
Department of Computer Science

Christopher Amato

Carnegie Mellon University
Feb 5th, 2010

Increasing Scalability in
Algorithms for Centralized and

Decentralized POMDPs

2 Department of Computer Science

Introduction

  Sequential decision-making
  Reasoning under uncertainty
  Decision-theoretic approach
  Single and cooperative multiagent

3 Department of Computer Science

Outline

  Introduction
  Background

•  Partially observable Markov decision processes (POMDPs)
•  Decentralized POMDPs

  My contributions to solving these models
•  Optimal dynamic programming for DEC-POMDPs
•  Increasing scalability for POMDPs and DEC-POMDPs

  Future work
•  Algorithms and applications

4 Department of Computer Science

Dealing with uncertainty

  Agent situated in a world, receiving information
and choosing actions

  What happens when we don’t know the exact
state of the world?

  Uncertain or imperfect information
  This occurs due to

•  Noisy sensors (some states look the same or can be
incorrect)

•  Unobservable states (may only receive an indirect
signal)

5 Department of Computer Science

Example single agent problems

  Robot navigation (autonomous vehicles)
  Inventory management (e.g. decide what to order

based on uncertain supply and demand)
  Green computing (e.g. moving jobs or powering off

systems given uncertain usage)
  Medical informatics (e.g. diagnosis and treatment or

hospital efficiency)

6 Department of Computer Science

Single agent: partially observable

  Partially observable Markov decision process (POMDP)
  Extension of fully observable MDP
  Agent interacts with partially observable environment

•  Sequential decision-making under uncertainty
•  At each stage, the agent takes a stochastic action and receives:

•  An observation based on the state of the system
•  An immediate reward

Environment

7 Department of Computer Science

POMDP definition

  A POMDP can be defined with the following tuple:
M = <S, A, P, R, Ω, O>
•  S, a finite set of states with designated initial state

distribution b0
•  A, a finite set of actions
•  P, the state transition model: P(s'| s, a)
•  R, the reward model: R(s, a)
•  Ω, a finite set of observations
•  O, the observation model: O(o| s', a)

In blue, are the differences from fully observable MDPs

8 Department of Computer Science

POMDP solutions

  A policy is a mapping Ω*  A
•  Map whole observation histories to actions because the

state is unknown
•  Can also map from distributions of states (belief states)

to actions for a stationary policy

  Goal is to maximize expected cumulative reward
over a finite or infinite horizon
•  Note: in infinite-horizon, cannot remember the full

observation history (it’s infinite!)

  Use a discount factor, γ, to maintain a finite sum
over the infinite horizon

9 Department of Computer Science

Example POMDP: Hallway

 Minimize number of
steps to the starred
square for a given
start state distribution

States: grid cells with orientation

Actions: turn , , , move
forward, stay

Transitions: noisy

Observations: red lines

Rewards: negative for all states
except starred square

10 Department of Computer Science

Decentralized domains

  Cooperative multiagent problems
  Each agent’s choice affects all others, but must

be made using only local information
  Properties

•  Often a decentralized solution is required
•  Natural way to represent problems with multiple

decision makers making choices independently of the
others

•  Does not require communication on each step (may be
impossible or too costly)

•  But now agents must also reason about the previous
and future choices of the others (more difficult)

11 Department of Computer Science

Example cooperative multiagent problems

  Multi-robot navigation
  Green computing (decentralized, powering off affects

others)
  Sensor networks (e.g. target tracking from multiple

viewpoints)
  E-commerce (e.g. decentralized web agents, stock

markets)

12 Department of Computer Science

Multiple cooperating agents

  Decentralized partially observable Markov decision
process (DEC-POMDP)

  Multiagent sequential decision-making under
uncertainty
•  At each stage, each agent takes an action and receives:

•  A local observation
•  A joint immediate reward

Environment

13 Department of Computer Science

DEC-POMDP definition

  A DEC-POMDP can be defined with the tuple: M
= <I, S, {Ai}, P, R, {Ωi}, O>
•  I, a finite set of agents
•  S, a finite set of states with designated initial state

distribution b0
•  Ai, each agent’s finite set of actions
•  P, the state transition model: P(s’| s, ā)
•  R, the reward model: R(s, ā)
•  Ωi, each agent’s finite set of observations
•  O, the observation model: O(ō| s’, ā)

Similar to POMDPs, but now functions depend on all agents

14 Department of Computer Science

DEC-POMDP solutions

  A local policy for each agent is a mapping from
its observation sequences to actions, Ω*  A
•  Note that an agents do not generally have enough

information to calculate an estimate of the state
•  Also, planning can be centralized but execution is

distributed
  A joint policy is a local policy for each agent
  Goal is to maximize expected cumulative reward

over a finite or infinite horizon
•  Again, for infinite-horizon cannot remember the full

observation history

  In infinite case, a discount factor, γ, is used

15 Department of Computer Science

Example: 2-Agent Grid World

States: grid cell pairs

Actions: move , , , ,
stay

Transitions: noisy

Observations: red lines

Rewards: negative unless
sharing the same square

16 Department of Computer Science

Challenges in solving DEC-POMDPs

  Like POMDPs, partial observability makes the
problem difficult to solve

  Unlike POMDPs: No centralized belief state
•  Each agent depends on the others
•  This requires a belief over the possible policies of the

other agents
•  Can’t transform DEC-POMDPs into a continuous state

MDP (how POMDPs are typically solved)

