
Policy Search for Multi-Robot
Coordination under Uncertainty

Journal Title
XX(X):1–20
c©The Author(s) 2015

Reprints and permission:
sagepub.co.uk/journalsPermissions.nav
DOI: 10.1177/ToBeAssigned
www.sagepub.com/

Christopher Amato1, George Konidaris2, Ariel Anders3, Gabriel Cruz3, Jonathan P. How4,
Leslie P. Kaelbling3

Abstract
We introduce a principled method for multi-robot coordination based on a general model (termed a MacDec-POMDP)
of multi-robot cooperative planning in the presence of stochasticity, uncertain sensing, and communication limitations.
A new MacDec-POMDP planning algorithm is presented that searches over policies represented as finite-state
controllers, rather than the previous policy tree representation. Finite-state controllers can be much more concise
than trees, are much easier to interpret, and can operate over an infinite horizon. The resulting policy search algorithm
requires a substantially simpler simulator that models only the outcomes of executing a given set of motor controllers,
not the details of the executions themselves and can solve significantly larger problems than existing MacDec-
POMDP planners. We demonstrate significant performance improvements over previous methods and show that
our method can be used for actual multi-robot systems through experiments on a cooperative multi-robot bartending
domain.

1 Introduction

In order to fulfill the potential of increasingly capable
and affordable robot hardware, effective methods for
controlling robot teams must be developed. Although many
algorithms have been proposed for multi-robot problems,
the vast majority are specialized methods engineered to
match specific team or problem characteristics. Progress in
more general settings requires the specification of a model
class that captures the core challenges of controlling multi-
robot teams in a generic fashion. Such general models—
in particular, the Markov decision process (Puterman
1994) and partially observable Markov decision process
(Cassandra et al. 1994)—have led to significant progress
in single-robot settings through standardized models that
enable empirical comparisons between general planners
that optimize a common metric.

Decentralized partially observable Markov decision
processes (or Dec-POMDPs (Bernstein et al. 2002)) are
the natural extension of such frameworks to the multi-
robot case—modeling multi-agent coordination problems
in the presence of stochasticity, uncertain sensing and
action, and communication limitations. Unfortunately, Dec-
POMDPs are exactly solvable only for very small problems.
The search for tractable approximations led to the recent
introduction of the MacDec-POMDP model (Amato et al.
2014). MacDec-POMDPs include temporally extended

macro-actions that naturally model robot motor controllers
that may require multiple time-steps to execute (e.g.,
navigating to a waypoint, lifting an object, or waiting for
another robot) as opposed to low-level control inputs that
must each last a fixed time interval. Planning then takes
place at the level of selecting controllers to execute, rather
than sequencing low-level motions, and MacDec-POMDP
solution methods can scale up to reasonably realistic
problems; for example, solving a multi-robot warehousing
problem orders of magnitude larger than those solvable
by previous methods (Amato et al. 2015). General-purpose
planners based on MacDec-POMDPs have the potential to
replace the abundance of ad-hoc multi-robot algorithms for
specific task scenarios with a single precise and generic
formulation of cooperative multi-robot problems that is

1College of Computer and Information Science, Northeastern
University, Boston, MA 02115
2Computer Science Department, Brown University, Providence, RI
02912
3CSAIL, MIT, Cambridge, MA 02139
4LIDS, MIT, Cambridge, MA 02139

Corresponding author:
Christopher Amato, 360 Huntington Ave, College of Computer and
Information Science, Northeastern University, Boston, MA 02115
Email: camato@ccs.neu.edu

Prepared using sagej.cls [Version: 2015/06/09 v1.01]

2 Journal Title XX(X)

Figure 1. The bartender and waiters domain which will be
used in the experiments: two TurtleBots and one PR2 must
coordinate to deliver drinks as quickly as possible.

powerful enough to include (and naturally combine) all
existing cooperative scenarios.

Unfortunately existing MacDec-POMDP planners have
two critical flaws. First, even though using macro-
actions drastically increases the size of problems that
can be solved, planning time still scales poorly with
the horizon (i.e., plan length). Second, current methods
assume that the underlying (primitive) problem is discrete,
and that a complete low-level model of that problem
is available. These difficulties significantly limit the
applicability of existing MacDec-POMDP planners to
robotics applications.

This paper introduces an extended model and a
new MacDec-POMDP planning algorithm, which we
call MacDec-POMDP heuristic search (MDHS). MDHS
searches over policies represented as finite-state controllers,
rather than the currently used policy trees. Finite-state
controllers are often much more concise than trees, are
easier to interpret, and can operate for an infinite horizon.
Our model and MDHS only require a description of
the problem at the macro-action level—at the level of
modeling the outcome of executing given motor controllers,
not the details of execution itself—substantially reducing
the knowledge required for planning, and therefore the
modeling effort required to apply the method to real-
world robotics problems. We show that MDHS can
solve significantly larger problems than existing MacDec-
POMDP planners (and by extension, all existing Dec-
POMDP planners), and demonstrate its application to
a cooperative multi-robot bartending task, showing that
MDHS can automatically optimize solutions to multi-robot
problems from a high-level specification.

2 Motivating problem
As a motivating experimental domain we consider a
heterogenous multi-robot problem, shown in Figure 1. The
robot team consists of a PR2 bartender and two TurtleBot
waiters. There is a bar area and three rooms in which people
can order drinks from the waiters. Our goal is to bring
drinks to the rooms with orders as efficiently as possible;
since the robots cannot take orders until they visit a room,
they must coordinate to service all three rooms quickly.
We impose communication limitations so the robots cannot
communicate unless they are in close range. As a result, the
robots must make decisions based on their own sensor and
communication information, reasoning about the status and
behavior of the other robots. This is a challenging task with
stochasticity in ordering, navigation, picking, and placing
objects as well as partial observability in the orders and the
location and status of the other robots.

We model this domain as a MacDec-POMDP and
introduce a planning algorithm capable of automatically
generating controllers for the robots (in the form of
finite-state machines) that collectively maximize team
utility. This problem involves aspects of communication,
task allocation, and cooperative navigation—tasks for
which specialized algorithms exists—but modeling it as
a MacDec-POMDP allows us to automatically generate
controllers that express and combine aspects of these
behaviors—without specifying them in advance—while
trading off their costs in a principled way.

3 Background
We first discuss Dec-POMDPs and then present previous
work on using macro-actions in Dec-POMDPs.

3.1 Dec-POMDPs
Our aim is to control a group of robots interacting with
an environment in order to cooperatively solve a problem.
At each time step t, each robot i must select an action
to execute from its own set of (possibly real-valued
and multivariate) available actions Ai, after which the
robots collectively obtain a single reward, rt. For example,
consider a team consisting of a number of quadrotors and a
number of ground robots, attempting to search an area for a
particular object. At each time step, each robot must choose
what to do (for the quadrotors: fly in a particular direction,
at a particular height, and perhaps shine a spotlight; for the
ground robots: drive in a particular direction with a specific
camera angle) so as to most efficiently locate the object. The
actions available to the robots may differ (because they are
different robots, or because their immediate environment
affords different actions), but they share a collective single
reward (equivalently, cost or utility) function that expresses
their joint goal and makes the problem cooperative.

Prepared using sagej.cls

Amato, Konidaris, Anders, Cruz, How, and Kaelbling 3

Environment

a1

o1
an

on

r

Figure 2. Depiction of an n-agent Dec-POMDP with actions
and observations for each agent, but a single joint reward.

We write the robot’s collective action space as A =
A1 ×A2 × ...×A|I| and we can construct a state space S
such that the whole problem obeys the Markov property:
it has a transition function T (st+1|st, at) expressing the
environmental dynamics and a reward function R(st, at),
and both depend only the state at time t and the collective
action at ∈ A. Because we will assume that transition and
reward functions are stationary with respect to time, we
will often drop the time step superscript. Given such a
problem, the goal of planning is to find a policy π mapping
states to collective actions, so as to maximize the sum of
rewards obtained over time. This formalization is known as
a multiagent Markov decision process or MMDP (Boutilier
1999), and it is intended to model multi-robot systems
where actions are selected by a single centralized decision-
maker, and where access to the Markov state space S is
available (i.e., fully observable).

However, these two assumptions are often unrealistic
in real multi-robot problems—the almost instantaneous
communication required for centralized control and global
state estimation is frequently impractical or impossible. In
such cases, rather than constructing a single global state
and making a single collective action-selection decision,
we must instead find a decentralized solution, where each
robot must act based on its own (often quite limited)
history of observations about the world. To formalize each
robot’s limited view of the world we must have a model
of how each robot’s sensors react to possible states of the
problem. We model this using an observation function,
O, which maps the global state s to a distribution over
each agent i’s sensor space, Zi. The goal of planning
is now to find a policy for each robot—based only on
its past observations—such that the resulting joint policy
maximizes the expected sum of rewards.

This model is known as a Decentralized Partially
Observable Markov Decision Processes (Dec-POMDP,
depicted in Figure 2) and can be formally described by a
tuple 〈I, S, {Ai}, T,R, {Zi}, O, h〉, where:

• I is a finite set of agents;
• S is a finite set of states with designated initial state

distribution b0;

• Ai is a finite set of actions for each agent i with
A = A1 ×A2 × ...×A|I| the set of joint actions;

• T is a state transition probability function, T :
S ×A× S → [0, 1], that specifies the probability of
transitioning from state s ∈ S to next state s′ ∈ S
when the actions a ∈ A are taken by the agents (i.e.,
T (s, a, s′) = Pr(s′|a, s));

• R is a reward function: R : S ×A→ R, the
immediate reward for being in state s ∈ S and taking
the actions a ∈ A;

• Zi is a finite set of observations for each agent,
i, with Z = Z1 × Z2 × ...× Z|I| the set of joint
observations;

• O is an observation probability function: O : Z ×
A× S → [0, 1], the probability of seeing observa-
tions o ∈ Z given actions a ∈ A were taken which
results in state s′ ∈ S (i.e.,O(o, a, s′) = Pr(o|s′, a));

• and h is the number of (possibly infinite) steps until
termination, called the horizon.

