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Introduction

= Sequential decision-making

= Reasoning under uncertainty

= Decision-theoretic approach

= Single and cooperative multiagent
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Outline

= Introduction

= Background
» Partially observable Markov decision processes (POMDPs)
 Decentralized POMDPs

= My contributions to solving these models

 Optimal dynamic programming for DEC-POMDPs
e Increasing scalability for POMDPs and DEC-POMDPs

= Future work
» Algorithms and applications
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Dealing with uncertainty

= Agent situated in a world, receiving information
and choosing actions

= What happens when we don’t know the exact
state of the world?

= Uncertain or imperfect information

= This occurs due to

* Noisy sensors (some states look the same or can be
incorrect)

« Unobservable states (may only receive an indirect
signal)
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Example single agent problems

= Robot navigation (autonomous vehicles)

= Inventory management (e.g. decide what to order
based on uncertain supply and demand)

= Green computing (e.g. moving jobs or powering off
systems given uncertain usage)

= Medical informatics (e.g. diagnosis and treatment or
hospital efficiency)
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Single agent: partially observable

= Partially observable Markov decision process (POMDP)
= Extension of fully observable MDP
= Agent interacts with partially observable environment
 Sequential decision-making under uncertainty
» At each stage, the agent takes a stochastic action and receives:

 An observation based on the state of the system
 An immediate reward
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POMDP definition

= A POMDP can be defined with the following tuple:
M=<5,A, P,R, 2, O>

S, a finite set of states with designated initial state

distribution b,

A, a finite set of actions

P, the state transition model: P(s’| s, a)

R, the reward model: R(s, a)

Q, a finite set of observations

O, the observation model: O(o| s, a)

In blue, are the differences from fully observable MDPs
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POMDP solutions

= A policy is a mapping 2 — A
« Map whole observation histories to actions because the
state is unknown

 Can also map from distributions of states (belief states)
to actions for a stationary policy

= Goal is to maximize expected cumulative reward
over a finite or infinite horizon
 Note: in infinite-horizon, cannot remember the full
observation history (it’s infinite!)
= Use a discount factor, y, to maintain a finite sum
over the infinite horizon
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Example POMDP: Hallway

States: grid cells with orientation

Minimize number of Actions: turn®), (= (> move
steps to the starred forward, stay
square for a given Transitions: noisy

start state distribution
Observations: red lines

Rewards: negative for all states
except starred square
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Decentralized domains

= Cooperative multiagent problems

= Each agent’s choice affects all others, but must
be made using only local information

= Properties
« Often a decentralized solution is required

 Natural way to represent problems with multiple
decision makers making choices independently of the
others

 Does not require communication on each step (may be
impossible or too costly)

e But now agents must also reason about the previous
and future choices of the others (more difficult)
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Example cooperative multiagent problems

= Multi-robot navigation

= Green computing (decentralized, powering off affects
others)

= Sensor networks (e.g. target tracking from multiple
viewpoints)

= E-commerce (e.g. decentralized web agents, stock
markets)
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Multiple cooperating agents

= Decentralized partially observable Markov decision
process (DEC-POMDP)

= Multiagent sequential decision-making under
uncertainty

e At each stage, each agent takes an action and receives:
* A local observation
e A joint immediate reward
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DEC-POMDP definition

= A DEC-POMDP can be defined with the tuple: M
=<I, S5, {A}, P, R, {2}, O>
« ], a finite set of agents

« S, a finite set of states with designated initial state
distribution b,

* A, each agent’s finite set of actions

P, the state transition model: P(s’| s, a)
R, the reward model: R(s, a)

« Q,, each agent’s finite set of observations
O, the observation model: O(0]| s’, a)

Similar to POMDPs, but now functions depend on all agents
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DEC-POMDP solutions

A local policy for each agent is a mapping from
its observation sequences to actions, 2" — A

 Note that an agents do not generally have enough
information to calculate an estimate of the state

e Also, planning can be centralized but execution is
distributed

A joint policy is a local policy for each agent

= Goal is to maximize expected cumulative reward
over a finite or infinite horizon

e Again, for infinite-horizon cannot remember the full
observation history

= In infinite case, a discount factor, v, is used
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Example: 2-Agent Grid World