  Therefore, DEC-POMDPs cannot be solved by
POMDP algorithms

17 Department of Computer Science

General complexity results

subclasses and finite horizon complexity results

P PSPACE NEXP

NEXP

18 Department of Computer Science

Relationships among the models

M
M
D
P

DEC−
MDP

POSG

MDPI−POMDP
(finitely nested) POMDP

MTDP
DEC−POMDP
DEC−POMDP−COM

38/142

Relationship with other models

Ovals represent complexity, while colors represent number of agents and
cooperative or competitive models

19 Department of Computer Science

Overview of contributions

  Optimal dynamic programming for DEC-POMDPs
•  ε-optimal solution using finite-state controllers for

infinite-horizon
•  Improving dynamic programming for DEC-POMDPs with

reachability analysis

  Scaling up in single and multiagent environments
by methods such as:
•  Memory bounded solutions
•  Sampling
•  Taking advantage of domain structure"

20 Department of Computer Science

Infinite-horizon polices as stochastic controllers

•  Designated initial node
•  Nodes define actions
•  Transitions based on

observations seen
•  Inherently infinite-

horizon
•  Periodic policies
•  With fixed memory,

randomness can offset
memory limitations

For DEC-POMDPs use one controller for each agent

Actions: move in direction or stop

Observations: wall left, wall right

21 Department of Computer Science

Evaluating controllers

  Stochastic controller defined by parameters

•  Action selection: Q  ΔA

•  Transitions: Q × O  ΔQ!

  For a node, , and the above parameters, value at
state s is given by Bellman equation (POMDP):"

q

�

V (q,s) = P(a |q) R(s,a) + γ P(s' | s,a) O(o | s',a) P(q' |q,o)V (q',s')
q '
∑

o
∑

s'
∑

⎡

⎣
⎢

⎤

⎦
⎥

a
∑

22 Department of Computer Science

Optimal dynamic programming for DEC-POMDPs

  Infinite-horizon dynamic programming (DP):
Policy Iteration
•  Build up finite-state controllers as policies for each

agent (called “backups”) over a number of steps
•  At each step, remove or prune controller nodes that

have lower value using linear programming
•  Redirect and merge remaining nodes to produce a

stochastic controller
•  Continue backups and pruning until provably within ε of

optimality (can be done in finite steps)

  First ε-optimal algorithm for infinite-horizon

JAIR 09

23 Department of Computer Science

Optimal DP for DEC-POMDPs: Policy Iteration

  Start with a given controller
  Exhaustive backup: generate all

next step policies by considering
any first action and then
choosing some node of the
controller for each observation

  Evaluate: determine value of
starting at each node at each
state and for each policy for the
other agents

  Prune: remove those that
always have lower value (merge
as needed)

  Continue with backups and
pruning until error is below ε s1 s2

(backup for action 1)
Q × S

 o2

 a1
 o1

a1 a2

 o1

 o1

 o2

 o2

a1 a2

 o1

 o1

 o2

 o2

 o1
 a1

 o2

a1 o1,o2
 a1 o1,o2

= Initial controller
 for agent 1

24 Department of Computer Science

Optimal DP for DEC-POMDPs: Policy Iteration

  Start with a given controller
  Exhaustive backup: generate all

next step policies by considering
any first action and then
choosing some node of the
controller for each observation

  Evaluate: determine value of
starting at each node at each
state and for each policy for the
other agents

  Prune: remove those that
always have lower value (merge
as needed)

  Continue with backups and
pruning until error is below ε s1 s2

(backup for action 1)
Q × S

 o2

 a1
 o1

a1 a2

 o1

 o1

 o2

 o2

a1 a2

 o1

 o1

 o2

 o2

a1 o1,o2

= Initial controller
 for agent 1

25 Department of Computer Science

Improvements and experiments JAIR 09

  Can improve value of controller after each pruning step
  Can use heuristics and sampling of the state space (point-

based method) to produce approximate results

  Optimal DP can prune a large number of nodes

  Approximate approaches can improve scalability

Policy Iteration for DEC-POMDPs

Two Agent Tiger, |S| = 2, |Ai| = 3, |Ωi| = 2
Iteration Exhaustive Sizes Controller Reductions Bounded Updates

0 (1, 1) -150 (1,1 in 1s) -150 (1,1 in 1s)
1 (3, 3) -137 (3,3 in 1s) -20 (3,3 in 12s)
2 (27, 27) -117.8 (15, 15 in 7s) -20 (15, 15 in 89s)
3 (2187, 2187) -98.9 (255, 255 in 1301s) -20* (255, 255 in 3145s)