The model described above is very general. For
example, it can describe multi-robot scenarios involving
communication—the act of emitting a particular signal is
modeled as an action, the presence of that signal in the
environment is modeled as hidden state, and the receipt
of that signal (perhaps with some delay, sensor noise, or
limited range) is modeled using each agent’s observation
function. However, the model description itself does not
tell each robot what a signal means, or how to react to any
particular signal—or indeed an observation of any type—
it might receive. This must be encoded in each robot’s
individual control policy, and it is the role of the planner
to construct such a policy for each agent.

Formally, therefore, a solution to a Dec-POMDP is a joint
policy—a set of policies, one for each agent. Because the
full state is not directly observed, it is often beneficial for
each agent to remember a history of its observations. A
local policy for agent i is a mapping from local observation
histories to actions, HO

i → Ai. Because the system state
depends on the behavior of all agents, it is typically not
possible to estimate the system state (i.e., calculate a belief
state) from the history of a single agent, as is often done in
POMDPs.

Since a policy is a function of history, rather than of
a directly observed state (or a calculated belief state),
it is typically represented explicitly. The most common
representation is a policy tree (as seen in Figure 3), where
the vertices indicate actions to execute and the edges
indicate transitions conditioned on an observation (with the
history represented as the current path in the tree).

The value of a joint policy, π, from state s is

V π(s) = E

[
h−1∑
t=0

γtR(at, st)|s, π

]
,

Prepared using sagej.cls

4 Journal Title XX(X)

a1

a2 a3

a3 a2 a1 a1

o1

o1 o2 o1 o2

o2

Figure 3. Depiction of a single agent’s policy tree with
discrete observations listed as oi and actions listed as ai.

which is the expected sum of rewards for the agents given
the action prescribed by the policy at each step until the
horizon is reached. In the finite-horizon case, the discount
factor, γ, is typically 1. In the infinite-horizon case, the
discount factor γ ∈ [0, 1) is included to maintain a finite
sum and h =∞. An optimal policy beginning at state s is
π∗(s) = argmaxπ V

π(s).
When modeling multi-robot scenarios, it is often

reasonable to separate planning and execution: execution
must be decentralized, but we can often perform centralized
planning prior to releasing the robot team into the
environment. Dec-POMDP solution methods therefore
typically assume that the set of policies is generated in a
centralized manner, but executed in a decentralized manner
based on each agent’s histories.

Although Dec-POMDPs have been widely studied,
optimal (and boundedly optimal) methods do not scale to
large problems, while approximate methods do not scale
or perform poorly as problem size (including horizon)
grows. Subclasses of the full Dec-POMDP model have
been explored, but they make strong assumptions about the
domain (e.g., assuming a large amount of independence
between agents). For additional details on these methods,
we refer the reader to relevant surveys (e.g., (Oliehoek and
Amato 2016; Amato et al. 2013; Oliehoek 2012)).

3.2 Macro-Actions for Dec-POMDPs
As described above, Dec-POMDPs typically require
synchronous decision-making: every agent chooses an
action to execute, and then executes it in a single time step.
When each agent is a robot, this restriction is problematic
for two reasons. First, the actions available in many
robot systems are controllers (e.g, for waypoint navigation,
grasping an object, waiting for a signal), and planning
consists of sequencing the execution of those controllers.
Each controller will require different amounts of time to
execute, so synchronous decision-making requires waiting
until all robots have completed their controller execution
(and achieved common knowledge of this fact). This is
inefficient and may not even be possible in some cases
(e.g., when controlling airplanes or underwater vehicles that
cannot stay in place). Second, the planning complexity of

a Dec-POMDP is doubly exponential in the horizon. A
planner that reasons about all robots’ possible policies at
every time step will only ever be able to make very short
plans.

The Dec-POMDP model was therefore recently extended
to plan using temporally extended actions, or macro-
actions (Amato et al. 2014) (hence the MacDec-POMDP
model). The macro-actions are intended to model higher-
level robot controllers that execute by choosing low-level
actions (like actuating motors) and take several time steps
to execute. The resulting formulation uses higher-level
planning to compute near-optimal solutions for problems
with significantly longer horizons by extending the MDP-
based options framework (Sutton et al. 1999) to Dec-
POMDPs by using macro-actions, mi, that execute a policy
in a low-level Dec-POMDP from states that satisfy its initial
conditions, until a terminal condition is met.

Note that this extension is not straightforward in the
multi-agent case due to the resulting asynchronous nature
of decision-making. While decision-making in the single-
agent case can take place when the agent terminates a
macro-action, in the multi-agent case, decision-making
needs to take place only for agents that terminate.
Furthermore, we must keep track of the progress of all
agents in executing their macro-actions to properly evaluate
solutions and allow other agents to continue their macro-
actions even if some agents terminate theirs.

To simplify evaluation and reasoning about completion
times, previous work assumes policies over macro-actions
can be executed in a lower-level Dec-POMDP. That is,
a Dec-POMDP with macro-actions is defined as a Dec-
POMDP where we also assume Mi represents a finite
set of macro-actions for each robot, i, with M = M1 ×
M2 × ...×M|I| the set of joint macro-actions (Amato et al.
2014). Macro-actions are valid in a particular initiation
set (I), which may depend on the underlying state of
the system or some high-level observations, and continue
until some terminal conditions (β) are met, which again
may depend on the underlying system state or high-level
observations. This models a robot controller that can only
be executed under some conditions, but once executed
continues to run until it has reached some goal (or decides
that it has failed).

Policies for each robot, µi, can be defined for choosing
macro-actions instead of primitive actions. For example,
policy trees can defined with nodes now representing
macro-actions and edges representing terminal conditions
or high-level observations (labeled with β in Figure 4).
If macro-action policies are built from primitive actions,
we can evaluate the high-level policies in a way that
is similar to other Dec-POMDP-based approaches. That
is, because we assume the macro-actions and the lower-
level Dec-POMDP are known, we can “unroll’ the policies

Prepared using sagej.cls

Amato, Konidaris, Anders, Cruz, How, and Kaelbling 5

m2

m1 m2

βs1

βs2

m1

βs3

Figure 4. Depiction of a robot’s policy using macro-actions
(m) and branching on terminal conditions (β).

over macro-actions into policies over primitive actions.
Therefore, macro-actions can be chosen asynchronously,
but because robots are assumed to have synchronized
clocks, the underlying primitive actions are executed in a
synchronous manner. Specifically, given a joint policy, the
primitive action at each step is determined by the (high-
level) policy, which chooses the macro-action, and the
macro-action policy, which chooses the (primitive) action.
The joint policy and macro-action policies can then be
evaluated as:

V µ(s) = E

[
h−1∑
t=0

γtR(at, st)|s, π, µ

]
. (1)

The goal is to obtain a hierarchically optimal policy:
µ∗(s) = argmaxµV

µ(s), which produces the highest
expected value that can be obtained by sequencing the
robots’ given macro-actions.

Two Dec-POMDP algorithms have been extended to
the MacDec-POMDP case (Amato et al. 2014), but other
extensions are possible. These algorithms use dynamic
programming to construct one policy tree for each robot
starting from the leaves and moving up to the root
node (with nodes as macro-actions and edges as terminal
conditions or high-level observations). Because many of
the synchronous decision-making assumptions are broken
in the macro-action case, many aspects of the Dec-
POMDP algorithms do not directly transfer. Nevertheless,
the inspiration from these algorithms can be used to search
through the space of possible tree-based policies with
evaluation from Equation 1. We use a different approach
that does not rely on these previous Dec-POMDP or
MacDec-POMDP methods and discuss the relevant details
below.

4 Finite-state controllers for
MacDec-POMDPs

A tree-based representation of a policy causes each robot
to remember its entire history to determine its next action.
In finite-horizon problems, the memory requirement is
exponential in the horizon and for infinite-horizon problems
a robot would need infinite memory. Clearly, this is not
feasible. As an alternative, we introduce a finite-state

m1

o2

o1

o2 o1

m2

(a) Moore

o2, m1

o1,m2

o1 ,m2

,m1

o2

(b) Mealy

Figure 5. A robot’s (a) Moore and (b) Mealy finite-state
controller with initial nodes designated with an arrow.

controller representation that retains only finite memory
and provide algorithms for generating these controllers.

Finite-state controllers (FSCs) can be used to represent
policies in an elegant way since a robot can be
conceptualized as a device that receives observations and
produces actions. As shown in Figure 5, FSCs operate in a
manner similar to policy trees. There is a designated initial
node and after action selection at a node, the controller
transitions to the next node depending on the resulting
observation. This continues for an arbitrary number of steps
in the problem. Nodes in a robot’s controller represent
internal states, which prescribe actions based on that robot’s
finite memory.

A set of controllers, one per robot, provides the joint
policy of the robots. Finite-state controllers explicitly
represent infinite-horizon policies, but can also be used (as
a possibly more concise representation) for finite-horizon
policies. FSCs are a widely used as solution representations
for POMDPs and Dec-POMDPs (Amato et al. 2010; Bai
et al. 2013; Bernstein et al. 2009; Kaelbling et al. 1998;
Poupart and Boutilier 2003; Szer and Charpillet 2005; Wu
et al. 2010a).