States: grid cell pairs

Actions: move 1],1l,=,4,
stay

Transitions: noisy
Observations: red lines

Rewards: negative unless
sharing the same square

Department of Computer Science

15




JMassAmhe
Challenges in solving DEC-POMDPs

= Like POMDPs, partial observability makes the
problem difficult to solve

= Unlike POMDPs: No centralized belief state
 Each agent depends on the others

* This requires a belief over the possible policies of the
other agents

e Can't transform DEC-POMDPs into a continuous state
MDP (how POMDPs are typically solved)

= Therefore, DEC-POMDPs cannot be solved by
POMDP algorithms
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General complexity results

DEC-POMDP
NEXP

POMDP
PSPACE

DEC-MDP
NEXP

subclasses and finite horizon complexity results
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Relationship with other models

_ DEC- DEC-POMDP
(!initlzgle\gtgjl):) POMDP MDP MDP  DEC-POMDP-COM

MTDP

Ovals represent complexity, while colors represent number of agents and
cooperative or competitive models
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Overview of contributions

= Optimal dynamic programming for DEC-POMDPs
« g-optimal solution using finite-state controllers for
infinite-horizon
e« Improving dynamic programming for DEC-POMDPs with
reachability analysis
= Scaling up in single and multiagent environments
by methods such as:
¢ Memory bounded solutions
« Sampling
e Taking advantage of domain structure
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Infinite-horizon polices as stochastic controllers

« Designated initial node

e Nodes define actions I 1.0 Actions: move in direction or stop
. w
 Transitions based on * Observations: wall left, wall right
observations seen ose N Wria@—2
* Inherently infinite- ) 1 wi ~
. 2{ 2
horizon wr
. . . . 0.1
 Periodic policies wie@™ '

« With fixed memory,
randomness can offset
memory limitations

wr 0.15

0.85

For DEC-POMDPs use one controller for each agent
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Evaluating controllers

= Stochastic controller defined by parameters
* Action selection: Q — AA
 Transitions: Q x O — AQ

= For a node, g, and the above parameters, value at
state s is given by Bellman equation (POMDP):

V(g,s)= Y P(alq)| R(s,a)+ 7D P(s's,a) Y O(ols',a)Y P(q'lq,0)V(q,s)
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Optimal dynamic programming for DEC-POMDPs

JAIR 09

= Infinite-horizon dynamic programming (DP):
Policy Iteration

* Build up finite-state controllers as policies for each
agent (called “backups”) over a number of steps

At each step, remove or prune controller nodes that
have lower value using linear programming

 Redirect and merge remaining nodes to produce a
stochastic controller

 Continue backups and pruning until provably within € of
optimality (can be done in finite steps)

= First e-optimal algorithm for infinite-horizon
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Optimal DP for DEC-POMDPs: Policy Iteration

Start with a given controller

Exhaustive backup: generate all
next step policies by considering (a)) (a,) — TInitial controller
\ NN

for agent 1

any first action and then
choosing some node of the 0 0,
controller for each observation

Evaluate: determine value of
starting at each node at each
state and for each policy for the
other agents

Prune: remove those that
always have lower value (merge
as needed)

Continue with backups and
pruning until error is below €

(backup for action 1)
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Optimal DP for DEC-POMDPs: Policy Iteration

Start with a given controller

Exhaustive backup: generate all

next step policies by considering (a)) (a,) — TInitial controller
any first action and then \ AN 7 for agent 1
choosing some node of the 0 0,

controller for each observation

Evaluate: determine value of

starting at each node at each

state and for each policy for the

other agents

Prune: remove those that

always have lower value (merge

as needed)

Continue with backups and

pruning until error is below € S OxS S5
(backup for action 1)
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Improvements and experiments Jair 0o

= Can improve value of controller after each pruning step

= (Can use heuristics and sampling of the state space (point-
based method) to produce approximate results

Two Agent Tiger

Meeting on a Grid, |S| =16, |4;| =5, |Q;] =4 1 — e e e e e e

Iteration H Exhaustive Sizes ‘ Controller Reductions ‘ Bounded Updates ° '/"'

0 (1,1) 2.8 (1,1 in 1s) 2.8 (1,1 in 1s) o N

1 (5,5) 3.4 (5,5 in 7s) 3.8 (5,5 in 145s) w| 1 - :

2 (3125,3125) 3.7 (80,80 in 821s) 4.78% (125,125 in 1204s) | g « .