Meeting on a Grid, |S| = 16, |Ai| = 5, |Ωi| = 4
Iteration Exhaustive Sizes Controller Reductions Bounded Updates

0 (1, 1) 2.8 (1,1 in 1s) 2.8 (1,1 in 1s)
1 (5, 5) 3.4 (5,5 in 7s) 3.8 (5,5 in 145s)
2 (3125, 3125) 3.7 (80,80 in 821s) 4.78* (125,125 in 1204s)

Box Pushing, |S| = 100, |Ai| = 4, |Ωi| = 5
Iteration Exhaustive Sizes Controller Reductions Bounded Updates

0 (1, 1) -2 (1,1 in 4s) -2 (1,1 in 53s)
1 (4, 4) -2 (2,2 in 108s) 6.3 (2,2 in 132s)
2 (4096, 4096) 12.8 (9,9 in 755s) 42.7* (16,17 in 714s)

Table 10: Results of applying exhaustive backups, controller reductions and bounded up-
dates to our test problems. The second column contains the sizes of the controllers
if only exhaustive backups had been performed. The third column contains the
resulting value, sizes of the controllers, and time required for controller reductions
to be performed on each iteration. The fourth column displays these same quan-
tities with bounded updates also being used. The * denotes that a backup and
pruning were performed, but bounded updates exhausted the given resources.

each agent in turn until value could not be improved for any node of any agent. For each
iteration, we recorded the sizes of the controllers produced, and noted what the sizes would
be if no controller reductions had been performed. In addition, we recorded the value from
the initial state and the total time taken to reach the given result.

The results are shown in Table 10. Because exhaustive backups add many nodes, we
were unable to complete many iterations without exceeding memory limits. As expected,
the smallest problem led to the largest number of iterations being completed. Although
we could not complete many iterations before running out of memory, the use of controller
reductions led to significantly smaller controllers compared to the approach of just applying
exhaustive backups. Incorporating bounded updates requires some extra time, but is able
to improve the value produced at each step, causing substantial improvement in some cases.

It is also interesting to notice that the controller sizes when using bounded updates are
not always the same as when only controller reductions are completed. This can be seen
after two iterations in both the meeting on a grid and box pushing problems. This can
occur because the bounded updates change node value and thus change the number and
location of the nodes that are pruned. In the box pushing problem, the two agents also

121

Policy Iteration for DEC-POMDPs

(a) (b)

(c)

Figure 9: Comparison of the dynamic programming algorithms on (a) the two agent tiger

problem, (b) the meeting in a grid problem and (c) the box pushing problem.

The value produced by policy iteration with and without bounded backups as

well as our heuristic policy iteration with and without optimizing the NLP were

compared on each iteration until the time or memory limit was reached.

improving solution quality past the point where the optimal algorithm exhausts resources.

More efficient use of this limited representation size is achieved by incorporating the NLP

approach as well. In fact, the heuristic algorithm with NLP improvements at each step

provided results that are at least equal to the highest value obtained in each problem and

sometimes were markedly higher than the other approaches. Furthermore, as far as we

know, these results are the highest published values for all three of the test domains.

7. Conclusion

We present a policy iteration algorithm for DEC-POMDPs. The algorithm uses a novel pol-

icy representation consisting of stochastic finite-state controllers for each agent along with

a correlation device. We define value-preserving transformations and show that alternating

between exhaustive backups and value-preserving transformations leads to convergence to

125

Optimal methods: value, controller size and time Optimal and approximate methods

26 Department of Computer Science

Incremental policy generation ICAPS 09

  Optimal dynamic programming for DEC-POMDPs
requires a large amount of time and space

  In POMDPs, methods have been developed to
make optimal DP more efficient

  These cannot be extended to DEC-POMDPs (due
to the lack of a shared viewpoint by the agents)

  We developed a new DP method to make the
optimal approaches for both finite and infinite-
horizon more efficient

27 Department of Computer Science

Incremental policy generation (cont.)

  Can avoid exhaustively generating policies (backups)
  Cannot know what policies the others may take, but after an

action is taken and observation seen, can limit the number
of states considered (see a wall, other agent, etc.)