4.1 Mealy Controllers
Two main types of controllers, Moore and Mealy, have
been used for POMDP and Dec-POMDP solutions (both of
which are shown in Figure 5). Moore controllers associate
actions with nodes and Mealy controllers associate actions
with controller transitions (i.e., nodes and observations).
We use the Mealy representation.

A Mealy controller for robot i is a tuple ci =
〈Qi, Ai, Zi, δi, λi, q0i 〉:

• Qi is the set of nodes;
• Ai and Zi are the output and input alphabets (i.e., the

action chosen and the observation seen);
• δi : Qi × Zi → Qi is the node transition function;

Prepared using sagej.cls

6 Journal Title XX(X)

• λi : Qi × Zi → Ai is the output function for nodes
6= q0i that associates output symbols with transitions;

• λ0i : Qi → Ai is the output function for node q0i ;
• q0i ∈ Qi is the initial node.

Because action selection depends on the observation as
well as the current node, for the first node (where no
observations have yet been seen), the action only depends
on the node. For all other nodes, the action output depends
on the node and observation with λi(qi, oi).

Mealy controllers are a natural policy representation for
MacDec-POMDPs because the initial conditions of macro-
actions can be easily verified. That is, since the macro-
action is chosen after an observation is seen, MacDec-
POMDPs in which initial conditions depend solely on
robot’s local observations can be verified directly. As such,
algorithms that use Mealy controllers can ensure that valid
macro-action policies are generated for each robot.

For a set of Mealy controllers, c, when the initial state is
s, the joint observation is o and the current nodes of c are q,
the value is denoted Vc(q, o, s) and satisfies:

Vc(q, o, s) = R(s, λ(q, o))+

γ
∑
s′,o′

Pr(s′|s, λ(q, o)) Pr(o′|s′, λ(q, o))Vm(δ(q, o), o′, s′),

where λ(q, o) = {λ1(q1, o1), . . . , λn(qn, on)} are the
actions selected by each robot given the current
node of its controller and the observation seen while
δ(q, o) = {δ1(q1, o1), . . . , δn(qn, on)} are the next
nodes for each robot given that robot’s current node
and observation. Because the first nodes do not depend
on observations, the value of the controllers c at b is
Vc(b) =

∑
s b(s)Vc(q0, s), where q0 is the set of initial

nodes for all robots and b(s) represents the probability of
being in state s.∗

4.2 Macro-action controllers
Representing policies in MacDec-POMDPs with the finite-
state controllers discussed above is trivial since we can
replace the primitive actions with macro-actions. The
output function becomes λi : Qi × Zi →Mi where Zi are
now the observations resulting from macro-actions and Mi

are the macro-actions for robot i. Unfortunately, evaluation
of these macro-action controllers is complicated by the
fact that macro-actions may require different amounts of
time. We could use the approach described above (in
Section 3.2) to represent the policy over macro-action
in terms of primitive actions, but this requires a full
model of the underlying Dec-POMDP and the primitive-
action representation of each macro-action. Because such
information may be difficult or impossible to obtain (such
as when macro-actions contain continuous actions and

observations), we instead explicitly consider time until
macro-action completion when performing evaluation.

To perform this evaluation, we can build on recent
work for modeling decentralized partially observable semi-
Markov decision processes (Dec-POSMDPs) (Omidshafiei
et al. 2015). The Dec-POSMDP model explicitly considers
actions with different durations, using a reward model that
accumulates value until any robot terminates a (macro-)
action and a transition model that considers how many time
steps take place until termination. These lengths of time
may be different based on the various and probabilistic
termination times for different macro-actions from different
initial conditions. The previous Dec-POSMDP model was
defined for a specific class of problem where robots
are mostly independent except for their effect on joint
environmental states.†

We propose a more general Dec-POSMDP model,
〈I, S, {Ai}, T,R, {Zi}, O, h〉, as follows:

• I is a finite set of robots;
• S = SDec × Sm1 × Sm2 × ...× Sm|I|, which includes

the world state (i.e., underlying Dec-POMDP state)
and a state for each of the macro-actions that are
currently being executed for each robot;

• Ai = Mi, where the actions are the macro-actions;
• T , the probability of transitioning to next state s′

now also includes the number of discrete time steps
until completion of any robot’s macro-action as
Pr(s′, k|s,m), where k is this number of steps and
m is the joint set of macro-actions being executed;

• R(s,m), the reward function is the value until any
robot terminates, E{rt + . . .+ γk−1rt+k|s,m, t},
starting at time t, which is defined more formally
below;

• Zi is now a finite set of high-level observations that
are only observed after a robot’s macro-action has
been completed;

• O, the observation probability function, generates an
observation for each robot based on the resulting
state, s′, and the macro-action that was executed,
Pr(o|s′,m);

• h, the horizon is the number of (low-level, not macro-
action) steps until termination.

∗The value can also be represented as Vc(b) =
∑

s b(s)Vc(q0, o∗, s),
where o∗ are dummy observations that are only received on the first step.
†Specifically, the previous Dec-POSMDP model considers a factored state
which consists of the locations of each robot and an environment state. The
transitions for the locations each robot are assumed to be independent of
the other robots (i.e., no collisions) and the environmental state is assumed
to be fully observable in particular locations. Therefore, the model used in
this paper is the generalization of the previous one, allowing the algorithms
in this paper to be applied in both cases (and the algorithms for the more
specific Dec-POSMDP can be extended to this model).

Prepared using sagej.cls

Amato, Konidaris, Anders, Cruz, How, and Kaelbling 7

For concreteness, we discuss the case when an underlying
Dec-POMDP is known and discrete time steps are used, but
these assumptions are not required (as we discuss briefly
below).

We formally define the reward model as:

R(s,m) = E

[
tmin∑
t=0

γtR(atDec, s
t
Dec)|s, πm

]
, (2)

where πm is the joint macro-action policy (i.e., the policy
of the macro-actions currently operating in the underlying
Dec-POMDP) and tmin is the smallest number of time
steps until any robot terminates (mini mint{sDec ∈ βmi}
starting at Dec-POMDP state sDec and macro-action states
smi and taking actions in the underlying Dec-POMDP
aDec. Here, we use βmi to represent the termination set
of macro-action mi which we assume depends on states
sDec (but it could also depend on observation histories,
as discussed above). Note that macro-actions will often be
partially completed, so smi is needed to correctly calculate
the remaining time steps.

If we have a model of the underlying Dec-POMDP,
(represented as RDec and PDec for the underlying reward,
transition and observation models with joint actions a and
joint observations o), we can evaluate the macro-actions
until at least one of them stops as:

R(s,m) =R(sDec, sm,m) =

RDec(sDec, πm(sm))+

γ
∑

s′,oDec

PDec(s
′
Dec|sDec, πm(sm))·

PDec(oDec|s′Dec, πm(sm))·∏
i

[
(1− Iβmi (s

′
Dec))P (s′mi |smi , oDeci)

]
·

R(s′Dec, s
′
m,m),

(3)

where Iβmi is an indicator variable that is 1 when s′Dec is a
terminal condition of mi (or when a terminal condition has
already been met for robot i) and P (s′mi |smi , oi) represents
the transition in the macro-action state of robot i based on
the observation seen.

Similarly, we can calculate the transition probabilities
Pr(s′, k|s,m) that the macro-actions will execute until any
other configuration is reached for a given amount of time k

if we have the underlying Dec-POMDP model as:

P (s′, k|s,m) =P (s′Dec, s
′
m, k|sDec, sm,m) =∑

sk−1
m ,sk−1

Dec

PDec(s
′
Dec|sk−1Dec , πm(sk−1m))·

∑
oDec

PDec(oDec|s′Dec, πm(sk−1m))·∏
i

[P (sk−1mi |smi , oDeci)]·

P (sk−1Dec , s
k−1
m , k − 1|sDec, sm,m),

(4)

where sk−1Dec and sk−1m are states in the underlying Dec-
POMDP and macro-actions (with sk−1 the combined state)
after k − 1 steps. That is, we can calculate the transition
probability recursively based on the probabilities of the
possible states after k − 1 discrete time steps.

The observation function can be defined based on the
macro-action that was taken and the resulting state s′.
Because the resulting state includes the underlying Dec-
POMDP state, these observations can depend on the other
robots and other parts of the environment.

Using this model—in the case when the reward,
transition and observation models are calculated as
described above or assumed to be known—we can evaluate
a joint policy of macro-actions, µ, using the following
Bellman equation:

V µ(s) = R(s,m) +

∞∑
k

γk
∑
s′

Pr(s′, k|s,m)·∑
o′

Pr(o′|s′,m)V µ(s′). (5)

When the joint policy, µ, is represented as a set of Mealy
controllers, the Bellman equation becomes:

V µ(q, o, s) =

R(s, λ(q, o)) +

∞∑
k

γk
∑
s′

Pr(s′, k|s, λ(q, o))·∑
o′

Pr(o′|s′, λ(q, o))V µ(δ(q, o′), o′, s′). (6)

Note that, in the Dec-POSMDP, observations are only
generated for robots that complete their macro-actions. As
such, the observation, oi, and the current controller node,
qi, do not update until robot i terminates its macro-action
execution. These equations can be evaluated by solving
the corresponding set of equations or approximated using
Monte Carlo methods (as described below).

