase in value for the general formulation, but
with fixed actions values are nearly identical for the first three controller sizes and slightly
less for four node controllers.

8. Conclusions

In this paper, we introduced a new approach for solving POMDPs and DEC-POMDPs by
defining optimal fixed-size solutions as nonlinear programs. This permits a wide range of
powerful NLP solution methods to be applied to these problems. Because our approach
optimizes a stochastic controller in the single agent case or a set of stochastic controllers for
the multiagent case, it is able to make better use of the limited representation space than
deterministic approaches. Thus, this new formulation may allow very concise high quality
solutions to a large number POMDPs and DEC-POMDPs.

25

We showed that by using a generic nonlinear program solver, our formulation can provide
POMDP solutions that are competitive with leading techniques in terms of running time
and solution quality. Given the complexity of the problems that we considered, it is not
surprising that no single approach dominates all the others. Nevertheless, our approach
has some distinctive characteristics and advantages. In particular, it can produce good
value with significantly smaller memory. And because the controller is more compact, in
some cases the approach uses less time despite the use of nonlinear optimization. This
work opens up new promising research directions that could produce further improvement
in both quality and efficiency. As the solver in our experiments has not been optimized for
our NLP it is likely that even higher performance can be achieved in the future. Also, as
a controller-based approach, our method may be able to provide high quality solutions to
some problems in which point-based methods have difficulty.

In the DEC-POMDP case, we demonstrated that our approach is able to produce solu-
tions that are often significantly higher-valued than the other infinite-horizon DEC-POMDP
algorithms for a range of problems. In all problems, a variant of our NLP approach produced
the highest value that was generated for any controller size of any method. This included
a problem that is an order of magnitude larger than any used previously in infinite-horizon
DEC-POMDP literature. The combination of start state knowledge and more advanced op-
timization techniques allows us to make efficient use of the limited space of the controllers.
In addition, incorporating a correlation device as a shared source of randomness can further
increase solution quality. The running times needed to produce solutions for each problem
also show that our NLP approach is frequently the most efficient method to achieve any
given value. These results show that our approach can quickly find compact, high-valued
solutions to be found for several different types of DEC-POMDPs. Lastly, as the number of
agents in a given problem grows, the number of local maxima is likely to increase. Because
solution of our NLP can avoid many of these suboptimal points, our representation should
also perform well when the number of agents is increased beyond two.

In the future, we plan to explore more specialized algorithms that can be tailored for
our optimization problem. While the performance achieved with a standard nonlinear
optimization algorithm is good, specialized solvers might be able to further increase solution
quality and scalability. Different methods may be able to take advantage of the specific
structure inherent in POMDPs and DEC-POMDPs. Also, important subclasses could be
identified for which globally optimal solutions can be efficiently provided. We also plan to
characterize the circumstances under which introducing a correlation device is cost effective.
Both of these improvements may allow optimal or near optimal fixed-size solutions to be
found for important classes of POMDPs and DEC-POMDPs.

Acknowledgments

We would like to thank Marek Petrik for his helpful comments. Support for this work was
provided in part by the National Science Foundation under Grant No. IIS-0535061 and by
the Air Force Office of Scientific Research under Agreement No. FA9550-05-1-0254.

26

References

Amato, C., Bernstein, D. S., & Zilberstein, S. (2007). Solving POMDPs using quadratically
constrained linear programs. In Proceedings of the Twentieth International Joint
Conference on Artificial Intelligence, pp. 2418–2424, Hyderabad, India.

Becker, R., Zilberstein, S., Lesser, V., & Goldman, C. V. (2004). Solving transition-
independent decentralized Markov decision processes. Journal of AI Research, 22,
423–455.

Bernstein, D. S., Hansen, E., & Zilberstein, S. (2005). Bounded policy iteration for decen-
tralized POMDPs. In Proceedings of the Nineteenth International Joint Conference
on Artificial Intelligence, pp. 1287–1292, Edinburgh, Scotland.

Bertsekas, D. P. (2004). Nonlinear Programming. Athena Scientific.

Cassandra, A. R. (1998a). Exact and Approximate Algorithms for Partially Observable
Markov Decision Processes. Ph.D. thesis, Brown University, Providence, RI.

Cassandra, A. R. (1998b). A survey of POMDP applications. In AAAI Fall Symposium:
Planning with POMDPs, Orlando, FL.

Eckles, J. E. (1968). Optimum maintenance with incomplete information. Operations Re-
search, 16, 1058–1067.

Emery-Montemerlo, R., Gordon, G., Schneider, J., & Thrun, S. (2004). Approximate solu-
tions for partially observable stochastic games with common payoffs. In Proceedings
of the Third International Joint Conference on Autonomous Agents and Multiagent
Systems, pp. 136–143, New York, NY.

Gill, P. E., Murray, W., & Saunders, M. (2005). Snopt: An SQP algorithm for large-scale
constrained optimization. SIAM Review, 47, 99–131.