  This allows policies for an agent to be built up incrementally
  That is, iterate through possible first actions and

observations, adding only subtrees (or subcontrollers) that
are not dominated

28 Department of Computer Science

Benefits of IPG and results ICAPS 09

  Solve larger problems optimally
  Can make use of start state information as well
  Can be used in other dynamic programming algorithms

•  Optimal: Finite-, infinite- and indefinite horizon as well as
policy compression

•  Approximate: PBDP, MBDP, IMBDP, MBDP-OC and PBIP

Horizon DP for POSGs Incremental Generation (IPG) IPG with Start State GMAA∗
MDP C-GMAA∗

MDP Value
Meeting in a 3x3 Grid, |S| = 81, |Ai| = 5, |Ωi| = 9

2 (5) 5 in 5s 5 in <1s 5 in 5s x 9 <1s 0.000
3 x 5 in 16s 5 in 17s x 121 <1s 0.133
4 x 40 in 42s 10 in 53s x x 0.433
5 x (25960)* in 2555s (148) 148,145 in 600s x x 0.896

Box Pushing, |S| = 100, |Ai| = 4, |Ωi| = 5
2 (128) 8 in 14s 8 in 2s (4) 2,3 in 1s 25 in < 1s 4 in < 1s 17.60
3 x (320,256) 256 in 1159s (6) 5,6 in 6s x 25 in 5s 66.08
4 x x (233,239) 233 in 1138s x x 98.59

Stochastic Mars Rover, |S| = 256, |Ai| = 6, |Ωi| = 8
2 x (150, 672)* in 72s (16,20) 12,15 in 83s x 1 <1s 5.80
3 x x (396, 534)* in 389s x 4 <1s 9.38
4 x x x x 11.11 in 103s 10.18

Table 2: Size, running time and value produced for each horizon on the test domains. For dynamic programming algorithms the size is given
as the number of of policy trees before and after pruning (if different) and only one number is shown if both agent trees are the same size. For
top-down approaches the size of the final Bayesian game is provided.

Horizon DP Incremental Generation (IPG) IPG with Start State Value
Meeting in a 3x3 Grid, |S| = 81, |Ai| = 5, |Ωi| = 9

2 (5) 5 in 5s 5 in <1s 5 in 5s 0.000
3 x 5 in 16s 5 in 17s 0.133
4 x 40 in 42s 10 in 53s 0.433
5 x (25960)* in 2555s (148) 148,145 in 600s 0.896

Box Pushing, |S| = 100, |Ai| = 4, |Ωi| = 5
2 (128) 8 in 14s 8 in 2s (4) 2,3 in 1s 17.60
3 x (320,256) 256 in 1159s (6) 5,6 in 6s 66.08
4 x x (233,239) 233 in 1138s 98.59

Stochastic Mars Rover, |S| = 256, |Ai| = 6, |Ωi| = 8
2 x (150, 672)* in 72s (16,20) 12,15 in 83s 5.80
3 x x (396, 534)* in 389s 9.38

Table 3: Size, running time and value produced for each horizon on the test domains. For dynamic programming algorithms the size is given
as the number of of policy trees before and after pruning (if different) and only one number is shown if both agent trees are the same size. For
top-down approaches the size of the final Bayesian game is provided.

policies, C-GMAA∗ runs very quickly and is able to im-
prove scalability over GMAA∗, especially in the Mars Rover
problem. In the other domains, IPG with start state infor-
mation can reach larger horizons than the other approaches.
There is a small overhead of using start state information,
but this approach is generally faster and more scalable than
the other dynamic programming methods because fewer
trees are retained at each step. IPG without start state infor-
mation is similarly faster and more scalable than the previ-
ous dynamic programming algorithm because it is also able
to retain fewer trees. These results show that incorporating
incremental policy generation greatly improves the perfor-
mance of dynamic programming, allowing it outperform the
leading top-down approach on two of the tree test problems.

Approximate approaches
We now examine the performance increase achieved by in-
corporating the incremental policy generation approach into
the leading approximate algorithm, PBIP. Only PBIP is used
because it always produces values at least as high as IMBDP
(?) and MBDP-OC (?) and is more scalable than MBDP (?).
It is worth noting that IPG can also be incorporated into each
of these algorithms to improve their efficiency. The same
domains as above are used with a choice for MAXTREES
fixed at 3 for each algorithm. Due to the stochastic nature

of PBIP, each method was run 10 times and the mean values
and running times are reported.

Experimental results are shown in Table 4 with PBIP
and PBIP with the incremental policy generation approach
(termed PBIP-IPG). It can be seen that PBIP is unable to
solve the Meeting in a 3 by 3 Grid or Mars Rover problems
for many horizons in the allotted time (12 hours). Incorpo-
rating IPG allows PBIP to solve these problems for much
larger horizons. On the Box Pushing domain, PBIP is able
to solve the problem on each horizon tested, but PBIP-IPG
can do so in at most half the running time. These results
show that while the branch and bound search used by PBIP
allows it to be more scalable than MBDP, it still cannot solve
problems with a larger number of observations. Incorporat-
ing IPG allows these problems to be solved because it uses
action and observation information to reduce the number of
trees considered at each step. Thus, the exponential affect of
the number of observations is reduced by the IPG approach.