When the underlying Dec-POMDP model is not known,
the reward, transition and observation models can be

Prepared using sagej.cls

8 Journal Title XX(X)

defined explicitly in terms of the macro-actions. We
assume the state-space of an underlying Dec-POMDP is
known, but the full model (i.e., the reward, transition
and observation functions) and the policies of the macro-
actions do not need to be known. For instance, in our
experiments, we determine the reward model by defining
it over the states and macro-actions (e.g., positive reward
for beer being delivered) and determine the transition and
observation models by repeatedly executing macro-actions
in the domain to determine their terminal states, times
for completion and possible sensor and communication
information.‡ In general, if the low-level Dec-POMDP
model and macro-action policies are not known, the Dec-
POSMDP model can be calculated directly (by using a
simulator or the domain to estimate the high-level rewards,
transitions and observations) or through other models of the
dynamics. Also, note that while the model still includes
the states of the Dec-POMDP, it does not include the
Dec-POMDP actions and observations. As a result, these
low-level quantities can be continuous and the low-level
transition dynamics and observation model may be very
complicated, but we need only consider the effects of
the macro-actions in terms of the high-level transitions,
observations and rewards.

In our experimental domain, Smi will be the amount of
time that robot’s macro-action has been executing (since
this is sufficient information to determine how much more
time will be required in that problem). More generally,
Smi could correspond to a node in a lower-level finite-state
controller or other relevant information for updating the
states of the macro-actions.

4.3 Exploiting domain structure

The Bellman equation provides a formal framework for
evaluating policies in MacDec-POMDPs directly if we have
a model of the system. When a full model is not available,
a simulator can also be used to perform Monte Carlo
evaluation of a solution. This can be done by generating
a number of trajectories that each produce a single return
for a sampled sequence of states, observations and rewards
over the number of steps in the problem.

Specifically, using the time steps from the underlying
Dec-POMDP, the value of the k-th trajectory that starts
at state s0 and uses policy µ is given by V µ,k(s0) =
rDec0k + . . .+ γT rDecTk , where rDectk is the reward from
the underlying Dec-POMDP given on the t-th step. The
value after K trajectories is then averaged as: V̂ µ(s0) =∑K
k=1

V µ,k(s0)
K . The simulator can often operate using

the time steps from the underlying Dec-POMDP as the
states may need to be updated at this frequency and the
termination of each macro-action can be checked at this
time. Nevertheless, we can also compute the value based on

the time steps and rewards at the macro-action level with

V µ,k(s0) = r0k + . . .+ γT−tτ rτk , (7)

where rtk is now the reward in the Dec-POSMDP at the t-th
(of τ) macro-action step and tτ is the number of (primitive)
time steps taken by the last macro-action(s).§ As the number
of samples increases, the estimate of the policy’s value will
approach the true value (as shown for the POMDP (Thrun
1999) and Dec-POMDP (Wu et al. 2010b) case).

Generating a full model or simulator in complex domains
remains difficult, but many domains possess structure that
allows efficient evaluation. For example, in the bartender
domain, we perform a sample-based evaluation of policies
using a high-level simulator. As mentioned above, this
simulator uses state information for the macro-actions that
consists of distributions for the completion time at each
terminal condition given each possible initial condition.
Having this timing information is a much less restrictive
assumption than knowing the full policy of each macro-
action. We also assume that the reward only depends
on the state, and that observations only depend on the
state and terminal condition of the macro-action. This
simulator allows us to evaluate policies while keeping track
of the relevant state information and execution of macro-
actions. While, these assumptions allow for more efficient
evaluation, our heuristic search algorithm does not require
these assumptions and is general enough to solve any Dec-
POSMDP in which we can generate candidate controllers
and evaluate them.

Pseudocode for sample-based evaluation is given in
Algorithm 1. The sum of the returns as well as the state, the
current node and last observation of each robot, the current
time in the system and the amount of time each robot has
been executing its macro-action are initialized in lines 2,
4 and 5. The minimum time interval before termination of
the next macro-action as well as the corresponding robots
and terminal conditions are initialized on line 6. At each
iteration, the simulator determines the set of robots which
terminate their macro-actions in the least amount of time
(in lines 8-18). The completion time of each robot’s macro-
action is sampled in SampleFromDist, and then adjusted
based on the amount of time the macro-action has already
been running tAgi . The system time and state updates based
on the termination of these completed macro-actions (in
lines 19 and 20), the reward is added to the return in line
21 and the corresponding robots receive new observations

‡Currently, human input is used to choose the macro-actions and
abstract to sensor and communication information into discrete high-level
observations, but removing this input is an area of future work.
§For cases where the last macro-action does not terminate at exactly time
step T , a partial reward may be generated by the simulator from the
underlying Dec-POMDP or other reward model.

Prepared using sagej.cls

Amato, Konidaris, Anders, Cruz, How, and Kaelbling 9

Algorithm 1 Sample-Based Evaluation

1: function SAMPLEEVAL(µ,s0,numSims,maxTime)
2: totalReturn← 0
3: for sim 0 to numSims do
4: s← s0, q ← q0, o← o∗
5: t← 0, tAg ← ~0, minTime← 0
6: minRobots← null
7: termConds← null
8: while t < maxTime do
9: minTime←∞

10: for all robots i ∈ I do
11: for all βi of λi(qi, oi) do
12: t←SampleFromDist(s, λi(qi, oi), βi)
13: if t− tAgi = minTime then
14: minRobots← minRobots ∪ i
15: termConds←termConds ∪ β
16: else if t− tAgi < minTime then
17: minRobots← {i}
18: termConds← {β}
19: minTime← t− tAgi
20: t+ =minTime
21: s′ ← sampledState(s, λ(q, o),termConds)
22: r ← R(s′)
23: for all robots i ∈minRobots do
24: oi ← sampleObs(s′,termConds)
25: qi ← δ(qi, oi)

26: tAgi = 0

27: for all robots i /∈minRobots do
28: tAgi + =minTime
29: totalReturn + = r

30: return totalReturn/numSims

and transition in their controllers (in lines 22-25). Robots
that have not finished their macro-actions have their timers
updated (in lines 26-27). The iterations continue until the
system time reaches a limit (maxTime). This sample-based
evaluation can calculate the value of policies in problems
with very large (and continuous) state spaces using a small
number of simulations.

5 Policy search

Policy evaluation is an important step, but we must also
determine what policies each robot will use in the domain.
Specifically, we propose to generate finite-state controllers
using a heuristic search method that searches over the
action selection and node transition parameters for each
agent. The result is an optimized set of controllers, one
for each agent. Controller optimization methods have been
able to generate high-quality controllers in the (primitive-
action) Dec-POMDP case (Amato and Zilberstein 2009;

Algorithm 2 MacDec-POMDP Heuristic Search
(MDHS)

1: function HEURSEARCH(s0,n)
2: V ← V init
3: polSet← ∅
4: repeat
5: θ ←selectBest(polSet)
6: Θ′ ←expandNextStep(θ)
7: for θ′ ∈ Θ′ do
8: if isFulPol(θ’,n) then
9: v ← valueOf(θ’,s0)

10: if v > V then
11: µ∗ ← θ
12: V ← v
13: prune(polSet,V)
14: else
15: v̄ ← valueUpperOf(θ’,s0)
16: if v̄ > V then
17: polSet← polSet ∪ θ′

18: polSet← polSet \ θ
19: until polSet is empty
20: return µ∗

Szer and Charpillet 2005), but such methods have yet to
be developed for the macro-action case. Our new method,
termed MacDec-POMDP heuristic search (or MDHS),
integrates our sample-based evaluation and searches for a
policy that is optimal with respect to a given controller
size. MDHS constructs a search tree of possible controllers
for each robot (i.e., possible action selection and node
transition parameters at each node), and searches through
this space of policies by fixing the parameters (of all robots)
for one node at a time, using heuristic upper bound values
to direct the search.

Pseudocode of MDHS is in Algorithm 2. A lower bound
value, V is initialized with the value of the best known
joint policy (e.g., a random or hand-coded policy) in line
2. An open list, polSet, which represents the set of partial
policies that are available to be expanded is initialized to
be the empty set in line 3. At each step, the partial joint
policy (node in the search tree) with the highest estimated
value is selected (using selectBest in line 5). This partial
policy is then expanded in line 6, generating policies with
the action selection and node transition parameters for
an additional node specified (all children in the search
tree). This set is called Θ′. As stated above, expanding
a search node consists of adding new search nodes for
each possible combination of action selection and node
transition parameters for each agent for one more node
in the controller (e.g., if the current search node has
fixed parameters for one of the ten nodes in each agent’s
controller, the children will now fix the parameters for two

Prepared using sagej.cls

10 Journal Title XX(X)

of the ten nodes). Each policy in Θ′ is examined in the loop
beginning at line 7. If an expanded policy is fully specified
(i.e., all controller nodes have action selection and node
transition parameters specified), its value is compared with
the value of the best known policy (V), which is updated
accordingly (allowing for pruning of policies with value
less than the new V). This procedure is shown in lines 8-
13. If a policy is not fully specified, its upper bound is
calculated and it is added to the candidate set for expansion
as long as that bound is greater than the value of the current
best policy (in lines 15-17). The partial policy that was
expanded is removed from the candidate set (the open list)
in line 18 and this process continues until the optimal policy
(of size n) is found.