E 80 Il Yy
Box Pushing, |S| = 100, |A;| =4, || =5 ool ! -4

Iteration H Exhaustive Sizes ‘ Controller Reductions ‘ Bounded Updates . ,’

0 (1,1) 2 (1,1 in 4s) 2 (1,1 in 53s) N -

1 (4,4) -2 (2,2 in 108s) 6.3 (2,2 in 132s) ' e

2 (4096, 4096) 12.8 (9,9 in 755s) 427 (16,17 in 714s) | 0 . . e w a e w

number of iterations

Optimal methods: value, controller size and time Optimal and approximate methods

= Optimal DP can prune a large number of nodes

= Approximate approaches can improve scalability
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Incremental policy generation icaps 09

= Optimal dynamic programming for DEC-POMDPs
requires a large amount of time and space

= In POMDPs, methods have been developed to
make optimal DP more efficient

= These cannot be extended to DEC-POMDPs (due
to the lack of a shared viewpoint by the agents)

= We developed a new DP method to make the
optimal approaches for both finite and infinite-
horizon more efficient
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Incremental policy generation (cont.)

= Can avoid exhaustively generating policies (backups)

= Cannot know what policies the others may take, but after an
action is taken and observation seen, can limit the number
of states considered (see a wall, other agent, etc.)

= This allows policies for an agent to be built up incrementally

= That is, iterate through possible first actions and
observations, adding only subtrees (or subcontrollers) that
are not dominated

P P
>< P, P
P Ps
5y ) Sy
OxS OxS'
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Benefits of IPG and results icaps 09

Solve larger problems optimally
Can make use of start state information as well

= Can be used in other dynamic programming algorithms

e Optimal: Finite-, infinite- and indefinite horizon as well as
policy compression

 Approximate: PBDP, MBDP, IMBDP, MBDP-OC and PBIP

Increases scalability in optimal DP (finite or infinite-horizon)

x signifies inability to solve problem with 2GB memory

Horizon || DP | Incremental Generation IPG) | IPG with Start State || Value

Meeting in a 3x3 Grid, |S] = 81, [A;[ =5, L[ =9 | S !
2 (5)5in 5s 5in <l1s 5in 5s 0.000 —=— PBIP /
3 X 5in 16s 5in 17s 0.133 | ™ J
4 X 40 in 42s 10 in 53s 0.433 § //
5 X (25960)* in 2555s (148) 148,145 in 600s 0.896 § °°°°° 1

Box Pushing, [S| = 100, |A;| =4, [ =5 2 /

2 (128) 8 in 14s 81n 2s @) 231 Is 17.60 |g o /
3 X (320,256) 256 in 1159s (6) 5,6 in 6s 66.08 |£ /
4 X X (233,239) 233 in 1138s || 98.59 ,.l/

Stochastic Mars Rover, |S| = 256, |A;| = 6, || =8 e //
2 X (150, 672)* in 72s (16,20) 12,15 in 83s 5.80 _y :
3 X X (396, 534)* in 389s 9.38 number of trees (;IAXTREEGE) ’

... and approximate DP
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Approximate methods

= Optimal approaches may be intractable,
causing approximate methods to be desirable

= Questions

« How can high-quality memory-bounded solutions
be generated for POMDPs and DEC-POMDPs?

« How can sampling be used in the context of DEC-
POMDPs to produce solutions efficiently?

« Can I use goals and other domain structure to
improve scalability?
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Memory-bounded solutions

= Can use fixed-size finite-state controllers as
policies for POMDPs and DEC-POMDPs

= How do we set the parameters of these
controllers to maximize their value?