Figure 3 shows the running time for different choices of
MAXTREES (the number of trees retained at each step of dy-
namic programming) on the Box Pushing domain with hori-
zon 10. While the running time increases with the number
of MAXTREES for both approaches, the time increases more
slowly with the IPG approach. As a result, a larger number
of MAXTREES can be used by PBIP-IPG. This is due to

Figure 3: Running times for different values of MAXTREES on
the Box Pushing problem with horizon 10.

more efficient backups, which produce fewer horizon t + 1
trees for each horizon t tree. These results, together with
those from Table 4 show that incorporating the incremental
policy generation approach allows improved scalability to
larger horizons and a larger number of MAXTREES.

Conclusion
In this paper, we introduced the incremental policy gener-
ation approach, which is a more efficient way to perform
dynamic programming backups in DEC-POMDPs. This is
achieved by using state information from each possible ac-
tion taken and observation seen to reduce the number of trees
considered at each step. We proved that this approach can
be used to provide an optimal finite-horizon solution and
showed that this results in an algorithm that is faster and
can scale to larger horizons than the current dynamic pro-
gramming approach. We also showed that in two of three
test domains, it solves problems with larger horizon than the
leading optimal top-down approach, clustering GMAA∗.

Incremental policy generation is a very general approach
that can improve the efficiency of any DEC-POMDP algo-
rithm that uses dynamic programming. To test this general-
ity, we also incorporated our approach into the leading ap-
proximate algorithm, PBIP. The results show that resource
usage is significantly reduced, allowing larger horizons to
be solved and more trees to be retained at each step.

Because incremental policy generation uses state infor-
mation from the actions and observations, it should work
well when a small number of states are possible for each ac-

Horizon PBIP PBIP-IPG Value
Meeting in a 3x3 Grid, |S| = 81, |Ai| = 5, |Ωi| = 9

10 x 352s 3.85
100 x 3084s 92.12
200 x 13875s 193.39

Box Pushing, |S| = 100, |Ai| = 4, |Ωi| = 5
100 536s 181s 598.40

1000 5068s 2147s 5707.59
2000 10107s 4437s 11392.03

Stochastic Mars Rover, |S| = 256, |Ai| = 6, |Ωi| = 8
2 106s 19s 5.80

10 x 976s 21.18
20 x 14947s 37.81

Table 4: Running time and value produced for each horizon using
PBIP with and without incremental policy generation (IPG).

tion and observation. In contrast, clustering GMAA∗ uses
the value of agent policies to cluster action and observa-
tion histories. Since these approaches use different forms
of problem structure, it may be possible to combine them ei-
ther by producing more focused histories when making use
of start state information or better heuristic policies for use
with MBDP-based approaches. Other work has also been
done to compress policies rather than agent histories, im-
proving the efficiency of the linear program used for prun-
ing (?). By also incorporating incremental policy genera-
tion, this combination of techniques could be applied to fur-
ther scale up dynamic programming algorithms. Lastly, we
plan to investigate the performance improvements achieved
by incorporating incremental policy generation into infinite-
horizon DEC-POMDP algorithms.

Acknowledgments
This work was supported in part by the Air Force Office of Sci-
entific Research under Grant No. FA9550-08-1-0181 and by the
National Science Foundation under Grant No. IIS-0812149.

Increases scalability in optimal DP (finite or infinite-horizon)
 x signifies inability to solve problem with 2GB memory

… and approximate DP

29 Department of Computer Science

Approximate methods

  Optimal approaches may be intractable,
causing approximate methods to be desirable

  Questions
•  How can high-quality memory-bounded solutions

be generated for POMDPs and DEC-POMDPs?
•  How can sampling be used in the context of DEC-

POMDPs to produce solutions efficiently?
•  Can I use goals and other domain structure to

improve scalability?

30 Department of Computer Science

Memory-bounded solutions

  Can use fixed-size finite-state controllers as
policies for POMDPs and DEC-POMDPs

  How do we set the parameters of these
controllers to maximize their value?
•  Deterministic controllers - discrete methods such as

branch and bound and best-first search
•  Stochastic controllers - continuous optimization

a? q
o2

o1 q?

q?

(deterministically) choosing an action and transitioning to the next node

31 Department of Computer Science

Nonlinear Programming approach IJCAI 07, UAI 07, JAAMAS 09

  Use a nonlinear program (NLP) to represent
an optimal fixed-size controller for POMDPs
or set of controllers for DEC-POMDPs

  Consider node value as well as action and
transition parameters as variables

  Thus, find action selection and node
transition parameters that maximize the
value using a known start state

  Constraints maintain valid values and
probabilities

32 Department of Computer Science

NLP formulation (POMDP case)

Variables: x(q’,a,q,o) = P(q’,a|q,o), y(q,s)= V(q,s)

Objective: Maximize

Value Constraints: s S, q Q

Probability constraints: q Q, a A, o Ω

Also, all probabilities must sum to 1 and be greater than 0

�

∀

�

∈

�

∈

�

∀

�

∈

�

∈

�

∈

�

y(q,s) = x(q',a,q,ok)
q'
∑
⎛

⎝
⎜ ⎜

⎞

⎠
⎟ ⎟ R(s,a) + γ P(s' | s,a) O(o | s',a) x(q',a,q,o)

q'
∑

o
∑ y(q',s')

s'
∑

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥ a

∑

�

x(q',a,q,o) = x(q',a,q,ok)
q'
∑

q'
∑

�

b0(s)
s
∑ y(q0,s)