While this approach will generate a set of optimal
controllers of a fixed size when it completes, it can also be
stopped at any time to return the best solution found so far.
In our simple implementation, we set the initial lower bound
to be the value of a random policy and the upper bound
as the highest-valued single trajectory (i.e., simulation in
Algorithm 1) which uses random actions for controller
nodes that have not been specified (rather than the expected
value). These are relatively loose values, but performed well
in our experiments. To more quickly generate candidate
solutions before the search terminates, we also initiated the
search with a set of random (rather than blank) controllers
which had action selection and node transition parameters
updated during the search.

5.1 Improving the heuristic search algorithm
A naive implementation of Algorithm 2 will not be
very efficient. In particular, ‘expandNextStep(θ)’ on line
6 will create all possible children (i.e., search nodes)
for each robot that define the different action selection
and node transition parameters to one more node in the
controller. That is, if all n robots have |Mi| macro-
actions, |Zi| observations and |Qi| nodes in the controller,
(|Mi||Zi|)n(|Qi||Zi|)n new search nodes get generated. The
upper bound for each of these children must be calculated
and those that have a higher value than the current best
policy are added to the open list. This upper bound
calculation is time consuming and a large number of search
nodes will be added to the open list before a better solution
can be found. Only certain macro-action actions are valid
for the given initial conditions and only some observations
are possible after taking a macro-action, so all the children
do not need to be considered, but the number remains high.

As an alternative, we also consider an incremental
version of MDHS. In the incremental version,
‘expandNextStep(θ)’ is broken up into ‘expand-
NextStepAction(i, θ)’ and ‘expandNextStepTrans(i,
θ)’ for each robot i. That is, instead of adding parameters
for action selection and node transitions for all robots,

expansion is done for one robot at a time and separately for
action selection and node transitions. Specifically, we loop
through the robots to generate action selection parameters
for each robot’s next controller node and then loop through
the robots again to generate transition parameters for
those nodes. After each robot’s expansion, many fewer
search nodes are added to the open list when compared
with the naive implementation (|Mi||Zi| for the action
case and |Qi||Zi| for the transition case). As a result, we
may generate candidate solutions more quickly. As we
generate these candidate solutions, the lower bound can
be updated and we may never generate all the children
that are considered in the naive implementation. Overall,
this incremental algorithm can be expected to produce
higher-quality solutions in a given amount of time and
speed up convergence to an optimal solution.

In order to take full advantage of this incremental
expansion, we need a heuristic that is able to consider
the partially defined controller nodes that are generated.
The upper bound heuristic listed above is very loose and
will not change significantly when transitions are defined
(due to the fact that transitions are often to controller
nodes that have not yet been defined). Instead, we use an
upper bound heuristic based on the cross-product MDP
(Szer and Charpillet 2005; Meuleau et al. 1999), which
considers a centralized, fully observable solution for nodes
that have not been defined, but otherwise uses the actions
and transitions defined by the controller at the given search
node. Because a full (primitive) model is needed to generate
the cross-product MDP, we use a centralized hand-coded
mapping that assumes the states are fully observable (e.g.,
in the bartender domain the orders are observable by
all robots without traveling to the respective rooms) for
controller nodes that have not yet been defined. Specifically,
in the bartender and waiter problem, the resulting upper
bound policy has each waiter waiting in the kitchen until the
bartender is ready, then getting a drink from the bartender,
delivering the drink to the room with the oldest order
and then returning to the kitchen to continue this cycle.
Evaluation of this heuristic is done online as controller
parameters are defined and the upper bound converges to
the true value of the controller when all action selection and
node transitions are specified.

6 Experiments
We perform comparisons with previous work on existing
benchmark domains and demonstrate the effectiveness of
our MDHS policy search in the bartender scenario. We
compare only with MacDec-POMDP methods since our
previous work showed that primitive-action Dec-POMDP
methods cannot scale to problems of the size considered in
this paper (due to the resulting increase in the action and
observation space as well as the problem horizon) (Amato

Prepared using sagej.cls

Amato, Konidaris, Anders, Cruz, How, and Kaelbling 11

et al. 2014). In the first two problems, the simple version
of our approach from Algorithm 2 is used and controller
sizes are fixed to be 5 nodes. As an alternative, controller
sizes could be generated from trajectories in the simulator
(similar to previous methods (Amato and Zilberstein 2009))
or learned (Liu et al. 2015). Experiments were run on a
single core of a 2.2 GHz Intel i7 with a maximum of 8GB of
memory. The simulation experiments provide a quantitative
analysis of the efficacy of the MacDec-POMDP planner,
while the real world experiments show that our method can
be used for actual multi-robot systems.

6.1 A benchmark problem
For comparison with previous methods, we consider robots
navigating among movable obstacles (NAMO) (Stilman
and Kuffner 2005). In this problem, two robots must
navigate to a goal location, but the paths to that location
are blocked by some number of obstacles that require either
a single or multiple robots to move. Therefore, the robots
must reason about navigation and coordination choices in
order to most efficiently move to the goal. This domain was
designed as a finite-horizon problem (Amato et al. 2014)
so we add a discount factor (of 0.9) for the infinite-horizon
case.

Our previous tree-based MacDec-POMDP methods were
designed for finite-horizon problems (Amato et al. 2014),
but they can produce policies that have a high value
in infinite-horizon problems by using a large planning
horizon. In fact by using a horizon of 50, the optimal tree-
based methods can produce a solution within 0.046 of the
optimal (infinite-horizon) value in both instances of the
problem we consider (due to discounting making additional
value beyond horizon 50 below that number). As mentioned
above, in these comparisons, we used our simple MDHS
method with a random lower bound and the best single
trajectory that was sampled as an upper bound. No other
parameters are needed except for the desired controller size
for each robot (which balances time and computational
complexity).

As seen in Table 1, MDHS (“MDHS Controller”),
produces solutions that are near optimal (as given by the
finite-horizon “Tree” method) in much less time and with
a much more concise representation. The previous tree-
based dynamic programming method can produce a (near)
optimal solution, but requires a representation exponential
in the problem horizon and must search through many
more possible policies before generating a solution. It is
important to note that while these domains have a large
number of states (5000 in the 5× 5 case and 3.125× 106

in the 25× 25 case), the number of macro-actions and
observations is small (4 and 12 respectively). Furthermore,
macro-actions are not possible for some situations (e.g.,
robots will not try to move an obstacle until they observe

Table 1. Values, times (in s) and policy sizes on NAMO
benchmarks of size 5× 5 and 25× 25.

MDHS Controller Tree

5× 5 25× 25 5× 5 25× 25

Value −5.33 −9.91 −5.30 −9.87
Time 180 180 388 4959
Size 5 5 10049 10044

that they are next to one). As a result, the tree-based method
is still able to solve this problem, but will not scale to larger
action and observation spaces.

6.2 A small warehousing problem
A small warehousing problem has also been modeled and
solved as a MacDec-POMDP (Amato et al. 2015). In this
problem, a team of robots must find packages that may be
in various depots and return them to a shipping location.
Some packages must be pushed by multiple robots and
some can be retrieved by a single robot. Furthermore,
various communication assumptions were used such as no
communication, limited communication (within a specified
radius) and signaling through the use of a light. Previous
solution methods (which are based on the policy tree
methods (Amato et al. 2014)) were able to automatically
generate a set of policies for a team of iRobot Creates,
but were unable to exceed a problem horizon of 9. This
lack of scalability of the tree-based methods is due to the
larger problem size (approximately 1.26× 109 states, 6-11
macro-action and 36 observations).

As seen in Table 2, MDHS can produce concise solutions
very quickly on these problems. Because of the limited
horizon that can be achieved by the tree-based methods, it
is not possible to generate a useful bound on the optimal
solution for this problem. Nevertheless, our method is able
to solve warehousing problems for any arbitrary horizon,
while the tree-based methods could not.

As an additional comparison, we also evaluate the
controllers generated by our MDHS algorithm for the same
number of steps as the previous algorithm (9) without a
discount factor. In this case, the previous tree-based method
produced solutions with values of 1.16, 1.60, and 1.68 while
our method produces solutions with values 1.12, 1.14 and
1.61 for the no communication, limited communication and
signaling cases, respectively. Note that our solution was not
optimized for this particular horizon, but it shows that both
methods have similar solution quality when executed for
only 9 steps.

6.3 Bartender and waiters problem
The bartender and waiters problem is a multi-robot problem
modeled after waiters gathering drinks and delivering them
to different rooms. The waiters can go to different rooms

Prepared using sagej.cls

12 Journal Title XX(X)

Table 2. Values, times (in s) and policy sizes on three warehousing problems (with no and limited communication as well as
signaling). The tree-based method is unable to solve these problems.

MDHS Controller Tree

NoCom ComLimit Signal NoCom ComLimit Signal

Value 11.38 12.41 14.89 - - -
Time 180 180 180 - - -
Size 5 5 5 - - -

to find out about and deliver drink orders. The waiters
can go to the bar to obtain drinks from the bartender. The
bartender can serve at most one waiter at a time and the
rooms can have at most one order at a time. Because there
is only one type of beverage in our problem, the policy of
the bartender is simply to always pick a beverage when it
does not have one and serve the first waiter to request it.
Any waiter can fulfill an order (even if that waiter does
not have previous knowledge about the order). Drink orders
are created stochastically: a new order will arise in a room
with 1% probability at each (low-level) time step when one
does not currently exist. The reward for delivering a drink is
100− (tnow − torder)/10, where tnow is the current time
step and torder is the time step at which the order was
created.

The domain consists of three types of macro-actions
for the waiters, as shown in Table 3. These macro-actions
consist of navigation decisions such as traveling to each of
the different rooms or to the bar area as well as the ability
to request a drink from the bartender.