« Deterministic controllers - discrete methods such as
branch and bound and best-first search

e Stochastic controllers - continuous optimization

(D—

(deterministically) choosing an action and transitioning to the next node
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Nonlinear Programming approach ucaror. uaro7, iaamas o9

= Use a nonlinear program (NLP) to represent
an optimal fixed-size controller for POMDPs
or set of controllers for DEC-POMDPs

= Consider node value as well as action and
transition parameters as variables

= Thus, find action selection and node
transition parameters that maximize the
value using a known start state

= Constraints maintain valid values and
probabilities
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NLP formulation (POMDP case)

Variables: x(q’a,q,0) = P(q’,alq,0), y(q,s)= V(q,s)
Objective: Maximize Zbo(s)y(qo,s)
Value Constraints: VseS, geQ

¥(g,5) = ZHZM ,a,q,oa]R(s,a) +7) P(s'15,a) Y. 00015 ,a) ) x(q'a.q.0)y(q . J

Probability constraints:VgeQ, acA, oef2
D x(q',a.g.0) = X x(q ,a,q,0,)
q' q'

Also, all probabilities must sum to 1 and be greater than O
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Mealy Controllers recent submission

Controllers currently used are Moore controllers

Mealy controllers are more powerful than Moore
controllers (can represent higher quality solutions
with the same number of nodes)

Provides extra structure that algorithms can use

Can be used in place of Moore controllers in all
controller-based algorithms for POMDPs and DEC-

POMDPs o; 01,3
A
©
Moore= 01 0, Mealy= 0,,a; 02,34
00— A (a1 Qx0— A
\J
0, 02,84

Department of Computer Science 33




JMassAmbhe

NLP results: POMDP case jaamas 09 and unpublished

Algorithm || Value | Size | Time
Aloha: |S| =90, |A| =29,|0| =3
Mealy 1,221.72 7 312
HSVI2 1,212.15 | 2,909 | 1,851
Moore 1,211.67 6 1,134
PERSEUS 853.41 31 1,801
Tag: |S| = 870,|A| = 5,|0| = 30
PBPI! -5.87 818 | 1,133
RTDP-BEL! -6.16 | 2.5m | 493
PERSEUS! -6.17 280 | 1,670
HSVI2! -6.36 415 24
Mealy -6.65 2 323
Moore fixed -8.14 7 5,669
Moore -13.94 2 5,596
Tag Repeat: |S| = 870, |A| =5,|0| = 30
Mealy -11.44 2 319
PERSEUS -12.24 142 | 2,020
HSVI2 -15.02 3,207 | 1,815
Moore -20.00 1 37
Hallway2 |S| =93, |A| =5, || = 17
Moore fixed 1.97 13 309
Moore 1.66 6 163
HSVI2 1.18 2,540 | 3,627

Optimizing a Moore controller
can provide a high-quality
solution

Optimizing a Mealy controller
improves solution quality
without increasing controller
Size

Both approaches perform better
in truly infinite-horizon
problems (those that never
terminate)

DEC-POMDP results are similar,
but discussed later

Future specialized solvers may
further increase quality
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Achieving goals in DEC-POMDPS aamas og

= Unclear how many steps are needed until
termination

= Many natural problems terminate after a goal is
reached

 Meeting or catching a target
 Cooperatively completing a task
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Indefinite-horizon DEC-POMDPs

» Described for POMDPS patek 01 and Hansen 07

= QOur assumptions
 Each agent possesses a set of terminal actions
 Negative rewards for non-terminal actions

= Problem stops when a terminal action is taken by
each agent

= Can capture uncertainty about reaching goal
= Many problems can be modeled this way

= We showed how to find an optimal solution to
this problem using dynamic programming
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Goal-directed DEC-POMDPs

Relax assumptions, but still have goal

Problem terminates when
« The set of agents reach a global goal state
* A single agent or set of agents reach local goal states

 Any combination of actions and observations is taken or seen by
the set of agents

More problems fall into this class (can terminate without
agent knowledge)

Solve by sampling trajectories
 Produce only action and observation sequences that lead to goal
» This reduces the number of policies to consider

« We proved a bound on the number of samples required to
approach optimality
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Getting more from fewer samples

= Optimize a finite-state controller
 Use trajectories to create a controller
e Ensures a valid DEC-POMDP policy
* Allows solution to be more compact

e Choose actions and adjust resulting transitions (permitting
possibilities that were not sampled)

e Optimize in the context of the other agents

= Trajectories create an initial controller which is then
optimized to produce a high-valued policy

o, N8 o g o
alzb(:)/'alzb(:)—ba —» o 0

0 03 1 1
o{ga]%@ﬁa@&,gﬂ 5%

03 a \Ol'}g

0r4
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Experimental results aamas og and unpublished