33 Department of Computer Science

Mealy controllers recent submission

  Controllers currently used are Moore controllers
  Mealy controllers are more powerful than Moore

controllers (can represent higher quality solutions
with the same number of nodes)

  Provides extra structure that algorithms can use
  Can be used in place of Moore controllers in all

controller-based algorithms for POMDPs and DEC-
POMDPs

a1

o2

o1

o2 o1

a2

,a1 o2

o1 ,a2

o1 ,a2

,a1 o2 Moore= Mealy=
Q A Q×O A

34 Department of Computer Science

NLP results: POMDP case JAAMAS 09 and unpublished

  Optimizing a Moore controller
can provide a high-quality
solution

  Optimizing a Mealy controller
improves solution quality
without increasing controller
size

  Both approaches perform better
in truly infinite-horizon
problems (those that never
terminate)

  DEC-POMDP results are similar,
but discussed later

  Future specialized solvers may
further increase quality

tions of the Moore and Mealy NLP formulations with
other leading approximate algorithms. All Moore and
Mealy experiments were conducted on the NEOS server
(http://neos.mcs.anl.gov) using the snopt solver. They were
initialized with random deterministic controllers and aver-
aged over 10 trails. As described above, unreachable state-
observation pairs and dominated actions were removed from
the Mealy formulation. MDP and POMDP policies were
used as upper bounds for POMDPs and DEC-POMDPs re-
spectively, while reactive or previously found policies were
used as lower bounds. Unless otherwise noted, other ex-
periments were performed on a 2.8 GHz machine with 4Gb
of RAM. The code for HSVI2 and PERSEUS was used
from the web sites of Trey Smith and Matthijs Spaan re-
spectively and were run with a time limit of 30 minutes. For
PERSEUS, 10,000 points were used and the average of 10
runs is provided. As experiments were conducted on differ-
ent machines, results may vary slightly, but we expect the
trends to remain the same.

Table 2 shows the results for three POMDPs benchmarks.
The Aloha problem is a networking domain using the slotted
Aloha scheme (?) and the tag problem involves a robot that
must catch and tag an opponent (?). Because the original tag
problem stops after the opponent is successfully tagged and
thus is not fully infinite-horizon, we also provide results for
a version in which the problem repeats rather than stopping.
A discount factor of 0.999 was used for the Aloha domain
and 0.95 was used for the tag problems.

In the first and third problems, Mealy machines provide
the highest-valued solutions and generally use much less
time than the other methods. In the second problem, the
Mealy formulation is competitive with the state-of-the-art in
terms of quality and time. In all cases using a Mealy ma-
chines is a marked improvement over using a Moore ma-
chine.

Table 4 shows the results for three two agent DEC-
POMDP benchmarks: the meeting in a grid problem (?), the
box pushing domain (?) and the stochastic Mars rover prob-
lem (?). On all of the DEC-POMDP domains a discount
factor of 0.9 was used. To put the results from the Moore
and Mealy machines into perspective, we also include re-
sults from heuristic policy iteration with nonlinear program-
ming (HPI w/ NLP) (?) and the goal-directed sampling al-
gorithm (?). This goal-directed approach assumes special
problem structure and thus is not a general algorithm. As
such we would expect it to outperform the other algorithms.

In all three problems, the Mealy machine obtains higher
quality solutions than the Moore machine or HPI with NLP.
The Mealy formulation also outperforms the Goal-directed
approach on the first problem and is competitive with it
in the other domains, showing that much of the problem
structure can be automatically discovered with our approach.
This is accomplished with concise controllers and a very rea-
sonable running time. Note that both the goal directed and
HPI w/ NLP approaches use Moore machines as their pol-
icy representation. We believe that using Mealy machines

1These results are taken from PBPI: (?), RTDP-BEL: (?),
PERSEUS: (?) and HSVI2: (?)

Algorithm Value Size Time
Aloha: |S| = 90, |A| = 29, |O| = 3

Mealy 1,221.72 7 312
HSVI2 1,212.15 2,909 1,851
Moore 1,211.67 6 1,134

PERSEUS 853.41 31 1,801
Tag: |S| = 870, |A| = 5, |O| = 30

PBPI1 -5.87 818 1,133
RTDP-BEL1 -6.16 2.5m 493
PERSEUS1 -6.17 280 1,670

HSVI21 -6.36 415 24
Mealy -6.65 2 323

Moore fixed -8.14 7 5,669
Moore -13.94 2 5,596

Tag Repeat: |S| = 870, |A| = 5, |O| = 30
Mealy -11.44 2 319

PERSEUS -12.24 142 2,020
HSVI2 -15.02 3,207 1,815
Moore -20.00 1 37
Hallway2 |S| = 93, |A| = 5, |Ω| = 17