Hansen, E. A. (1998). Solving POMDPs by searching in policy space. In Proceedings of the
Fourteenth Conference on Uncertainty in Artificial Intelligence, pp. 211–219, Madison,
WI.

Hansen, E. A., Bernstein, D. S., & Zilberstein, S. (2004). Dynamic programming for partially
observable stochastic games. In Proceedings of the Nineteenth National Conference
on Artificial Intelligence, pp. 709–715, San Jose, CA.

Hauskrecht, M., & Fraser, H. (1998). Modeling treatment of ischemic heart disease with
partially observable Markov decision processes. In Proceedings of American Medical
Informatics Association annual symposium on Computer Applications in Health Care,
pp. 538–542, Orlando, Florida.

Horst, R., & Tuy, H. (1996). Global Optimization: Deterministic Approaches. Springer.

Ji, S., Parr, R., Li, H., Liao, X., & Carin, L. (2007). Point-based policy iteration. In Proceed-
ings of the Twenty-Second National Conference on Artificial Intelligence, Vancouver,
Canada.

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995). Learning policies for par-
tially observable environments: Scaling up. Tech. rep. CS-95-11, Brown University,
Department of Computer Science, Providence, RI.

27

Meuleau, N., Kim, K.-E., Kaelbling, L. P., & Cassandra, A. R. (1999). Solving POMDPs
by searching the space of finite policies. In Proceedings of the Fifteenth Conference
on Uncertainty in Artificial Intelligence, Stockholm, Sweden.

Nair, R., Pynadath, D., Yokoo, M., Tambe, M., & Marsella, S. (2003). Taming decentralized
POMDPs: Towards efficient policy computation for multiagent settings. In Proceedings
of the Nineteenth International Joint Conference on Artificial Intelligence, pp. 705–
711, Acapulco, Mexico.

Petrik, M., & Zilberstein, S. (2007). Average-reward decentralized markov decision pro-
cesses. In Proceedings of the Twentieth International Joint Conference on Artificial
Intelligence, pp. 1997–2002, Hyderabad, India.

Pineau, J., Gordon, G., & Thrun, S. (2003). Point-based value iteration: an anytime algo-
rithm for POMDPs. In Proceedings of the Eighteenth International Joint Conference
on Artificial Intelligence, Acapulco, Mexico.

Poupart, P. (2005). Exploiting Structure to Efficiently Solve Large Scale Partial ly Observ-
able Markov Decision Processes. Ph.D. thesis, University of Toronto.

Poupart, P., & Boutilier, C. (2003). Bounded finite state controllers. In Advances in Neural
Information Processing Systems, 16, Vancouver, Canada.

Seuken, S., & Zilberstein, S. (2007a). Improved memory-bounded dynamic programming
for decentralized POMDPs. In Proceedings of the Twenty-Third Conference on Un-
certainty in Artificial Intelligence, Vancouver, Canada.

Seuken, S., & Zilberstein, S. (2007b). Memory-bounded dynamic programming for DEC-
POMDPs. In Proceedings of the Twentieth International Joint Conference on Artifi-
cial Intelligence, pp. 2009–2015, Hyderabad, India.

Simmons, R., & Koenig, S. (1995). Probabilistic navigation in partially observable environ-
ments. In Proceedings of the Fourteenth International Joint Conference on Artificial
Intelligence, Montral, Canada.

Singh, S., Jaakkola, T., & Jordan, M. (1994). Learning without state-estimation in partially
observable Markovian decision processes. In Proceedings of the Eleventh International
Conference on Machine Learning, New Brunswick, NJ.

Smith, T., & Simmons, R. (2004). Heuristic search value iteration for POMDPs. In Pro-
ceedings of the Twentieth Conference on Uncertainty in Artificial Intelligence, Banff,
Canada.

Smith, T., & Simmons, R. (2005). Point-based POMDP algorithms: Improved analysis and
implementation. In Proceedings of the Twenty-First Conference on Uncertainty in
Artificial Intelligence, Edinburgh, Scotland.

Sondik, E. J. (1971). The Optimal Control of Partially Observable Markov Processes. Ph.D.
thesis, Stanford University.

Spaan, M. T. J., & Vlassis, N. (2005). Perseus: Randomized point-based value iteration for
POMDPs. Journal of AI Research, 24, 195–220.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.

28

Szer, D., & Charpillet, F. (2005). An optimal best-first search algorithm for solving infinite
horizon DEC-POMDPs. In Proceedings of the Sixteenth European Conference on
Machine Learning, Porto, Portugal.

Szer, D., Charpillet, F., & Zilberstein, S. (2005). MAA*: A heuristic search algorithm for
solving decentralized POMDPs. In Proceedings of the Twenty-First Conference on
Uncertainty in Artificial Intelligence, Edinburgh, Scotland.

Wah, B. W., & Chen, Y. (2005). Solving large-scale nonlinear programming problems by
constraint partitioning. In Proceedings of the Eleventh International Conference on
Principles and Practice of Constraint Programming.

29