The state variables each waiter can observe are shown
in Table 4. These observations involve seeing a high-level
indication of the location, whether there is an order (when
a waiter is in a room), whether the waiter is holding a
drink and some status information about the bartender
(when the waiter is in the bar area). The details of how we
implemented this domain on real robots are included in the
next subsection.

To develop a simulator that is similar to the robot
implementation, we estimated the macro-action times by
measuring them in the actual domain over a number of trials
(starting the macro-actions at possible initial conditions and
executing until each possible terminal condition, generating
probability distributions for the terminal conditions and
times). The rewards and observations were defined as
above (using partial, but not noisy observations). Additional
details are also provided in the next subsection. There is
a large amount of uncertainty in the problem in terms of
the time required to complete a macro-action and outcomes
such as receiving orders. We did not explicitly model
failures in the navigation or PR2 picking/placing or noise in
the observation model, but these could be easily modeled.

Figure 6. Navigation map generated by the TurtleBots.

Our instance of the bartender and waiters problem
consisted of one bartender and two waiters. The domain had
four rooms: the bar and rooms 1-3. As mentioned above,
rooms 1-3 could order at most one drink at a time and only
one drink type was used. We had a total of 5 macro-actions
since there is a macro-action for each room as well as one
for requesting a drink. There were also 64 observations
(from Table 4) and the underlying state space consists of the
continuous locations of the TurtleBots, the status of the PR2
and discrete variables for orders in each room and whether
each TurtleBot is holding a beverage. No communication
was used except between the bartender and waiters in the
bar area.

Robot implementation
As shown in Figure 1, we used two TurtleBots (we
call the blue one Leonardo and the red one Raphael)
as waiters and the PR2 as a bartender. The TurtleBots
had two types of macro-actions: navigation and obtaining
a drink from the bartender. The navigation actions
were created using a map, shown in Figure 6, with
the ROS TurtleBot navigation package (Foote 2015)
and adding simple collision avoidance. For picking and

Prepared using sagej.cls

Amato, Konidaris, Anders, Cruz, How, and Kaelbling 13

Table 3. Macro-actions for the waiters.

ROOM N Go to room n, observe orders and deliver drinks.
BAR Go to the bar and observe current status of the bartender.
GET DRINK Obtain a drink from the bartender.

Table 4. Observations for the waiters.

Variable Values Description

loc {room n, bar} waiter’s location
orders {True, False} drink order for current room
holding {True, False} waiter holding drink status

bartender

not serving
ready to serve
serving waiter
no obs

not serving and not ready to serve
not serving and is ready to serve
serving a drink
cannot observe bartender

placing drinks, we combined several ROS controllers
for grasping and manipulation. The GET DRINK macro-
action implemented a queueing system to serve multiple
TurtleBots in the order they arrived. Specifically, The PR2
always picks up a drink and waits for a TurtleBot to arrive to
ask for it. To make sure multiple TurtleBots did not attempt
to get a beverage at the same time we implemented a simple
queue where TurtleBots would send a message to the PR2
to enter the queue. Then, the PR2 would send a message to
the first TurtleBot in the queue when it was ready to place
a drink. Once the TurtleBot left the PR2, the PR2 would
pick up another drink and wait for the next TurtleBot. Each
TurtleBot had a cooler for the PR2 to place drinks into. The
cooler was identified with an AR tag in order to locate the
TurtleBot and place the drink.

For the observations, we used state action deduction
and communication. That is, the GET DRINK action was
assumed to always succeed (but may require different
amounts of time); the TurtleBot asserted it was holding a
drink after this action. When the TurtleBot entered a room
it would prompt the user to take the drink it was holding or
to place an order. The user could give a boolean response by
toggling a red button on top of the TurtleBot. After a user
picked up the drink, the waiter observed not holding until
it completed the next GET DRINK action. The location
observations were set with the localization functionality of
the TurtleBot navigation stack. To obtain information about
the bartender, the PR2 would broadcast its current state
(serving, not serving, or ready to serve). The TurtleBots
were only able to listen to the message in the bar location.

Bartender and waiter problem results
Our MDHS planner automatically generated the bartender
and waiter solution based on the macro-action definitions
and our high-level problem description (discussed above).
That is, because the simulator was created based on the

domain, solutions could be generated using the simulator
and executed in the actual domain. The solution is a set
of Mealy controllers (one for each robot) that maps nodes
(which can represent different histories) and observations to
actions.

First, to easily examine the results, we generated policies
with 1 and 2 nodes. Figures 7 and 10 show the Mealy
controllers for the 1-node and 2-node case, respectively.
Nodes are labeled with ellipses, observations as rectangles,
and actions as diamonds. Given a node and observation,
the Mealy controller shows the next node (using a solid
line) and corresponding action (with a dashed line). For
clarity, only transitions to different nodes are labeled in our
diagrams. In the one node case, there are no transitions to
new nodes; hence, the controllers are a reactive memoryless
policy based on current observation.

To more clearly show the 1-node results, Figures 8(a)–
8(c) display parts of the generated policies. Analysis of
the solution is naturally segmented into three phases: bar,
delivery, and ordering, which correspond to 1) the waiter
being located in the bar, 2) holding a drink, and 3) not
holding a drink. As can be seen in Figures 7 and 8, the
solution spread out the serving and delivery behaviors of
the TurtleBots between the three rooms: Leonardo only
visited rooms 1 and 3, whereas Raphael focused on rooms
2 and 1. Additionally, the TurtleBots’ controllers selected
the BAR macro-action even when drinks were not ordered.
This allowed the TurtleBots to have drinks that were ready
to deliver, even if they did not previously know about an
order.

Figure 8(a) shows the macro-actions for each TurtleBot
when it is located in the bar (after the TurtleBot executes
the BAR macro-action that takes navigates it to the bar from
any location or in the initial problem configuration). Once
in the bar, the TurtleBot can observe the bartender’s status.
If the bartender is ready to serve, either agent will execute

Prepared using sagej.cls

14 Journal Title XX(X)

(a) Leonardo’s 1-node controller (b) Raphael’s 1-node controller

Figure 7. 1-node controllers for the TurtleBots in the bartender and waiters problem with nodes as ellipses, observations as
rectangles, and actions as diamonds.

(a) Bar phase while located in the bar. (b) Delivery phase while holding a drink.

(c) Ordering phase while not holding a drink.

Figure 8. Controller phases for each waiter.

the GET DRINK action. Following the GET DRINK
action, Raphael and Leonardo will execute ROOM 2 and
ROOM 3 macro-actions, respectively. If the bartender is
not ready to serve the waiter will execute ROOM 1 or
ROOM 2 macro-actions, depending on the observation.
The distance is farthest to ROOM 3 so it requires less
time to visit the other rooms when the bartender is not
ready to serve.

Once a TurtleBot is holding a drink, it is in the delivery
phase. Figure 8(b) shows the sequence of macro-actions

executed in this case. Raphael receives a drink from the
bartender and tries to complete deliveries in the following
order: ROOM 2, ROOM 1, ROOM 3. That is, it continues
looping through all rooms while holding a drink. Leonardo
executes the ROOM 3 macro-action after receiving a drink
from the bartender. If the drink is not delivered then it
chooses the ROOM 1 macro-action. It continues looping
between ROOM 1 and ROOM 3 actions until a delivery is
made.

Prepared using sagej.cls

Amato, Konidaris, Anders, Cruz, How, and Kaelbling 15

After a TurtleBot has delivered a drink, it enters
the ordering phase. Figure 8(c) shows the macro-action
sequence for the case when the waiters are not holding any
drinks. The dashed and dotted lines show the two cases
when the waiters do not go to the bar. This happens when
there is no order placed in rooms 2 and 3; the waiters go
to the bar for all other observations. This behavior balances
off having a drink ready for unknown orders and the time
used to visit other rooms.

An example execution of our generated controllers (for
the 1-node case) is shown in Figure 9. Initially, the
TurtleBots start in the bar next to the PR2. The PR2
immediately starts picking up a drink (Figure 9(a)) and the
two TurtleBots navigate to different rooms (Figure 9(b)).
Then Leonardo returns to the kitchen and successfully
receives a drink from the PR2 (Figure 9(c)). While holding
the drink, Leonardo tries to make a delivery by going to
room 2 (Figure 9(e)). There is no drink order in room 2,
so Leonardo continues to room 1 and successfully delivers
the drink to a thirsty graduate student (Figure 9(f)). While
Leonardo is served by the PR2, Raphael goes to the bar and
observes the PR2 is busy (Figure 9(d)). After observing the
PR2 is serving, Raphael navigates to room 1 to collect drink
orders (Figure 9(e)).

It is important to note that the 1-node controllers cannot
contain a more complex solution that allows each waiter
to choose what room to go to after receiving a drink from
the bartender depending on previous actions or observations
(since no memory is used). This controller is an elegant
solution given the constraint: Raphael serves room 2 then
room 1, whereas Leonardo room serves room 3 followed by
room 1. This resultant behavior shows cooperation between
the two robots to efficiently cover the rooms.

As seen Figure 10, adding another node allows for more
elegant and intricate solutions since the 2-node controller
can keep track of more information. Because there are
only two nodes and the solution is optimized to improve
performance, not clarity, it is somewhat difficult to interpret
the meaning of the different nodes. Nevertheless, the
multiple nodes are used to remember actions taken and
observations seen. To simplify the analysis we can look at
three different scenarios. Scenario 1 is receiving a drink
from the bar and trying to deliver it when no orders are
received. Scenario 2 is going to the bar when the bartender
is always not ready. Scenario 3 is going to the bar when the
bartender is always serving another agent.