Moore fixed 1.97 13 309
Moore 1.66 6 163
HSVI2 1.18 2,540 3,627

Table 2: Results for POMDP problems comparing Mealy and
Moore machines and other algorithms. The size for the machines is
the number of nodes in the controller. The size for other algorithms
is the number of planes or belief points. The time is in seconds.

would improve their value, but leave this for future work.
In a final experiment, we compare the quality of con-

trollers obtained by utilizing fixed-size Mealy and Moore
machines on the DEC-POMDP benchmarks. Table 5 shows
the results of the comparison. As can be seen, Mealy ma-
chines always achieve better quality for a fixed size. Similar
results were also obtained in the POMDP benchmarks. By
using approximate solvers, there may be problems for which
this is not the case, but we are encouraged by the results.

Discussion
We presented a novel type of controller for centralized and
decentralized POMDPs that is based on the Mealy machine.
Existing controller-based algorithms can be adapted to use
this type of machine instead of the currently used Moore ma-
chine. We adapted one such algorithm and our experiments
show that Mealy machines can lead to higher-valued con-
trollers when compared to the state-of-the-art approaches.

In the future, we plan to adapt other algorithms to measure
the improvement in performance. Also, we would like to
devise additional ways to exploit the structure of the Mealy
machine and to explore the relationship between Mealy and
Moore machines in order to obtain a better understanding of
both types of machines.

2Goal-directed results assume special problem structure and
thus cannot be directly compared with general approaches such as
the Mealy, Moore and HPI methods.

35 Department of Computer Science

Achieving goals in DEC-POMDPs AAMAS 09

  Unclear how many steps are needed until
termination

  Many natural problems terminate after a goal is
reached
•  Meeting or catching a target
•  Cooperatively completing a task

36 Department of Computer Science

Indefinite-horizon DEC-POMDPs

  Described for POMDPs Patek 01 and Hansen 07

  Our assumptions
•  Each agent possesses a set of terminal actions
•  Negative rewards for non-terminal actions

  Problem stops when a terminal action is taken by
each agent

  Can capture uncertainty about reaching goal
  Many problems can be modeled this way

  We showed how to find an optimal solution to
this problem using dynamic programming

37 Department of Computer Science

Goal-directed DEC-POMDPs
  Relax assumptions, but still have goal
  Problem terminates when

•  The set of agents reach a global goal state
•  A single agent or set of agents reach local goal states
•  Any combination of actions and observations is taken or seen by

the set of agents

  More problems fall into this class (can terminate without
agent knowledge)

  Solve by sampling trajectories
•  Produce only action and observation sequences that lead to goal
•  This reduces the number of policies to consider
•  We proved a bound on the number of samples required to

approach optimality

ga1	

 a1	

a1	

 o1	

o3	

 o3	

b0	

38 Department of Computer Science

Getting more from fewer samples

  Optimize a finite-state controller
•  Use trajectories to create a controller
•  Ensures a valid DEC-POMDP policy
•  Allows solution to be more compact
•  Choose actions and adjust resulting transitions (permitting

possibilities that were not sampled)
•  Optimize in the context of the other agents

  Trajectories create an initial controller which is then
optimized to produce a high-valued policy

a1	

o1	

o2-4	

g	

a4	

g	

g	

g	

g	

g	

a3	

a1	

a1	

a1	

a1	

a1	

o4	

o1	

o1	

o1	

o1	

o1	

o2	

o3	

o3	

 o3	

0	

5	

4	

3	

2	

1	

39 Department of Computer Science

Experimental results AAMAS 09 and unpublished

Algorithm Value Size Time
Meeting in a Grid: |S| = 16, |Ai| = 5, |Oi| = 2

Mealy 6.13 5 116
HPI w/ NLP 6.04 7 16,763
Moore 5.66 5 117

Goal-directed2 5.64 4 4

Box Pushing: |S| = 100, |Ai| = 4, |Oi| = 5

Mealy 143.14 4 774
HPI w/ NLP 95.63 10 6,545
Moore 50.64 4 5,176

Goal-directed2 149.85 5 199

Mars Rover: |S| = 256, |Ai| = 6, |Oi| = 8

Mealy 19.67 3 396
HPI w/ NLP 9.29 4 111
Moore 8.16 2 43

Goal-directed2 21.48 6 956

Table 3: Results for DEC-POMDP problems comparing Mealy
and Moore machines and other algorithms. The size refers to the
number of nodes in the controller and the time is in seconds.