Algorithm Value | Size Time
= We built controllers from a e e I 2 IO
HPI w/ NLP .
small number of the Goal-directed || 5.04 | 12 75
highest-valued trajectories Moore -1.09 | 19 | 6,173
Meeting in a Grid: |S| = 16, |A;| = 5, |0;] = 2
» Our sample-based A R et
approach (goal-directed) HPIw/NLP | 604 | 7 | 16,763
i i - Moore 5.66 5 117
prOV.IdeS d V.ery hlgh Goal-directed 5.64 4 4
quality solution very Box Pushing: | 5] = 100, [A4] = 4,10 =
quickly in each problem Goal-directed || 149.85 | 5 199
L . . Mealy 143.14 | 4 774
N HeurIStIC pO“Cy Iteration HPI w/ NLP 95.63 10 6,545
and optimizing a Mealy Moore 5064 | 4 | 5,176
Mars Rover: |S| = 256, |A;| = 6, |0;| =8
Controller also perform Goal-directed 21.48 6 956
very well Mealy 19.67 | 3 396
HPIw/NLP || 929 | 4 111
Moore 8.16 2 43
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Conclusion

= Optimal dynamic programming for DEC-POMDPs
« Policy iteration: e-optimal solution with finite-state
controllers (infinite-horizon)
« Incremental policy generation: a more scalable DP
« When problem terminates can use DP for optimal solution

= Scaling up in single and multiagent environments

e Heuristic PI: better scalability by sampling state space
 Optimizing finite-state controllers

» Can represent an optimal fixed-size solution

« Approximate approaches perform well

e Mealy controllers: more efficient and provide structure
 Goal-based problems

 Take advantage of structure present

« Sample-based approach that approaches optimality

Department of Computer Science 40



JMassAmbhe

Conclusion

= Lessons learned

o Studying optimal approaches improves both
optimal and approximate methods

« Showed memory-bounded techniques, sampling
and utilizing domain structure can all be used to

provide scalable algorithms from POMDPs and
DEC-POMDPs
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Other contributions

= High-level Reinforcement Learning in Strategy
(Video) Games aamas 10

e Allowed the game Al to switch between high-level
strategies in a leading strategy game (Civilization IV)

« Improved play after a small number of trials (50+)

= Solving Identical Payoff Bayesian Games with
Heuristic Search aamas 10

e Developed new solver for Bayesian Games with identical
payoffs

 Uses the BG structure to more efficiently find solutions
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Future work

= Tackling the major roadblocks to decision-making in
large uncertain domains

« How can decision theory be used in scenarios that involve a
very large number of agents?

 Can we develop efficient learning algorithms for partially
observable systems?

e How can we mix cooperative and competitive multiagent
models? (e.g. soccer with opponent)

« How can we extend and further scale up single and multiagent
methods so they are able to solve realistic systems?

= Applications: Robotics, medical informatics, green
computing, sensor networks, e-commerce
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Thank you!

C. Amato, D. S. Bernstein and S. Zilberstein. Optimizing Memory-Bounded
Controllers for Decentralized POMDPs. UAI-07

= C. Amato, D. S. Bernstein and S. Zilberstein. Solving POMDPs Using
Quadratically Constrained Linear Programs. I1JCAI-07

= C. Amato, D. S. Bernstein and S. Zilberstein. Optimizing Fixed-Size
Stochastic Controllers for POMDPs and Decentralized POMDPs. JAAMAS 2009

= D. S. Bernstein, C. Amato, E. A. Hansen and S. Zilberstein. Policy Iteration
for Decentralized Control of Markov Decision Processes. JAIR 2009

= C. Amato, J. S. Dibangoye and S. Zilberstein. Incremental Policy Generation
for Finite-Horizon DEC-POMDPs. ICAPS-09

= C. Amato and S. Zilberstein. Achieving Goals in Decentralized POMDPs.
AAMAS-09

= C. Amato and G. Shani. High-level Reinforcement Learning in Strategy
Games. AAMAS-10

= F. Oliehoek, M. Spaan, J. Dibangoye and C. Amato. Solving Identical Payoff
Bayesian Games with Heuristic Search. AAMAS-10
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