The first case is the behavior after receiving a drink from
the bar. We would expect both agents to cycle through all
of the rooms to deliver a drink, with room 3 being the least
frequently visited since it is far away. In the one node case,
Leonardo goes through all rooms in the sequence: room 2,
room 1, room 3 and Raphael visits room 3, then room 1. The
2-node case focuses more on the first two rooms for a higher

expected return. Leonardo goes through room 3, room 2,
room 1 and back to room 3, while Raphael visits room 1
then room 2 or room 2 then room 1 depending on which
node it is currently in. By delivering to the first two rooms
more frequently the agents are exploiting the fact that these
rooms are closer and the multiple nodes allows this pattern
to be more efficient (with a choice of room 1 or room 2).

The second case, is what happens when the TurtleBots go
to the bar and the bartender is not ready. We would expect
the TurtleBots to try to visit the bar again or go to a nearby
room to check if the bar is ready as quickly as possible. In
the one node case Leonardo visits room 2 and Raphael visits
room 1. In the 2-node case, Leonardo always waiting in the
bar until the bartender is ready. Raphael will either wait for
the bartender until it is ready or go between room 1 and the
bar depending on which node it is in. This waiting behavior
seeks to get drinks as quickly as possible, while gaining
order information only when deemed beneficial. Again, we
see the 2-node solution is able to use memory to improve
the solution.

The third case shows a clear difference between the one
node and two node solutions. The TurtleBots have very
different behavior for what to do after visiting the bar when
the bartender is serving the other TurtleBot. Because the
time needed for the bartender to complete serving is large,
we see the TurtleBots visit further rooms to collect orders.
This is in contrast to the 1-node case where the behavior is
limited to visiting rooms 1 or 2.

We also examine the values of the 1-node, 2-node and
larger 5-node controllers in the simulator. These values
were computed by executing the controllers generated by
MDHS in the simulator for 1000 (primitive) time-steps
using 10,000 Monte Carlo simulations. The solution value
was 1254 (an average of 13.95 drinks delivered) for the
1-node controllers, 1289 for the 2-node controllers (14.31
drinks delivered) and 1302 (14.64 drinks delivered) for
the 5-node controller.¶ For comparison, a hand-coded
controller that assigns one robot (Leonardo) to room 3
(since it is farthest from the kitchen) and one robot
(Raphael) to rooms 1 and 2, produces a solution with
value 851 (10.40 drinks delivered). More sophisticated
hand-coded controllers are possible, but, in general, it is
very difficult for a human to determine a good solution in
complex problems such as this one.

Additional results comparing the simple and incremental
versions of MDHS for the 1-node and 5-node case are
seen in Figure 11. In the 1-node case (Figure 11(a)), both
the simple and incremental versions produced high-quality
solutions quickly, but the incremental version required
much less time to produce and converge to the optimized
solution. Results for the 5-node case (Figure 11(b)) are

¶There is a standard error of approximately 1.3 in these calculations.

Prepared using sagej.cls

16 Journal Title XX(X)

(a) PR2 picking up a drink. (b) TurtleBots go to first rooms.

(c) Leonardo sees the PR2 ready and gets a drink. (d) Raphael sees the PR2 serving Leonardo.

(e) TurtleBots go to rooms 1 and 2. (f) Leonardo delivers to room 1.

Figure 9. Images from the bartender and waiter experiments.

Prepared using sagej.cls

Amato, Konidaris, Anders, Cruz, How, and Kaelbling 17

(a) Leonardo’s 2-node controller (b) Raphael’s 2-node controller

Figure 10. 2-node controllers for the TurtleBots in the bartender and waiters problem with nodes as ellipses, observations as
rectangles, actions as diamonds and node transitions with solid lines (lack of a line represents transition back to the same node).

similar, but more time is required to search through
parameters for the larger controller. Note that in 5-node
case, the graph is trimmed and does not show convergence
to the final value of 1302. Here, the incremental version
of MDHS is always able to produce a higher-valued policy
with a given amount of time.

These results demonstrate that the MDHS planner is
able to effectively generate a solution to a cooperative
multi-robot problem, given a declarative MacDec-POMDP
planner. Note that the same planner solved all these
experimental problems based on a high-level domain
description.

7 Related Work

Other frameworks exist for multi-robot decision making.
For instance, behavioral methods have been studied
for performing task allocation over time with loosely-
coupled (Parker 1998) or tightly-coupled (Stroupe et al.
2004) tasks. These are heuristic in nature and make strong
assumptions about the type of tasks that will be completed.
Market-based approaches use traded value to establish
an optimization framework for task allocation (Dias and
Stentz 2003; Gerkey and Matarić 2004). These approaches
have been used to solve real multi-robot problems (Kalra
et al. 2005; Capitán et al. 2013), but are largely aimed at
tasks where the robots can communicate through a bidding
mechanism.

Prepared using sagej.cls

18 Journal Title XX(X)

0 200 400 600 800 1000 1200 1400 1600
Time (in s)

900

1000

1100

1200

Va
lu

e

MDHS
MDHS incremental

(a) One node

0 2000 4000 6000 8000 10000 12000 14000
Time (in s)

600

700

800

900

1000

1100

1200

1300

Va
lu

e

MDHS
MDHS incremental

(b) Five nodes

Figure 11. Comparison of the simple and incremental versions of MDHS showing the value produced over time (in seconds).
Note the 5-node controller graphs are cropped and do not show the final value of 1302.

One important related class of methods is based on
linear temporal logic (LTL) (Belta et al. 2007; Loizou
and Kyriakopoulos 2004) to specify behavior for a robot;
reactive controllers that are guaranteed to satisfy the
resulting specification are then derived. These methods are
appropriate when the world dynamics can be effectively
described non-probabilistically and when there is a useful
characterization of the robot’s desired behavior in terms
of a set of discrete constraints. When applied to multiple
robots, it is necessary to give each robot its own behavior
specification. By contrast, our approach (probabilistically)
models the domain and allows the planner to automatically
optimize the robots’ behavior.

There has been less work on scaling Dec-POMDPs to
real robotics scenarios, Emery-Montemerlo et al. (2005)
introduced a (cooperative) game-theoretic formalization
of multi-robot systems which resulted in solving a Dec-
POMDP. An approximate forward search algorithm was
used to generate solutions, but because a (relatively) low-
level Dec-POMDP was used, scalability was limited, and
their system required synchronized execution by the robots.
The introduction of MacDec-POMDP methods has largely
eliminated these two concerns.

While several hierarchical approaches have been
developed for multi-agent systems (Horling and Lesser
2004), very few are applicable to multi-agent models
based on MDPs and POMDPs. Ghavamzadeh et al.
(2006) developed a multi-agent reinforcement learning
approach with a given task hierarchy, but this work is
limited to a multi-agent (fully-observable) SMDP model
with communication, making it a subclass of a MacDec-
POMDP. Other researchers have developed models similar
to MacDec-POMDPs in the centralized multi-robot setting
(Messias et al. 2013b,a).

8 Discussion

In this paper, we consider the case where macro-actions
are given. This will often be the case in multi-robot
domains as controllers typically exist for common tasks
such as navigation, grasping and manipulation. Even if
the individual performance of each controller is poor, by
planning at the macro-action level, they may be able to
be sequenced in way that effectively solves the problem.
Nevertheless, controllers can also be generated from a high-
level description. For example, related work has shown
how a motion planner can be used to generate controllers
along with distributions for completion times and terminal
conditions given initial conditions (Omidshafiei et al.
2015). As a result, the probabilities for our model in
Equation 5 could be generated and a reward function can
be defined (e.g., Omidshafiei et al. used a simple additive
reward structure with individual rewards from the motion
planner). The cited work requires a model of the low-
level dynamics, but it can be continuous and complex.
The high-level problem description consists of defining
regions of interest that the motion planner will use as
initial conditions and target as terminal conditions (i.e.,
regions of belief space that the robots should navigate to).
Omidshafiei et al. assume the regions are given and each
controller (i.e., motion plan) is independent, but alleviating
these limitations is an area of future work.

Sometimes, it may not be possible to generate even a
high-level model or simulator for a problem of interest.
In these cases, the method in this paper cannot be used.
One alternative is learning a solution (i.e., finite-state
controllers for the robots) directly from data. Such a
learning method has been explored where the data is
given as a set of trajectories (in the form of macro-
actions taken and observations seen over time for each

Prepared using sagej.cls

Amato, Konidaris, Anders, Cruz, How, and Kaelbling 19

agent as well as rewards received for the team) (Liu et al.
2016). Experiments show that controllers can be learned
that outperform ‘expert’ controllers from a relatively small
amount of data. The amount of data is insufficient to learn a
model, but allows high-performing solutions to be learned.
In this paper, we learn the timing distributions and terminal
conditions for each macro-action separately (by executing
them in the domain from various initial conditions), but
the domain (or a sufficiently accurate simulator) may not
be available and many macro-action executions may be
necessary. Future work could examine issues such as how
much data is needed to learn an accurate model and how
robust the methods in this paper are to model errors.

9 Summary and Conclusion
We have introduced an extended MacDec-POMDP model
for representing cooperative multi-robot systems under
uncertainty using a high-level problem description, and
developed MDHS, a new MacDec-POMDP planning
algorithm that searches over policies represented as finite-
state controllers. While our previous work introduced
macro-actions to Dec-POMDPs and showed that multi-
robot problems could be represented and solved using them,
the new model and planner are applicable to a much wider
range of multi-robot problems, for two reasons.