Algorithm Value Size Time
Two Agent Tiger: |S| = 2, |Ai| = 3, |Oi| = 2
HPI w/ NLP 6.80 6 119
Goal-directed 5.04 12 75

Moore -1.09 19 6,173
Meeting in a Grid: |S| = 16, |Ai| = 5, |Oi| = 2

Mealy 6.13 5 116
HPI w/ NLP 6.04 7 16,763

Moore 5.66 5 117
Goal-directed 5.64 4 4

Box Pushing: |S| = 100, |Ai| = 4, |Oi| = 5
Goal-directed 149.85 5 199

Mealy 143.14 4 774
HPI w/ NLP 95.63 10 6,545

Moore 50.64 4 5,176
Mars Rover: |S| = 256, |Ai| = 6, |Oi| = 8

Goal-directed 21.48 6 956
Mealy 19.67 3 396

HPI w/ NLP 9.29 4 111
Moore 8.16 2 43

Table 4: Results for DEC-POMDP problems comparing Mealy
and Moore machines and other algorithms. The size refers to the
number of nodes in the controller and the time is in seconds.

Number of nodes
Type 1 2 3 4 5

Meeting in a grid: |S| = 16, |Ai| = 5, |Oi| = 2

Mealy 5.50 6.00 5.87 6.05 6.13
Moore 3.58 4.83 5.23 5.62 5.66

Box pushing: |S| = 100, |Ai| = 4, |Oi| = 5

Mealy 123.46 124.20 133.67 143.14
Moore -1.58 31.97 46.28 50.64

Mars rover: |S| = 256, |Ai| = 6, |Oi| = 8

Mealy 18.92 19.17 19.67
Moore 0.80 8.16

Table 5: Results for Mealy and Moore machines of different sizes
for DEC-POMDP benchmarks. A blank entry means that the con-
troller of that size could not been computed given the resource re-
strictions of the NEOS server.

  We built controllers from a
small number of the
highest-valued trajectories

  Our sample-based
approach (goal-directed)
provides a very high-
quality solution very
quickly in each problem

  Heuristic policy iteration
and optimizing a Mealy
controller also perform
very well

40 Department of Computer Science

Conclusion

  Optimal dynamic programming for DEC-POMDPs
•  Policy iteration: ε-optimal solution with finite-state

controllers (infinite-horizon)
•  Incremental policy generation: a more scalable DP
•  When problem terminates can use DP for optimal solution

  Scaling up in single and multiagent environments
•  Heuristic PI: better scalability by sampling state space
•  Optimizing finite-state controllers

•  Can represent an optimal fixed-size solution
•  Approximate approaches perform well
•  Mealy controllers: more efficient and provide structure

•  Goal-based problems
•  Take advantage of structure present
•  Sample-based approach that approaches optimality

41 Department of Computer Science

Conclusion

  Lessons learned

•  Studying optimal approaches improves both
optimal and approximate methods

•  Showed memory-bounded techniques, sampling
and utilizing domain structure can all be used to
provide scalable algorithms from POMDPs and
DEC-POMDPs

42 Department of Computer Science

Other contributions

  High-level Reinforcement Learning in Strategy
(Video) Games AAMAS 10

•  Allowed the game AI to switch between high-level
strategies in a leading strategy game (Civilization IV)

•  Improved play after a small number of trials (50+)

  Solving Identical Payoff Bayesian Games with
Heuristic Search AAMAS 10

•  Developed new solver for Bayesian Games with identical
payoffs

•  Uses the BG structure to more efficiently find solutions

43 Department of Computer Science

Future work

  Tackling the major roadblocks to decision-making in
large uncertain domains
•  How can decision theory be used in scenarios that involve a

very large number of agents?
•  Can we develop efficient learning algorithms for partially

observable systems?
•  How can we mix cooperative and competitive multiagent

models? (e.g. soccer with opponent)
•  How can we extend and further scale up single and multiagent

methods so they are able to solve realistic systems?

  Applications: Robotics, medical informatics, green
computing, sensor networks, e-commerce

44 Department of Computer Science

Thank you!
  C. Amato, D. S. Bernstein and S. Zilberstein. Optimizing Memory-Bounded

Controllers for Decentralized POMDPs. UAI-07
  C. Amato, D. S. Bernstein and S. Zilberstein. Solving POMDPs Using

Quadratically Constrained Linear Programs. IJCAI-07
  C. Amato, D. S. Bernstein and S. Zilberstein. Optimizing Fixed-Size

Stochastic Controllers for POMDPs and Decentralized POMDPs. JAAMAS 2009
  D. S. Bernstein, C. Amato, E. A. Hansen and S. Zilberstein. Policy Iteration

for Decentralized Control of Markov Decision Processes. JAIR 2009
  C. Amato, J. S. Dibangoye and S. Zilberstein. Incremental Policy Generation

for Finite-Horizon DEC-POMDPs. ICAPS-09
  C. Amato and S. Zilberstein. Achieving Goals in Decentralized POMDPs.

AAMAS-09
  C. Amato and G. Shani. High-level Reinforcement Learning in Strategy

Games. AAMAS-10
  F. Oliehoek, M. Spaan, J. Dibangoye and C. Amato. Solving Identical Payoff

Bayesian Games with Heuristic Search. AAMAS-10