First, we now require a much simpler simulator for the
planning phase—one that models only the outcomes of
motor controller execution, rather than the execution itself.
Such a simulator is substantially easier to build for real
robot problems. Second, MDHS can solve significantly
larger problems than previous planners. For the bartenders
and waiters problem, an accurate low-level simulator would
have been hard to build; even if it had been built, generating
a solution for the resulting problem would have been
beyond the reach of existing planners. MDHS was able to
automatically generate controllers for a heterogenous robot
team that collectively maximized team utility, using only a
high-level model of the task. It is therefore a significant step
forward in the development of general-purpose planners for
cooperative multi-robot systems.

Acknowledgments
The research was completed while Chris Amato was in
the Department of Computer Science at the University
of New Hampshire and George Konidaris was in the
Departments of Computer Science & Electrical and
Computer Engineering at Duke University. The work was
supported by US Office of Naval Research under MURI
program award #N000141110688, NSF award #1463945
and the ASD R&E under Air Force Contract #FA8721-
05-C-0002. Opinions, interpretations, conclusions and
recommendations are those of the author and are not

necessarily endorsed by the United States Government.
We would also like to thank Wheeler Ruml for helpful
discussions about heuristic search and Sammie Katt for
assisting with finding errors in the paper.

References

Amato C, Bernstein DS and Zilberstein S (2010) Optimizing
fixed-size stochastic controllers for POMDPs and decentral-
ized POMDPs. Journal of Autonomous Agents and Multi-
Agent Systems 21(3): 293–320.

Amato C, Chowdhary G, Geramifard A, Ure NK and
Kochenderfer MJ (2013) Decentralized control of partially
observable Markov decision processes. In: Proceedings of
the Fifty-Second IEEE Conference on Decision and Control.
pp. 2398–2405.

Amato C, Konidaris GD, Cruz G, Maynor CA, How JP and
Kaelbling LP (2015) Planning for decentralized control of
multiple robots under uncertainty. In: Proceedings of the
International Conference on Robotics and Automation.

Amato C, Konidaris GD and Kaelbling LP (2014) Planning with
macro-actions in decentralized POMDPs. In: Proceedings
of the International Conference on Autonomous Agents and
Multiagent Systems. pp. 1273–1280.

Amato C and Zilberstein S (2009) Achieving goals in
decentralized POMDPs. In: Proceedings of the International
Conference on Autonomous Agents and Multiagent Systems.
pp. 593–600.

Bai H, Hsu D and Lee WS (2013) Integrated perception and
planning in the continuous space: A POMDP approach.
International Journal of Robotics Research 33: 1288–1302.

Belta C, Bicchi A, Egerstedt M, Frazzoli E, Klavins E and Pappas
GJ (2007) Symbolic planning and control of robot motion.
Robotics & Automation Magazine, IEEE 14(1): 61–70.

Bernstein DS, Amato C, Hansen EA and Zilberstein S (2009)
Policy iteration for decentralized control of Markov decision
processes. Journal of Artificial Intelligence Research 34: 89–
132.

Bernstein DS, Givan R, Immerman N and Zilberstein S (2002)
The complexity of decentralized control of Markov decision
processes. Mathematics of Operations Research 27(4): 819–
840.

Boutilier C (1999) Sequential optimality and coordination in
multiagent systems. In: Proceedings of the International Joint
Conference on Artificial Intelligence. pp. 478–485.

Capitán J, Spaan MTJ, Merino L and Ollero A (2013) Decen-
tralized multi-robot cooperation with auctioned POMDPs.
International Journal of Robotics Research 32(6): 650–671.

Cassandra AR, Kaelbling LP and Littman ML (1994) Acting
optimally in partially observable stochastic domains. In:
Proceedings of the National Conference on Artificial
Intelligence.

Prepared using sagej.cls

20 Journal Title XX(X)

Dias MB and Stentz A (2003) A comparative study between
centralized, market-based, and behavioral multirobot coor-
dination approaches. In: Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems,
volume 3. pp. 2279 – 2284.

Emery-Montemerlo R, Gordon G, Schneider J and Thrun S (2005)
Game theoretic control for robot teams. In: Proceedings of the
International Conference on Robotics and Automation. pp.
1163–1169.

Foote T (2015) turtlebot navigation - ROS Wiki. http://

wiki.ros.org/turtlebot_navigation. Accessed:
2015.

Gerkey BP and Matarić MJ (2004) A formal analysis
and taxonomy of task allocation in multi-robot systems.
International Journal of Robotics Research 23(9): 939–954.

Ghavamzadeh M, Mahadevan S and Makar R (2006) Hierarchical
multi-agent reinforcement learning. Journal of Autonomous
Agents and Multi-Agent Systems 13(2): 197–229.

Horling B and Lesser V (2004) A survey of multi-agent
organizational paradigms. The Knowledge Engineering
Review 19(4): 281–316.

Kaelbling LP, Littman ML and Cassandra AR (1998) Planning and
acting in partially observable stochastic domains. Artificial
Intelligence 101: 1–45.

Kalra N, Ferguson D and Stentz A (2005) Hoplites: A market-
based framework for planned tight coordination in multirobot
teams. In: Proceedings of the International Conference on
Robotics and Automation. pp. 1170 – 1177.

Liu M, Amato C, Anesta E, Griffith JD and How JP
(2016) Learning for decentralized control of multiagent
systems in large partially observable stochastic environments.
In: Proceedings of the National Conference on Artificial
Intelligence.

Liu M, Amato C, Liao X, Carin L and How JP (2015) Stick-
breaking policy learning in Dec-POMDPs. In: Proceedings of
the International Joint Conference on Artificial Intelligence.

Loizou SG and Kyriakopoulos KJ (2004) Automatic synthesis of
multi-agent motion tasks based on LTL specifications. In:
Proceedings of the Forty-Third IEEE Conference on Decision
and Control, volume 1. IEEE, pp. 153–158.

Messias JV, Spaan MTJ and Lima PU (2013a) GSMDPs for multi-
robot sequential decision-making. In: Proceedings of the
Twenty-Seventh AAAI Conference on Artificial Intelligence.
pp. 1408–1414.

Messias JV, Spaan MTJ and Lima PU (2013b) Multiagent
POMDPs with asynchronous execution. In: Proc. of Int.
Conference on Autonomous Agents and Multi Agent Systems.
pp. 1273–1274. Extended abstract.

Meuleau N, Kim KE, Kaelbling LP and Cassandra AR (1999)
Solving POMDPs by searching the space of finite policies.
In: Proceedings of the Conference on Uncertainty in Artificial
Intelligence. pp. 417–426.

Oliehoek FA (2012) Decentralized POMDPs. In: Wiering M and
van Otterlo M (eds.) Reinforcement Learning: State of the Art,
Adaptation, Learning, and Optimization, volume 12. Springer
Berlin Heidelberg, pp. 471–503.

Oliehoek FA and Amato C (2016) A Concise Introduction to
Decentralized POMDPs. Springer.

Omidshafiei S, Agha-mohammadi A, Amato C and How JP (2015)
Decentralized control of partially observable Markov decision
processes using belief space macro-actions. In: Proceedings
of the International Conference on Robotics and Automation.

Parker LE (1998) ALLIANCE: An architecture for fault tolerant
multirobot cooperation. IEEE Transactions on Robotics and
Automation 14(2): 220–240.

Poupart P and Boutilier C (2003) Bounded finite state controllers.
In: Advances in Neural Information Processing Systems, 16.
pp. 823–830.

Puterman ML (1994) Markov Decision Processes: Discrete
Stochastic Dynamic Programming. Wiley-Interscience.

Stilman M and Kuffner J (2005) Navigation among movable
obstacles: Real-time reasoning in complex environments.
International Journal on Humanoid Robotics 2(4): 479–504.

Stroupe AW, Ravichandran R and Balch T (2004) Value-
based action selection for exploration and dynamic target
observation with robot teams. In: Proceedings of the
International Conference on Robotics and Automation,
volume 4. IEEE, pp. 4190–4197.

Sutton RS, Precup D and Singh S (1999) Between MDPs
and semi-MDPs: A framework for temporal abstraction in
reinforcement learning. Artificial Intelligence 112(1): 181–
211.

Szer D and Charpillet F (2005) An optimal best-first search
algorithm for solving infinite horizon DEC-POMDPs. In:
Proceedings of the European Conference on Machine
Learning. pp. 389–399.

Thrun S (1999) Monte carlo POMDPs. In: Advances in Neural
Information Processing Systems, volume 12. pp. 1064–1070.

Wu F, Zilberstein S and Chen X (2010a) Point-based policy
generation for decentralized POMDPs. In: Proceedings of
the International Conference on Autonomous Agents and
Multiagent Systems. pp. 1307–1314.

Wu F, Zilberstein S and Chen X (2010b) Rollout sampling policy
iteration for decentralized POMDPs. In: Proceedings of the
Conference on Uncertainty in Artificial Intelligence.

Prepared using sagej.cls

http://wiki.ros.org/turtlebot_navigation
http://wiki.ros.org/turtlebot_navigation

	Introduction
	Motivating problem
	Background
	Dec-POMDPs
	Macro-Actions for Dec-POMDPs

	Finite-state controllers for MacDec-POMDPs
	Mealy Controllers
	Macro-action controllers
	Exploiting domain structure

	Policy search
	Improving the heuristic search algorithm

	Experiments
	A benchmark problem
	A small warehousing problem
	Bartender and waiters problem

	Related Work
	Discussion
	Summary and Conclusion

